
Deducing Similarities in Java
Source from Bytecodes

(Appeared in the 1998 USENIX Technical Conference.)
Brenda S. Baker

Bell Laboratories, Lucent Technologies
Udi Manber

University of Arizona
Presented by: Huang Ji

Introduction

On network computers, Java bytecode is a common way to
execute programs and it always arrive through the net transparently.
This bring the problems of security, update, portability, and so on.This
paper gives ways of solving one of the basic problems: find similarity of
the source code among a set of bytecode files.

We adapt three tools – Siff, Dup and Diff and by combining
these three tools we can do more effectively at finding the similar files
while keeping false positives low.

These tools have several applications including program
management, plagiarism detection, program reuse and reengineering,
security, compression and so on.

1. The definition of three tools.
• Siff : is a program to find the similarities in text files. It is designed

to find pairs that contain a significant number of common
blocks(“fingerprints”) from a large number of text files.

• Dup : search sets of source files to look for sufficiently long sections
that match except for systematic transformations of names, such as
variable names, and can deal efficiently with a few million lines of
source code. This kind of match called p-match.

• Diff : is used for finding commonality between files. It use dynamic
programming to identify lines-by-lines changes(insertion and deletion)
between files.

2. The combination of the three tools.

Outline

Outline(continue)

The combination of Siff and Dup for searching large numbers of
files make it more broaden and stringent.

files found by Siff files found by Dup

Outline(continue)
The combination of Dup and Diff for more detailed analysis of

files.
3. Adapting the tools to Java bytecode file(focus on)

The adaptation of Siff and Diff do not working directly on bytecode
files as well as the disassembled bytecode files. So we need to encode the
disassembled bytecode files first. Dup has already incorporated with this
encode technique but additional preprocessing can improve its performance.

4. Experiments
- Experiment 1 with the random changes to one Java program.

For a range of source similarity between 70% to 79% and after trails
of 59 times, average source similarity is 75.9% and we got bytecode similarity
of 71.9% with max difference of 7%.

We can see that average source code similarity and
bytecode similarity match very well.

Outline(continue)

-Experiment 2 with a large set of bytecode files(2056 files).
We test using Siff only, Dup only, both of Dup and Siff and find

that very few false positives by combine of Dup and Siff(18 out of 2
million pairs at most and in this experiment, 9 instances were reported
but all are valid instance of similarity). While out of 43 pairs reported
from different collections with at least 50% of similarity, Siff reported
several that are not valid instance of similarity and Dup reported 1 that
are not valid from the pairs with at least 200 lines in common.

So by combining the Dup and Siff, we can get the
result more stringently.

How to adapting the tools
1. Review of the Java class files(bytecode files)
– Constant pool and Method table.
2. Disassemble of Java class files.
– first need to keep track of position of parsing in the hierarchy table

and structure.
– The disassembled code contains opcodes and arguments as follows:

o182 #invokevirtual
c106
o153 #ifeq
j+17
o025 #aload
v4
o180 #getfield

How to adapting the
tools(continue)

� Siff and Diff still fail at this stage
Why?

Slight changes to the Java file may result in the change of indices into the constant
table or local variable table.

� Dup can run if it is provided with appropriate lexical analyzer but often
need preprocessing.

3. Preprocessing for Dup
� Change the jump offsets in the disassembled code into a “goto label” form

and Dup will compute the offsets itself for the labels. Thus, this process
evokes mismatch and enables dup to find longer p-matches.

4. Preprocessing for Siff and Diff .
� Absolute values of table indices may change, but positional relationship

will maintain.

How to adapting the
tools(continue)

� Use the same offset encoding as dup. Siff and Diff are run on the offset-
encoded files.

� Rules:
1.Replace each index into the constant pool and local variable table with an offset

independently.(from absolute value to relative position)
2. The first occurrence of index is encode as 0, thereafter each use is encoded as

negative of the number of line.
So the above example can be encoded as following:

o182 #invokevirtual o 182
c106 c -26
o153 #ifeq o 153
j+17 j+17
o025 #aload o025
v4 v -10
o180 #getfield o 180
c253 c -10
o025 #aload o025
v5 v -10

Left-hand is the bytecode before encode, right-hand is one after encode
We can see that encoding decreases reliance on the absolute value and
preserve the indices into the instruction to see they are same or not.

Conclusions and Questions
Conclusions

1. This report is perfectly good for it comprehensively illustrated the theory
of finding the similarity through the bytecode and give the experiment
result to validate it. They made a practical software product but it is a bit
hard to understand because it involves materials extensively and
intensively.
2.By cooperating the encoding technique and combining the three tools, we
can keep the false negative very low and get perfect result.

Questions
1. I’m not quite sure of my understanding of the disassemble bytecode after
calculating offsets is right, any suggest will be grateful.
2. A number of “obfuscators” has been used to deter the decompilation, can
technique of finding similarity still be effective? Why?

