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OpenGL Model

• Ambient illumination, diffuse reflection, and 
specular highlights

• Basic materials properties

• Uses combination of Phong and Gouraud

• Limited to particular types of materials

• Phenomenological model



OpenGL’s Phong based 
Illumination

• Most common lighting model (taught in 372)

• Colourpixel = Ambmat x Ambscene

+ max(L•N,0)xDiffmatxDifflight

+ max((L+E)•N,0)shinexSpecmatxSpeclight

• L+E is known as the ‘half-angle vector’

• Attenuation = 1/(kc+kld + kqd2)



Gouraud Interpolation

• Lighting calculation done per-vertex

• Interpolation across surface:

• Rotationally independent (if triangles)
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Material Properties

• OpenGL allows 
material  properties 
to be specified as 
part of state:

• ambient, diffuse, 
specular reflection 
coefficients

• shininess factor



Material Properties

• Tables of commonly used properties exist:



BRDF

• Bidirectional Reflectance Distribution Function

• Given a normal (N) computes light reflected 
towards the eye (E) due to light from 
direction (L)

• Denoted BRDF(L,E;N, params)



BRDF Constraints

• Two constraints:

• Reciprocity: BRDF(L,E;N) == BRDF(E,L;N)

• Energy Conservation: 

• Incident Light = Reflected + Absorbed + 
Transmitted



BRDF Components

• Two components:

• Glossy / specular

• Diffuse / Lambertian



BRDF Types

• Creation Methods:

• Analytical / Observation-based

• Emperical / Physically-based

• Model Types:

• Anisotropic

• Isotropic



BRDF Measuring

Once we have set up a BRDF experiment, the reflected light is mea-

sured in many directions on the reflection hemisphere. At each sample

point the light is reflected through a diffraction grating so that we

can measure the response at a thousand different wavelengths si-

multaneously. This creates a data explosion and thus both data stor-

age and time for measurement become large1.  However, despite all

of these difficulties, we are now attempting to correlate our simu-

lated light reflection model with our measured experimental results.

Initial tests look very promising, at least for a small number of

samples.

As stated previously, we are not the only ones to have difficulties

with these measurements [LEON88] [LEON89]. In 1988, eighteen

"scatter" measurement facilities participated in a round robin mea-
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suring four two-inch diameter samples of a white diffuse surface, a

black diffuse surface, an industrial grade molybdenum mirror and

an aluminum mirror, both very smooth. The results showed an enor-

mous range of deviation, confirming the difficulty of the task (Fig-

ure 10).

2.3  Light Reflectance Representation

Ultimately, what is necessary is a compact representational scheme

which can accurately describe the dominant behavior of a BRDF.

The functions must capture the diffuse, directional diffuse and

specular characteristics, including the off-specular peaks, but must

also be energy consistent and obey the laws of reciprocity. Further-

more, the representation method should be suitable for progressive

algorithms, monotonically converging to a correct solution. Several

researchers have used spherical harmonics with some success, but

this representation has problems with ringing and negative values

in the approximation [CABR87] [SILL91] [WEST92]. Work based

on wavelets has been presented by Schröder [SCHR95]. This repre-

sentation seems ideally suited for progressive algorithms and shows

Figure 8:  Measured BRDF for four isotropic materials.

Figure 9: Sampling positions of BRDF measurements on the hemi-

sphere above the sample surface.  The solid line indicates the specular

reflection direction.

(a) (b)

Figure 10: (from Leonard, 1988)

(a) Measured BRDF curves for the diffuse white sample by various  facilities

participating in the BRDF round robin.  The specular beam would be located at 10°.

(b) Measured BRDF curves of the diffuse black sample

1A typical set of data for a single isotropic material at 10 degree intervals for

the incoming directions, with 800 outgoing directions for each incoming

direction, at 8 wavelengths yields approximately 230 Kbytes.  The potential

size of accumulated material data indicates the utility of an accurate reflec-

tance model with a compact means of representation.

with two measurements after depolarizing the source  and correct-

ing for the bias of the detector. Measuring the anisotropy of the  sur-

face is difficult and we do not have the equipment within our labo-

ratory to actually measure the microscopic deviations in the surface

roughness, although we can make some statistical straight-line sty-

lus probe measurements.

Since the reflection models are statistically based, we need to at

least have the parameters describing the surface geometry. Fluores-

cence and phosphorescence also have substantial effects and these

phenomena are material dependent. Even worse with fluorescence,

light which may enter at a given wavelength may be re-emitted at

many other wavelengths as there is crosstalk between color chan-

nels. Subsurface scattering depends on how far the light penetrates

underneath the surface, and is a material property usually defined

by the coefficient of extinction, but we have no mechanism for mea-

suring this. Thus many problems still exist.

Difficulties arise because of mechanical and optical constraints; for

example, holding the sample in place can physically obscure the

light source under particular conditions. We had to modify our equip-

ment several times to obtain almost all of the hemispherical values.

High grazing angles are also difficult since a small detector solid

angle is required to measure the reflected energy. Unfortunately, this

grazing region is where some of the most interesting characteristics

occur, such as the off-specular peak (Figure 8).

To complicate the situation, the variation of the BRDF is relatively

gradual in the diffuse and directional diffuse regions, but we need to

take very closely spaced samples in the specular direction. Thus,

the patterns used to measure the samples should not be uniform, but

concentrate in the areas of greatest change (Figure 9).

Of even greater concern, perhaps, is the large role that phenomena

which are difficult to model play in the BRDF's. Polarization has a

very large effect and we have had to measure our isotropic samples
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Figure 7:

a) Diagram of incidence and reflection geometry

b) Photograph of gonioreflectometer

c) Schematic of gonioreflectometer

d) Schematic of array diode spectrometer, the detector for the gonioreflectometer

Source: Greenberg et al.
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Figure 3: Geometry used to define radiometric terms.

denote azimuth angles. The sensor subtends an infinitesimal solid
angle from any point on the surface.

The light energy reflected by the surface patch is proportional
to the light incident on the patch. Irradiance is defined as the light
flux incident per unit area of the surface:

Φ
1

This is the directional irradiance of the surface as it represents light
energy incident from the direction . The total irradiance
of the surface is the flux incident from all directions and may be
denoted simply as . The brightness measured by the sensor is
proportional to the radiance of the surface patch in the direction

. Surface radiance is defined as:

;
2Φ ;

cos
2

It is the flux radiated by the surface per unit solid angle, per unit
foreshortened area. It depends on the direction of illumination
and the sensor direction. The relationship between irradiance and
radianceof a surface is determinedby its reflectanceproperties. The
bi-directional reflectance distribution function (BRDF) is defined
as the ratio of radiance to irradiance:

;
;

3

All the above definitions are general, in that, they are valid for sur-
faces with any reflectance characteristics. For an isotropic surface,
radiance and BRDF do not change if the surface is rotated about its
normal vector. For such surfaces, the BRDF is simply:

4

A special type of reflectance that is widely used for image render-
ing is Lambertian reflectance. A Lambertian surface is an ideal
diffuser whose radiance is independent of the viewing direction of
the sensor; it appears equally bright from all directions. Its BRDF
is where is the albedo of the surface and represents the
fraction of incident energy that is reflected by the surface.

3 Surface Roughness Model
There are several ways of modeling surface roughness. The
general approach is to select a model that is capable of rep-
resenting real surfaces and at the same time easy to use dur-
ing the mathematical development of the reflectance model. All

surface models found in applied physics and geophysics liter-
ature can be divided into two broad categories. In the first
case, the surface is modeled as a random process (see [1, 34,
30]). Using this approach, it is difficult to derive a reflectance
model for arbitrary source and viewer directions as well as to
analyze interreflections. In the second category, surfaces are as-
sumed to be composed of several elements with some primitive
shape, for example, spherical cavities, V-cavities, holes, etc (see [4,
31]). As shown in this paper, the effects of shadowing, mask-
ing, and interreflections need to be modeled to obtain an accurate
reflectance model. To achieve this, we use the roughness model
proposed by Torrance and Sparrow [31] that assumes the surface to
be composedof long symmetric V-cavities (see Figure 4) with their
upper edges in the same plane. Each cavity consists of two planar
facets. The width of each facet is assumed to be small compared
to its length. The roughness of the surface is specified using a
probability function for the distribution of facet slopes.

   
  d

a

dA

â
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Figure 4: Surface modeled as a collection of V-cavities.

The V-cavity roughness model can be used to describe surfaces
with both isotropic as well as anisotropic (directional) roughness.
We assume each facet area is small compared to the area of
the surface patch that is imaged by a single sensor pixel. Hence,
each pixel includes a very large number of facets. Further, the facet
area is large compared to the wavelength of incident light and
therefore geometrical optics can be used to derive the reflectance
model. The above assumptions can be summarized as:

2
5

The facets could be relatively small as in the case of sand and
plaster, or large as in the case of outdoor scenes of terrain.

Slope-Area Probability Distribution:

We denote the slope and orientation of each facet in the V-cavity
model as . Torrance and Sparrow have assumed all facets

to have equal area . They use the distribution 4 to
represent the number of facets per unit surface area that have the
normal ˆ . Here, we use a probability distribution to
represent the fraction of the surface area that is occupied by facets
with a given normal. This is referred to as the slope-area distribu-
tion . The facet-number distribution and the slope-area
distribution are related as follows:

cos (6)

The slope-area distribution is easier to use than the facet-number
distribution in the following model derivation. For isotropic sur-
faces, and , since the
distributions are rotationally symmetric with respect to the global
surface normal ˆ (Figure 4).4In [31], is denoted by where and 0.



Lambertian

• Models perfectly diffuse surfaces

• Proportional to angle of incidence



Blinn-Phong as BRDF

• Blinn-Phong is not reciprocal or energy 
conserving unless we reformulate:

• Colourpixel = Difflight

+ max((L+E)•N,0)shinexSpeclight

• Difflight = (1 - Speclight)



Phong vs. Blinn-Phong

Source: Wikipedia



Microfacets
• Microfacets are tiny surface details modeled 

using bump-mapping

• Most models require facet size to be greater 
than the wavelength of the light reflected

N



Light Interaction

Inter-reflection Shadowing Masking



Why use Microfacets?

Generalization of Lambert’s Reflectance Model

Michael Oren and Shree K. Nayar

Department of Computer Science, Columbia University

New York, NY 10027

Abstract

Lambert’s model for body reflection is widely used in computer
graphics. It is used extensively by rendering techniques such as
radiosity and ray tracing. For several real-world objects, however,
Lambert’s model can prove to be a very inaccurate approximation
to the body reflectance. While the brightness of a Lambertian sur-
face is independent of viewing direction, that of a rough surface
increases as the viewing direction approaches the light source di-
rection. In this paper, a comprehensive model is developed that
predicts body reflectance from rough surfaces. The surface is mod-
eled as a collection of Lambertian facets. It is shown that such a
surface is inherently non-Lambertian due to the foreshortening of
the surface facets. Further, the model accounts for complex geo-
metric and radiometric phenomena such as masking, shadowing,
and interreflections between facets. Several experiments have been
conducted on samples of rough diffuse surfaces, such as, plaster,
sand, clay, and cloth. All these surfaces demonstrate significant de-
viation from Lambertian behavior. The reflectance measurements
obtained are in strong agreement with the reflectance predicted by
the model.

CR Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism; I.3.3 [Computer Graphics]:
Picture/Image Generation; J.2 [Physical Sciences and Engineer-
ing]: Physics.

Additional Key Words: reflection models, Lambert’s model,
BRDF, rough surfaces, moon reflectance.

1 Introduction

An active area of research in computer graphics involves the cre-
ation of realistic images. Images are rendered using one of two
well-known techniques, namely, ray tracing [36] or radiosity [7].
The quality of a rendered image depends to a great extent on the
accuracy of the reflectance model used. In the past decade, com-
puter graphics has witnessed the application of several physically-
based reflectance models for image rendering (see [8], [17], [10],
[14]). Reflection from a surface can be broadly classified into
two categories: surface reflectance which takes place at the inter-
face between two media with different refractive indices and body
reflectance which is due to subsurface scattering. Most of the pre-
vious work on physically-based rendering has focused on accurate
modeling of surface reflectance. They predict ideal specular reflec-

tion from smooth surfaces as well as wide directional lobes from
rougher surfaces [14]. In contrast, the body component has most
often been assumed to be Lambertian. A Lambertian surface ap-
pears equally bright from all directions. This model was advanced
by Lambert [20] more than 200 years ago and remains one of the
most widely used models in computer graphics.

For several real-world objects, however, the Lambertian model
can prove to be a poor and inadequate approximation to body re-
flection. Figure 1(a) shows a real image of a clay vase obtained
using a CCD camera. The vase is illuminated by a single distant
light source in the same direction as the sensor. Figure 1(b) shows
a rendered image of a vase with the same shape as the one shown
in Figure 1(a). This image is rendered using Lambert’s model, and
the same illumination direction as in the case of the real vase. As

(a) (b)

Figure 1: (a) Real image of a cylindrical clay vase. (b) Image of the vase
rendered using theLambertian reflectancemodel. In both cases,illumination

is from the viewing direction.

expected, Lambert’s model predicts that the brightness of the cylin-
drical vase will decrease as we approach the occluding boundaries
on both sides. However, the real vase is very flat in appearance
with image brightness remaining almost constant over the entire
surface. The vase is clearly not Lambertian 1. This deviation from
Lambertian behavior can be significant for a variety of real-world
materials, such as, concrete, sand, and cloth. An accurate model
that describes body reflection from such commonplace surfaces is
imperative for realistic image rendering.

What makes the vase shown in Figure 1(a) non-Lambertian?
We show that the primary cause for this deviation is the roughness
of the surface. Figure 2 illustrates the relationship betweenmagnifi-
cation and reflectance (also see [17]). The reflecting surfacemay be
viewed as a collection of planar facets. At high magnification, each
picture element (rendered pixel) includes a single facet. At lower
magnification, each pixel can include a large number of facets.
Though the Lambertian assumption is often reasonablewhen look-

1Note that the real vase does not have any significant specular component, in which

case, a vertical highlight would have appeared in the middle of the vase.

Real Vase Phong Shading

Source: Oren-Nayar



Cook-Torrance

• Built on v-facet model of Torrance & 
Sparrow (1967)

• Has different functions for distribution of 
microfacets and models self-shadowing and 
masking

• Incorporated Blinn-Phong and Fresnel 
reflection 

• Often used to model metallic surfaces



Cook-Torrance Facets

• Distributed around the Normal N

• Normally uses the Beckmann distribution:

• Maximum variance α

• Mean difference m

Figure 3: The left sphere is rendered with Phong, the right one with
the Blinn-Phong model. [Calkins ]

small area. With this model it is possible to to represent various
stages of shininess on the reflector. The specular Phong reflection
is defined by

fr(!L,!V ) = ks ·

(
!R ·!V

)ns

(
!N ·!L

) (4)

with ks being the specular reflection coefficient, !V is the direction
to the viewer and!L the direction from the surface point to the light.
!R defines the direction of the perfect reflection, thats !L mirrored
on the normal vector !N. The parameter ns defines the shininess
of the surface, perfect reflectors would have infinity as value for
ns, complete dull surfaces have 0. A basic problem of the Phong
model is that energy conservation depends on the correct choice
and combination of the coefficients of the model. Another problem
of the model is that the objects often look very plastic, so in the
most cases not very realistic. Furthermore the Phong model is quite
complex to calculate for an empirical model, specially when used
in real time rendering.

2.1.4 Blinn-Phong

An extension to the Phong model is the Blinn-Phong model, as de-
scribed in [Blinn 1977]. It is a much faster modification of the
classical Phong model. It uses the so called halfway vector for the
reflectance calculation, a combination between the view and light
vector. This vector is used in many other models mentioned later.

!H =
!L+!V∣∣∣!L+!V

∣∣∣
(5)

The big advantage of this model is that for cases where viewer and
light are at infinity the halfway vector is independent of position
and surface curvature. So the vector will only to be calculated once
per light and frame and not for each pixel as in the original model.
Because of this optimization we have a huge performance increase
while rendering.

A common issue for both specular models is the fact that they act
not very accurate when they are viewed from grazing angles. The
reflections are either to sharp or far to blurred compared to a real
image. These problems can not be handled by empirical models so
more complicated reflectance models are needed.

2.2 Cook-Torrance

Cook and Torrance [Cook and Torrance 1982] introduced a gen-
eral physically plausible reflectance model which is able to cor-
rectly predict the directional and spectral composition of reflected

light. The model is based on a work from Torrance and Sparrow
[Torrance and Sparrow 1967] and Blinn [Blinn 1977]. Its basic as-
sumption is that the surface of an objects consists of many small
parts, or microfacets which are all perfect reflecting mirrors. The
microfacets are evenly distributed on the surface. The model itself
works only correct if the wavelength of the light is smaller than
the mean roughness of the surface patches. Each facet has a ran-
dom orientation but they are aligned along a specified distribution
around the mean surface normal N with a maximum slope differ-
ence angle α . The Gaussian distribution for the microfacets used
in the Torrance-Sparrow model is now replaced by the Beckmann-
distribution function:

D =
1

m2 cos4 α
e−

(
tanα
m2

)2

(6)

with m being the root of the mean slope of microfacets and α the
maximum slope difference angle. Small values of m create gentle,
smooth slopes, while bigger values create a much bigger distribu-
tion. Beside this distribution others are possible, depending on the
current situation. Surfaces with different types of roughness can
use a weighted sum of different distribution functions.

The calculation of the reflected light is now done by two terms.
The first one, the Fresnel-reflection-coefficient, has three parame-
ters, the index of refection n, the surface extinction coefficient k
and the angle of illumination θ . The values of n and k vary with the
wavelength so their exact values are often unknown, except if they
were measured in an experiment. If they are unknown there is a
way to calculate the missing values. For non-metals k = 0, for met-
als we can set it to zero to get an effective value for the refraction
coefficient n. The Fresnel equation gives us the angular dependence
of F , it is only weakly dependent on the coefficient k. With the as-
sumption k = 0 the Fresnel coefficient can be written as:

F =
1
2

(g− c)2

(g+ c)2

(
1+

(c(c+g)−1)2

(c(c−g)−1)2

)
(7)

c = cosθ =!V · !H
g2 = n2 + c2−1

For a given angle, as example θ = 0 we can quantify F and with it
we can estimate n:

n =
1+
√

F0
1−
√

F0

The second term in the calculation of the reflectance is the geomet-
rical attenuation factor. With this factor the self shadowing and
masking of the single facets is simulated. Self shadowing means
that light coming to a facet can be blocked by other facets due to
irregularities on the surface or simply shadowing of the neighbor
facets. Masking is the same effect only that now the already re-
flected light from a facet is blocked by other facets. An example
for masking and self-shadowing can be viewed in figure 2.2. The
attenuation factor describing these effects is now defined as

G
(
!N,!V ,!L

)
= min(1,Gmask,Gshadow) (8)

Gmask =
2
(
!N · !H

)(
!N ·!V

)

(
!V · !H

)

Gshadow =
2
(
!N · !H

)(
!N ·!L

)

(
!L · !H

)

with !N being the average surface normal, !V the vector facing the
viewer and!L the vector facing the light from the current point.



• Fresnel Specular Reflections

• Describes the interaction of light between 
materials of different refractive indexes

• n: Refractive index

Cook-Torrance Fresnel

Figure 3: The left sphere is rendered with Phong, the right one with
the Blinn-Phong model. [Calkins ]

small area. With this model it is possible to to represent various
stages of shininess on the reflector. The specular Phong reflection
is defined by

fr(!L,!V ) = ks ·

(
!R ·!V

)ns

(
!N ·!L

) (4)

with ks being the specular reflection coefficient, !V is the direction
to the viewer and!L the direction from the surface point to the light.
!R defines the direction of the perfect reflection, thats !L mirrored
on the normal vector !N. The parameter ns defines the shininess
of the surface, perfect reflectors would have infinity as value for
ns, complete dull surfaces have 0. A basic problem of the Phong
model is that energy conservation depends on the correct choice
and combination of the coefficients of the model. Another problem
of the model is that the objects often look very plastic, so in the
most cases not very realistic. Furthermore the Phong model is quite
complex to calculate for an empirical model, specially when used
in real time rendering.

2.1.4 Blinn-Phong

An extension to the Phong model is the Blinn-Phong model, as de-
scribed in [Blinn 1977]. It is a much faster modification of the
classical Phong model. It uses the so called halfway vector for the
reflectance calculation, a combination between the view and light
vector. This vector is used in many other models mentioned later.

!H =
!L+!V∣∣∣!L+!V

∣∣∣
(5)

The big advantage of this model is that for cases where viewer and
light are at infinity the halfway vector is independent of position
and surface curvature. So the vector will only to be calculated once
per light and frame and not for each pixel as in the original model.
Because of this optimization we have a huge performance increase
while rendering.

A common issue for both specular models is the fact that they act
not very accurate when they are viewed from grazing angles. The
reflections are either to sharp or far to blurred compared to a real
image. These problems can not be handled by empirical models so
more complicated reflectance models are needed.

2.2 Cook-Torrance

Cook and Torrance [Cook and Torrance 1982] introduced a gen-
eral physically plausible reflectance model which is able to cor-
rectly predict the directional and spectral composition of reflected

light. The model is based on a work from Torrance and Sparrow
[Torrance and Sparrow 1967] and Blinn [Blinn 1977]. Its basic as-
sumption is that the surface of an objects consists of many small
parts, or microfacets which are all perfect reflecting mirrors. The
microfacets are evenly distributed on the surface. The model itself
works only correct if the wavelength of the light is smaller than
the mean roughness of the surface patches. Each facet has a ran-
dom orientation but they are aligned along a specified distribution
around the mean surface normal N with a maximum slope differ-
ence angle α . The Gaussian distribution for the microfacets used
in the Torrance-Sparrow model is now replaced by the Beckmann-
distribution function:

D =
1

m2 cos4 α
e−

(
tanα
m2

)2

(6)

with m being the root of the mean slope of microfacets and α the
maximum slope difference angle. Small values of m create gentle,
smooth slopes, while bigger values create a much bigger distribu-
tion. Beside this distribution others are possible, depending on the
current situation. Surfaces with different types of roughness can
use a weighted sum of different distribution functions.

The calculation of the reflected light is now done by two terms.
The first one, the Fresnel-reflection-coefficient, has three parame-
ters, the index of refection n, the surface extinction coefficient k
and the angle of illumination θ . The values of n and k vary with the
wavelength so their exact values are often unknown, except if they
were measured in an experiment. If they are unknown there is a
way to calculate the missing values. For non-metals k = 0, for met-
als we can set it to zero to get an effective value for the refraction
coefficient n. The Fresnel equation gives us the angular dependence
of F , it is only weakly dependent on the coefficient k. With the as-
sumption k = 0 the Fresnel coefficient can be written as:

F =
1
2

(g− c)2

(g+ c)2

(
1+

(c(c+g)−1)2

(c(c−g)−1)2

)
(7)

c = cosθ =!V · !H
g2 = n2 + c2−1

For a given angle, as example θ = 0 we can quantify F and with it
we can estimate n:

n =
1+
√

F0
1−
√

F0

The second term in the calculation of the reflectance is the geomet-
rical attenuation factor. With this factor the self shadowing and
masking of the single facets is simulated. Self shadowing means
that light coming to a facet can be blocked by other facets due to
irregularities on the surface or simply shadowing of the neighbor
facets. Masking is the same effect only that now the already re-
flected light from a facet is blocked by other facets. An example
for masking and self-shadowing can be viewed in figure 2.2. The
attenuation factor describing these effects is now defined as

G
(
!N,!V ,!L

)
= min(1,Gmask,Gshadow) (8)

Gmask =
2
(
!N · !H

)(
!N ·!V

)

(
!V · !H

)

Gshadow =
2
(
!N · !H

)(
!N ·!L

)

(
!L · !H

)

with !N being the average surface normal, !V the vector facing the
viewer and!L the vector facing the light from the current point.



Cook-Torrance 
Attenuation

• Geometric Attenuation: Simulates self-
shadowing and masking

Figure 3: The left sphere is rendered with Phong, the right one with
the Blinn-Phong model. [Calkins ]

small area. With this model it is possible to to represent various
stages of shininess on the reflector. The specular Phong reflection
is defined by

fr(!L,!V ) = ks ·

(
!R ·!V

)ns

(
!N ·!L

) (4)

with ks being the specular reflection coefficient, !V is the direction
to the viewer and!L the direction from the surface point to the light.
!R defines the direction of the perfect reflection, thats !L mirrored
on the normal vector !N. The parameter ns defines the shininess
of the surface, perfect reflectors would have infinity as value for
ns, complete dull surfaces have 0. A basic problem of the Phong
model is that energy conservation depends on the correct choice
and combination of the coefficients of the model. Another problem
of the model is that the objects often look very plastic, so in the
most cases not very realistic. Furthermore the Phong model is quite
complex to calculate for an empirical model, specially when used
in real time rendering.

2.1.4 Blinn-Phong

An extension to the Phong model is the Blinn-Phong model, as de-
scribed in [Blinn 1977]. It is a much faster modification of the
classical Phong model. It uses the so called halfway vector for the
reflectance calculation, a combination between the view and light
vector. This vector is used in many other models mentioned later.

!H =
!L+!V∣∣∣!L+!V

∣∣∣
(5)

The big advantage of this model is that for cases where viewer and
light are at infinity the halfway vector is independent of position
and surface curvature. So the vector will only to be calculated once
per light and frame and not for each pixel as in the original model.
Because of this optimization we have a huge performance increase
while rendering.

A common issue for both specular models is the fact that they act
not very accurate when they are viewed from grazing angles. The
reflections are either to sharp or far to blurred compared to a real
image. These problems can not be handled by empirical models so
more complicated reflectance models are needed.

2.2 Cook-Torrance

Cook and Torrance [Cook and Torrance 1982] introduced a gen-
eral physically plausible reflectance model which is able to cor-
rectly predict the directional and spectral composition of reflected

light. The model is based on a work from Torrance and Sparrow
[Torrance and Sparrow 1967] and Blinn [Blinn 1977]. Its basic as-
sumption is that the surface of an objects consists of many small
parts, or microfacets which are all perfect reflecting mirrors. The
microfacets are evenly distributed on the surface. The model itself
works only correct if the wavelength of the light is smaller than
the mean roughness of the surface patches. Each facet has a ran-
dom orientation but they are aligned along a specified distribution
around the mean surface normal N with a maximum slope differ-
ence angle α . The Gaussian distribution for the microfacets used
in the Torrance-Sparrow model is now replaced by the Beckmann-
distribution function:

D =
1

m2 cos4 α
e−

(
tanα
m2

)2

(6)

with m being the root of the mean slope of microfacets and α the
maximum slope difference angle. Small values of m create gentle,
smooth slopes, while bigger values create a much bigger distribu-
tion. Beside this distribution others are possible, depending on the
current situation. Surfaces with different types of roughness can
use a weighted sum of different distribution functions.

The calculation of the reflected light is now done by two terms.
The first one, the Fresnel-reflection-coefficient, has three parame-
ters, the index of refection n, the surface extinction coefficient k
and the angle of illumination θ . The values of n and k vary with the
wavelength so their exact values are often unknown, except if they
were measured in an experiment. If they are unknown there is a
way to calculate the missing values. For non-metals k = 0, for met-
als we can set it to zero to get an effective value for the refraction
coefficient n. The Fresnel equation gives us the angular dependence
of F , it is only weakly dependent on the coefficient k. With the as-
sumption k = 0 the Fresnel coefficient can be written as:

F =
1
2

(g− c)2

(g+ c)2

(
1+

(c(c+g)−1)2

(c(c−g)−1)2

)
(7)

c = cosθ =!V · !H
g2 = n2 + c2−1

For a given angle, as example θ = 0 we can quantify F and with it
we can estimate n:

n =
1+
√

F0
1−
√

F0

The second term in the calculation of the reflectance is the geomet-
rical attenuation factor. With this factor the self shadowing and
masking of the single facets is simulated. Self shadowing means
that light coming to a facet can be blocked by other facets due to
irregularities on the surface or simply shadowing of the neighbor
facets. Masking is the same effect only that now the already re-
flected light from a facet is blocked by other facets. An example
for masking and self-shadowing can be viewed in figure 2.2. The
attenuation factor describing these effects is now defined as

G
(
!N,!V ,!L

)
= min(1,Gmask,Gshadow) (8)

Gmask =
2
(
!N · !H

)(
!N ·!V

)

(
!V · !H

)

Gshadow =
2
(
!N · !H

)(
!N ·!L

)

(
!L · !H

)

with !N being the average surface normal, !V the vector facing the
viewer and!L the vector facing the light from the current point.



Cook-Torrance

• Putting together previously defined elements 
we can create the equation for the specular 
component of reflection:

• Diffuse component is usually just Lambertian

Figure 4: The two figures show situations with self shadowing and
masking. [Wilkie 2007]

Now putting all the parts from equation 6, 7 and 8 together we get
the following expression for specular reflectance when using the
Cook-Torrance model:

fr(!L,!V ) =
F
π

DG
(!N ·!L)(!N ·!V )

(9)

To get the complete BRDF we need a diffuse part, which is nor-
mally just a lambertian reflection. It needs to be combined with the
Cook-Torrance model by simply adding them.

The big advantages of this model is the physical plausibility which
creates excellent results. Besides that it has a generic approach, var-
ious parts of the model can be replaced according to the current re-
quirements, like other Fresnel reflection terms, different slope dis-
tribution functions or other attenuation factors. On the other side it
is quite difficult to obtain correct material constants, it is difficult to
code an often not so easy to sample. Sample pictures of different
materials can be seen at 10.

2.3 He-Sillion-Torrance-Greenberg

The model introduced by He, Torrance, Sillion and Greenberg in
1991 [He et al. 1991] is one of the most comprehensive BRDF mod-
els. It is able to handle previously ignored features like anisotropic
surfaces, polarization or subsurface scattering. This rich set of fea-
tures is very expensive in terms of computation time. In other pa-
pers this model is just called He or He-Torrance model.
The models splits the BRDF in three parts:

fr = fr,sp + fr,dd + fr,ud (10)

with the specular fr,sp, uniform-diffuse fr,ud and directional diffuse
fr,dd reflection. The specular and directional diffuse reflection re-

Figure 5: A visualization of the three different light reflection parts
sp-dd-ud, the roughness parameter σ and the autocorrelation factor
τ from the He reflection model. [Greenberg et al. 1997]

sult from an ordinary first surface reflection like in previous models.
The third component is now responsible for multiple surface reflec-
tions and the subsurface scattering.
For the uniform diffuse component only a light wave dependent
constant a(λ ) is defined. Values for a() can be estimated either
theoretical by using known V-grooves and subsurface scattering pa-
rameters. Or they can be calculated via a Genio-reflecto-meter to
get the reflection response over a hemisphere. Without any known
parameters the value can also be estimated as long as it is valid to
the energy conservation law.
The specular reflection term is defined as:

fr,sp =
ks

cosθidωi
· ∆ =

|F |2 · e−g · S
cosθidωi

· ∆ (11)

with ks being the specular reflectivity of the surface, |F |2 is the
Fresnel reflectivity depending on the index of refraction n(λ ). ∆
is a masking function for a specular term, its value is one if the
reflection is in the specular cone, otherwise it is zero.
The variables mentioned in the next parts can be viewed in figure 6.
g is a function for the effective surface roughness:

g =
[(

2πσ
λ

)
(cosθi + cosθr)

]2
(12)

with σ being the mean difference of the surface height.
S is the shadow function defining which part of the surface is
viewed an illuminated.

S = Si(θi) · Sr(θr) (13)

Si(θi) =
1− 1

2 er f c
(

τ cotθi
2σ0

)

Λ(cotθi)+1

Sr(θr) =
1− 1

2 er f c
(

τ cotθr
2σ0

)

Λ(cotθr)+1

Λ(cotθ) =
1
2

(
2

π1/2 · σ0
τ cotθ

− er f c(
τ cotθ

2σ0
)
)

The parameter σ0 and τ are both material depended values for the
mean difference from the surface and the correlation length coeffi-
cient.
On smooth surfaces the wavelength of incident light λ is relative

large compared to the surface roughness the specular term is not
attenuated because g→ 0 and S→ 1 because on smooth surfaces



Cook-Torrance 
MaterialsFigure 7: 1. picture: photograph of a chair with two lights (one above, one behind). 2. picture isotropic reflection. 3. picture anisotropic

gaussian. [Ward 1992]

Figure 10: Different materials with reflection types shown on the same object. [Cook and Torrance 1982]Source:Cook-Torrance 1982



Oren-Nayar

• Diffuse model derived from real-world 
observations

• Statistical isotropic Gaussian distribution of 
orientations

• Attenuation factor accounting for light 
interactions



Oren-Nayar Parameters

• Parameters:

• p: Roughness

• E:  Width of slope distribution

• σ: Distribution of microfacets

• When σ is zero the model is identical to the 
lambertian



Oren-Nayar



Oren-Nayar 
Comparison

Lambertian Oren-Nayar



More modern methods

• He-Torrance-Sillion-Greenberg (199)

• Sub-surface scattering, directional diffusion

• Schlick (1994)

• New microfacet models, anisotropy

• Ward (1992)

• Very fast anisotropy, physically correct
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