
Reverse Engineering 
“Protecting digital assets from RE attack”

Steve Ingram
Oren Ben-Menachem

Besser fri’er bevorent aider shpeter bevaint
Better caution at first than tears afterwards

Contents

What's this all about?
How is it done?
Why are we talking about it?
Techniques and common sense



What is this all about?

What is reverse engineering?
Why is it done?
Who are the players?
How is it done?

How is it done?
Patience and understanding
Tools
� Steppers, Dry-listers

Skills required
� Understanding of: 

� System (including OpSys)
� Language (assembly and source)
� Compilers (how is assembly generated from 

higher level languages)
� Developers and the process they use



Example : C Source
#include <stdio.h>
void main(void)
//<><><><><><><><><><><><><><><><><><><><>
// Input: None //
// Output: predetermined , printf * 2 //
// Termination: No constraint //
// Loop: None //
// Variables: 3 * local int //
// Memory alloc: None //
// Perf: O //
// Tests a value by /13, if T then OK //
//<><><><><><><><><><><><><><><><><><><><>
{ int key;

int test;
int temp;

key = 0;
test = 0;
temp = 0;

key = 13; //a base prime
test = 38; //the input validation request

temp = test / key; //create a temporary value, to be used to identify if key and test are related

if (temp * key == test) // test if key and test are actually related, succeed or fail on result
printf("success\n");

else
printf("failure\n");

printf("finished\n"); //completion
}

:00401000 55 push ebp
:00401001 8BEC mov ebp, esp
:00401003 83EC0C sub esp, 0000000C # Setup local vars
:00401006 C745F800000000 mov [ebp-08], 00000000 # init the 3 locals to 0
:0040100D C745FC00000000 mov [ebp-04], 00000000
:00401014 C745F400000000 mov [ebp-0C], 00000000
:0040101B C745F80D000000 mov [ebp-08], 0000000D #load 0x0D into var 2
:00401022 C745FC26000000 mov [ebp-04], 00000026 #load 0X26 into var 1
:00401029 8B45FC mov eax, dword ptr [ebp-04]
:0040102C 99 cdq
:0040102D F77DF8 idiv [ebp-08] #perform div
:00401030 8945F4 mov dword ptr [ebp-0C], eax #return result to var 3
:00401033 8B45F4 mov eax, dword ptr [ebp-0C]
:00401036 0FAF45F8 imul eax, dword ptr [ebp-08] #mul var1 to var 2
:0040103A 3B45FC cmp eax, dword ptr [ebp-04] #compare mul result to var 1
:0040103D 750F jne 0040104E #not equal jump to 0x0040104E

* Possible StringData Ref from Data Obj ->"success"
|

:0040103F 6830604000 push 00406030 #push pointer to string
:00401044 E823000000 call 0040106C #call printf
:00401049 83C404 add esp, 00000004 #drop result from stack
:0040104C EB0D jmp 0040105B #jump to 0x0040105B

* Referenced by a (U)nconditional or (C)onditional Jump at Address:
|:0040103D(C)
* Possible StringData Ref from Data Obj ->"failure"

|
:0040104E 683C604000 push 0040603C #push pointer to string
:00401053 E814000000 call 0040106C #call printf
:00401058 83C404 add esp, 00000004 #drop result from stack

* Referenced by a (U)nconditional or (C)onditional Jump at Address:
|:0040104C(U)
* Possible StringData Ref from Data Obj ->"finished"

|
:0040105B 6848604000 push 00406048 #push pointer to string
:00401060 E807000000 call 0040106C #call printf
:00401065 83C404 add esp, 00000004 #drop result from stack
:00401068 8BE5 mov esp, ebp #tidy up
:0040106A 5D pop ebp
:0040106B C3 ret

Relevant 8086 Source Segment



Why are we talking about 
it here?

You want to become a Reverse 
Engineer
You want to protect digital assets from 
being compromised by RE techniques

Techniques

Learn your art, be a craftsman
Understand how your digital asset works / 
interacts
Become an expert of the tools you use to 
protect or compromise
Can you protect against a concerted attack? 
Do you want or need to? 
Is a risk management approach applicable?



Risk Management
What’s risk management?
What are the trade-offs?

Design Considerations
What’s the risk?
Why should a check only occur once?
Why should it only occur against the whole 
key when its checked?
Self heal
RE states of Digital Assets don’t occur in the 
wild
Check yourself for intrusion
Why hold keys in the clear?
Why hold exports in the clear?



Example
:00401000 55 push ebp

:00401001 8BEC mov ebp, esp
:00401003 83EC0C sub esp, 0000000C # Setup local vars
:00401006 C745F800000000 mov [ebp-08], 00000000 # init the 3 locals to 0
:0040100D C745FC00000000 mov [ebp-04], 00000000
:00401014 C745F400000000 mov [ebp-0C], 00000000
:0040101B C745F80D000000 mov [ebp-08], 0000000D #load 0x0D into var 2
:00401022 C745FC26000000 mov [ebp-04], 00000026 #load 0X26 into var 1
:00401029 8B45FC mov eax, dword ptr [ebp-04]
:0040102C 99 cdq
:0040102D F77DF8 idiv [ebp-08] #perform div
:00401030 8945F4 mov dword ptr [ebp-0C], eax #return result to var 3
:00401033 8B45F4 mov eax, dword ptr [ebp-0C]
:00401036 0FAF45F8 imul eax, dword ptr [ebp-08] #mul var1 to var 2
:0040103A 3B45FC cmp eax, dword ptr [ebp-04] #compare mul result to var 1
:0040103D 90 nop

:0040103E 90 nop

* Possible StringData Ref from Data Obj ->"success"
|

:0040103F 6830604000 push 00406030 #push pointer to string
:00401044 E823000000 call 0040106C #call printf
:00401049 83C404 add esp, 00000004 #drop result from stack
:0040104C EB0D jmp 0040105B #jump to 0x0040105B

* Referenced by a (U)nconditional or (C)onditional Jump at Address:
|:0040103D(C)
* Possible StringData Ref from Data Obj ->"failure"

|
:0040104E 683C604000 push 0040603C #push pointer to string
:00401053 E814000000 call 0040106C #call printf
:00401058 83C404 add esp, 00000004 #drop result from stack

* Referenced by a (U)nconditional or (C)onditional Jump at Address:
|:0040104C(U)
* Possible StringData Ref from Data Obj ->"finished"

|
:0040105B 6848604000 push 00406048 #push pointer to string
:00401060 E807000000 call 0040106C #call printf
:00401065 83C404 add esp, 00000004 #drop result from stack
:00401068 8BE5 mov esp, ebp #tidy up
:0040106A 5D pop ebp
:0040106B C3 ret

Things to Try

An RE run yourself
Confusing RE tools
� odd offset jumping
� stepper triggers and tripwires
� who runs the process, who owns it



Word of Warning

Don’t self destruct - request clarification
Don’t bomb - why destroy someone 
else’s work
Don’t assume
Don’t ship what you don’t want used
Check for stack busting


