Content

+ |ntroduction

+ Signing, sealing and guarding Java object
= Motivation
= Design (in terms of API)
= Performance

* Summary

Introduction

+ Java Security Package
Police-based

Configurable

Extensible

Fine-grained access control

Introduction

+ Object Orientation
= Data encapsulation
= ODbject name space partition
= Type safety

Introduction

¢+ Distributed Java Application
= Java remote method Invocation package

= Convenient and necessary to protect the state of
an object for integrity and confidentiality

Introduction

¢ Java.security.SignedObject and
java.security.GuardedObject are part of
JDK1.2

¢ Javax.crypto.SealedObject is included in
JCE1.2

Signing Java Object

+ Motivation
= Authorization token
= Valid authentication across machines (JVMs)
= Provide authenticity of the state of an object
= Nested SignedObject
= Provide confideniality

Signing Java Object

¢ Design
= SignedObject contains the signed object, must be
serializable, and its signature
= Signing algorithm
e DSA
e SHA-1

SignedObject and SealedObject

Fig. 1. Signed and Sealed Objects

Signing Java Object

+ API Design

public SignedObject(Serializable object, PrivateKey signingKey,
Signature signingEngine)

public final void sign(PrivateKey signingkey, Signature
signingEngine)

public final Object getContent()

public final byte[] getSignature();

public final String getAlgorithm();

public final boolean verify(PublicKey verificationKey, Signature
verificationEngine);

Signing Java Object

¢ Example - Signing an object

Signature signingEngine =
Signature.getinstance(algorithm, provider)

SignedObject so = new SignedObject(myobiject,
privatekey, signingEngine)

Signing Java Object

¢ Example - Verification
Signature verificationEngine =
Signature.getInstance(algorithm, provider)
If(so.verify(publickey, verificationEngine))
try {
Object myobj = so.getContent();
} catch (ClassNotFoundException e) {};

Signing Java Object

fﬂl‘:_jei‘.!. size |serialization|signing | verification

512-bit SHA-1/DSA
10 bytes Oms | 25ms “43ms |
100 bytes Oms | 26ms 44ms
10K bytes lms 134ms 153ms
100K bytes Yms (1119ms| 1138ms

Table 1. Performance of SignedObject (09/05/97)

Signing Java Object

object size |serialization|signing| verification
1024-bit SHA-1/DSA

10 bytes Oms 80ms 151ms
100 bytes Oms 83ms 157ms
10K bytes I ms | 89ms 260ms

IUE.l_'F{. h;,rts_‘:si f}_rns I 168ms 1237ms

Table 2. Performance of SignedObject (09/05/97)

Sealing Java Object

+ Motivation

= Protect its confidentiality with cryptographic
algorithm (e.g. DES)

= Provide integrity to object

Sealing Java Object

+ API Design

Public SealedObject(Serializable object, Cipher c);

Public final Object getContent(Cipher c);

Sealing Java Object

+ Example - generate a DES cipher

KeyGenerator keyGen =
KeyGenerator.getinstance(“DES”);

SecretKey desKey = KeyGen.generateKey();
Cipher cipher = Cipher.getinstance(“Des”);
Cipher.init(Cipher. ENCRYPT_MODE, desKey);

Sealing Java Object

+ Example - create a SealedObject

String s = new String(“Greetings”);
SealedObject so = new SealedObject(s, cipher);

Sealing Java Object

+ Example - decrypt the SealedObject

Cipher.init(Cipher.DECRYPT_MODE, desKey);

Try {
String s = (String) so.getContent(cipher);

} catch(ClassNotFoundException e) {}

Sealing Java Object

+ Performance

= Similar to SignedObject.

= Depends on the serialization time and the speed
of the underlaying cryptographic algorithm.

Guarding Java Object

+ Motivation
e Security check done in the consumer side
e Don’t know what information to provide
e Performance (e.g. faster access)
e Consumer environment too security sensitive
e Too much information

e Guaranteed to occur in a context where the protection
mechanism would allow it

e Simplify server program

Guarding Object

i mmTETeL g S e ek P ekt i 1 AT
g request access N

8 check guard [§

tegbe o PRl e R ey i
e A rin reference & ;

Guard object .
protected Dje-::t
Fig. 2. Guard and GuardedObject
Sealing Java Object

* API Design

Public abstract void checkGuard(Object object)

Public GuardedObject(Object object, Guard
guard);

Public Object getObject();

Sealing Java Object

* Example

FileInputStream fis = new
FilelnputStream(“/a/b/c™);

FilePermission p = new FilePermission(“/a/b/c”,
“read”);

GuardedObject g = new GuardedObject(fis, p);

FileInputStream fis = (FilelnputStream)
g.getObject();

Related Work

+ Modula-3 and Oblique is related to
SignedObject and SealedObject.

+ Gated Object model and Guard concept in
programming language research is similar to
the GuardedODbject

Summary

+ Enrich the existing Java security APIs, so
security aware applications can be much
easier to build.

+ Performance is satisfy for commercial use.

Question

