
00-9-22 1

Software Watermarking:
Model and Dynamic Embeddings

Author: Christian Collberg Clark Thomborson

POPL’99 SAN ANTONIO, TEXAS, USA, 20-22 JAN 1999

“We will be constructing new techniques which are
resilient to a variety of semantics-preserving de-
watermarking attacks.”

Presented by: Nian Zhou
21 September 2000

00-9-22 2

Overview of paper and my focus

� Introduction
� Static Software Watermarking
� Dynamic Software Watermarking
� A Formal Model of Software Watermarking
� Dynamic Graph Watermarking

� Overview and Working Principles
� Embedding the Watermarking
� Recognizing the Watermarking
� Attacking Against the Watermarking
� Tamperproofing the Watermarking

� Conclusion

(my focus)
(my focus)

00-9-22 3

What is semantics-preserving transformation ?

� Semantics-preserving transformations is one kind of
distortive attacks.

� The definition:
Tsem={t:t | P P, I dom(p), dom(p)=dom(t(p)), out(p,i)=out(t(p),i) }

(In here, P is the set of programs. T is the set of transformations
Dom(p) is the input sequence accepted by P.
Out(p,i) is output of P on input I)

� Most of software watermarking techniques are susceptible
to distortive attacks by semantics-preserving
transformations.

∈∈ ∈

00-9-22 4

Overview of Dynamic Graph Watermarking

� The central Idea is to embed a watermark in the topology
of a dynamically built graph structure.

� Our technique:

P prime()
Q prime()
N P Q×

p=new node();
q=new node();
addEdge(p,q);
…………W

00-9-22 5

Attacks Against the Watermark

� Adding(extra pointers) attacks:
T

� Reordering and renaming attacks:
T

Class T{
int a;
T car;
T cdr;

}

Class T{
Int a;
T car;

T bogus1;
T cdr;

T bogus2;

Class T{
int a;
T car;
T cdr;

}

Class T{
T F1;
int F2;
T F3;

}

00-9-22 6

Attacks Against the Watermark(continued)

� Node-splitting attacks:

T

Class T{
int a;
T car;
T cdr;

}

Class T{
int a;

T1 bogus;
}

Class T1{
T car;
T cdr;

}
n=new T;

n.bogus=new T1;

00-9-22 7

Tamperproofing the Watermarking
� Tamperproofing by the structure of graph:
The most attractive method makes certain types of attacks ineffective.
For Examples:(node-splitting attacks)

1 2 3

00-9-22 8

Tamperproofing by Reflection
� The reflection capabilities of Java give us a simple way of

tamperproofing a graph watermark.
� For a given graph node Node:

class Node{public int a; public Node car,cdr}
The Java reflection class enable us check the intergrity of this type at

runtime.
Field[] F=Node.class.getFields();
If(F.length !=3) die();
If(f[1].getType() != Node.class) die();

To prevent reordering and renaming attacks,we can access watermark
pointers through reflection.(let car represented by the first relevant
pointer)

00-9-22 9

Cropping Attacks

� :
If the adversary can locate the code that build the watermark graph G,
And launch the adding (extra nodes) attacks.

What can We do?
Solution:Occasionally check the Integrity of G.

For Example:

00-9-22 10

Tamperproofing the Watermarking(continued)

Planted plane cubic tree on 2m=8 nodes:

1)A leaf node is recognized by its
self-loop.

2)The root node can be found from
any leaf node by following l-links.

3)left-most child of each internal
node’right subtree is l-linked to the
right-most child of its left subtree.

L R

L R

L R
L R

L R
L RL R

L R

L R

00-9-22 11

Conclusion
� A new family of software watermarking techniques

embed marks into the topology of dynamic heap data
structures.

� It makes the semantics-preserving transformations
which make fundamental changes to a graph will be
hard to construct.

Q1: If the adversary can locate the watermark in a graph and not
just adding extra pointers(for example,remove the watermark
totally if possible !) What should we do? That is the end of the day?

Q2: Does anybody has the experience of Java reflection? Can you
should me an example of that?

