
COMPSCI 715 Part 2
Lecture 4 - GPGPU Programming

GPGPU

• General Purpose GPU Programming

• New libraries / techniques for using the
graphics card for AI, physics and non-game
related processing

Why use the GPU?

• Perfect for applications with high degree of
parallelization:

• Image processing

• Visualization

• Scientific Computing

• Medical Imaging (MRI etc)

• Physics models

CPU vs. GPU

Source: NVIDIA

Problem matching
• G70 chipset:

• NVIDIA Geforce 7800

• 24 pixel pipelines

• 1000s of threads

• Huge memory bandwidth

• Simple physics:

• 1000s of collision operations per timestep

• All relatively independent

Decision Heuristic

• Arithmetic Intensity = operations / memory
lookup

• GPUs work well when intensity is high

Techniques

• Map

• Operations applied to each element of
stream

• Filter

• Decide which elements to use and remove
others

• Gather

• Scatter

Gather

• Allow the gathering of information from
different nodes on a grid

• i.e.

• Precompute array of elements to calculate
into a texture

• Branch / don’t calculate when value is 0

0
1
0 0 1

00
1 0

Scatter

• Allows programmer to define how
information is located on a grid

• i.e.

• Precompute locations of elements to be
processed

• Draw 1 pixel points there and process in
fragment shader

0,1
1,0
2,2

Example Application

• Virus Signature Matching

• GPU architecture is very similar to
specialist network processors

• Pattern matching parallelizable over
packets

• GPU used for initial ‘potential’ mapping
against large number of packets and CPU
used for final verification

Virus Pattern Matching

Triangle with 1-to-1 pixel
 mapping with incoming packet

Texture map
where each pixel
is a byte of data

Destination buffer contains
list of signature matches

B00 B01 B02 B03 B04 B05

Compare

Signature
Table

Physically Based
Modeling

Particle Systems

• Technique for modeling natural collection of
objects using a collection of independent
objects

• Each particle has its attributes as does the
system which defines evolution over time

• Can be used for: fire, smoke, clouds, fog,
explosions, grass

Particle Systems

• Particle Definition: A body whose spatial
extent, internal motion and structure,if any,
are irrelevant in a specific problem

• Usually either a ‘super-atom’ or a ‘sample’

Particle System - Basics
• Typical particle attributes:

• Position

• Velocity

• Life span

• Size / Weight

• Representation

• Owning system

Particle System - Basics
• Particle system:

• Associated particles

• Emitters

• Forces

• State

• Representation

• Update function

Particle Systems - Calc

T = 0;
foreach step in time, ∆t{

T += ∆t
foreach particle {

compute total force Fi on particle
ai = Fi/mi
vi += ai ∆t
xi += vi ∆t

}
display()

}

Particle System - Display

• Have rendering rules which control how the
system is displayed to look like the
represented entity

Methods of
representation

• Points - simplistic, limited

• Billboards

• Geometry - expensive

• Surface finding / aggregation

Billboards

• Single, textured quad that ‘faces’ user
constantly

• Either in spherical or cylindrical
manner

• Texture can evolve over time

• Very cheap method of rendering
particle systems

Modelview Matrix

Sphere Billboard

Cylinder Billboard

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

1 0 0 a14

0 1 0 a24

0 0 1 a34

a41 a42 a43 a44

1 a12 0 a14

0 a22 0 a24

0 a32 1 a34

a41 a42 a43 a44

Billboards cont.
• Matrices on previous slide produce Fig 1,

more realistic is Fig 2

• Can get this with a rotate based on
direction to camera:

1. normalize(objToCamProj)

2. angle = lookAt•objToCamProj

3. upVec = lookAt x objToCamProj

4. Rotate(angle,upVec)

Fig 1

Fig 2

Differential Equation
Solving

• Need to track the state of the system

• Is an example of an ‘Initial Value Problem’:

• Need to use an ODE to solve

Initial Value Problems

• Undamped motion
as a velocity field:

• Tracking a particle in
this field

ODEs

• Euler:

• Simplistic method of solution which takes
1 step between t and t+∆t

• Need very small timesteps and/or large
damping to stop ‘blow up’

Problem with Euler

• ∆t: 1 num steps: 4

Problem with Euler

• ∆t: 0.1 num steps: 200

Problem with Euler

• ∆t: 0.02 num steps: 4000

Sources

• Harris, M (2006). GPGPU Lessons Learned.
GDC 2006

• Lobb, R (2003). Physically Based Animation
Lecture Notes. COMPSCI715 2003

• Nguyen, H (2007). GPU Gems 3. Addison-
Wesley Professional

