SCAM: A Copy Detection Mechanism for Digital Documents

Narayanan Shivakumar, Hector Garcia-Molina Department of Computer Science Stanford University Stanford, CA

Presented by Dennis Peper

Introduction

- Digital libraries may become popular in the future.
- We don't know how to prevent illegal copying effectively.
- We can detect illegal copying. Methods are:
 - Signature based (e.g. Watermarking.)
 - Registration based (SCAM's approach)
 - Original document is registered with a server.
 - Subsequent documents are compared with pre-registered documents.

Copy Detection Overview

- Document is broken up into chunks.
 - A chunk could be a word, sentence or sequence of sentences, depending on the detection method.
 - SCAM is based on word chunking.
- The chunks of a registered document are stored in a database.
- A new document is broken up and compared to the chunks in the database.
- If overlap exceeds a certain threshold (depending on detection system used), then the author is notified.

Measuring Overlap

- Vocabulary V = {a,b,c,d,e,f,g,h} are the unique chunks in our library.
- Given a registered document R=<a,b,c>. What should our system return, when comparing R to other documents D₁, D₂,...?

<u>Document</u>	Comparison with R	
D ₁ = <a,b></a,b>	Quite similar	
$D_2 = $	Exact replica	
$D_3 = k \ge 1$	Somewhat similar at low k, not very similar for high k.	• e.g. when k=2, $D_3 = \langle a, a \rangle$
$D_4 = \langle a, b, c, d, e, f, g, h \rangle$	Significant overlap	

Vector Space Model

- We need a method to compare registered document R to incoming documents.
- F(d) is the frequency vector. (e.g. F(R) = <1,1,1,0,...>)
- Dot product of normalized frequency vectors.
 - R = <a,b,c> V(R) = <1/3,1/3,1/3,0,...>
 - $D_1 = <a,b> V(D_1) = <1/2,1/2,0,0,...>$
 - $V(R) \cdot V(D_1) = \frac{1}{3x1/2} + \frac{1}{3x1/2} = \frac{1}{3}$

Document	Dot Product
$D_2 = \{a, b, c\}$	$V(R) \bullet V(D_2) = 1/3$
$D_3 = \{a^k\} k \ge 1$	$V(R) \bullet V(D_3) = 1/3$
$D_4 = \{a,b,c,d,e,f,g,h\}$	$V(R) \bullet V(D_4) = 1/8$

- The overlap of R with D₂ and D₄ is more significant than that with D₁ or D₃.
- The dot product does not report this.

Vector Space Model (Cont.)

Similarity for D₄ is low considering the entirety of R contained within D₄.

There is 1 'a' chunk, 1 'b' chunk, etc...

Relative Frequency Model - SCAM^(?)

- For documents R and S define a closeness set c(R,S) to contain all words w_i with similar frequencies $F_i(R)$ and $F_i(S)$.
 - "Similar" is defined by $s_i = Fi(R)/Fi(S) + Fi(S)/Fi(R) < \varepsilon$.
 - $-\epsilon$ must be chosen in the range 2.0001 to infinity.
 - If either $F_i(S)$ or $F_i(R) = 0$, then don't include s_i in c(R,S)
- Note: if a word occurs the same number of times in both documents, it is added.
- If $F_i(R)=3$ and $F_i(S)=2$, then c(R,S) contains w_i if $\varepsilon < 2.17$.
- We can see that ε is a tolerance factor.

Relative Frequency Model (Cont.)

- Subset measure. How much of a subset is R wrt S? (my understanding.)
- subset(R,S) = $(\sum_{w_i \in c(R,S)} \alpha_i^2 F_i(R) F_i(S)) / (\sum_i^N \alpha_i^2 F_i^2(R))$
- α_i is a weighting associated with the ith chunk, this allows adding an importance factor.
- sim(R,S)=max{subset(R,S), subset(S,R)}
- If sim(R,S)≥1, set the result to 1, no extra information is gained as both documents are very similar anyway.
- $R = \{a,b,c\} \quad D_1 = \{a,b\}$
- $sim(R,D_1) = max\{(1x1+1x1)/3,(1x1+1x1)/2\}=1$ ($\epsilon=2.0001$ or 3) Document sim result $\epsilon=2.0001$ sim result $\epsilon=3$

Document	sim result, $\epsilon=2.0001$	sim result, $\epsilon=3$
$D_2 = \{a, b, c\}$	$sim(R,D_2)=1$	$sim(R,D_2)=1$
$D_3 = \{a^k\} k \ge 1$	$sim(R,D_3)=1,k=1$	$sim(R,D_3)=1,k=1$
	$sim(R,D_3)=0,k>1$	$sim(R,D_3)=2/3,k=2$
		$sim(R,D_3)=0,k\geq 3$
$D_4 = \{a,b,c,d,e,f,g,h\}$	$sim(R,D_4)=1$	$sim(R,D_4)=1$

Conclusion

- What about detecting copying from multiple sources?
- Compared against another method, COPS, and results favored SCAM.
- Has higher false positive rate.

Thank you, any questions?