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Abstract 

A model containing multiple optimal solutions and 

nonoptimal solutions is constructed to study the 

performance of A* heuristic search aIgorithm. To obtain 

estimates of the average performance of the algorithm, a 

domain independent A* search space is constructed 

treating the heuristic function, branching factor and 

number of successful children of a node as random 

variables. These results are compared to the worst case 

performance of the models developed by Pohl and 

Gaschnig. The parameters of the model are defined to 

simulate the 15 puzzle search space. The results of the 15 

puzzle searches are compared with the simulation to 

determine the effects of the assumptions on the structure 

of the graph and the heuristic functions. 

1. Introduction 

Heuristics have been used to inhibit the combinatorial 

explosion inherent in graph searching. The A* algorithm 

[3] is a heuristically guided best first search strategy. 

Models of search spaces have been constructed to predict 

the performance of the A* search. These models utilize 
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simplifying assumptions concerning both the structure of 

the graph and the heuristic function to facilitate the 

analysis of the search. 

Pohl [6] [7] and Gaschnig [2] developed a model whose 

search space consists of a tree with uniform branching 

factor and a single goal node. We will refer to this search 

domain as the single solution model. A worst case 

analysis is given for heuristics in which the error is 

bounded by a fixed constant value and when the error 

grows linearly with the length of the minimal solution. 

The consequences of extending this mode1 to include 

multiple minimal solutions and nonoptimal solutions will 

be examined. 

Pearl [4] used the single solution search graph to 

analyze the effects of the heuristic function on the 

search. In this analysis the heuristic function was defined 

by a distribution over a range of possible values. 

Following this approach, we construct a domain 

independent simulation of the A* search that treats the 

heuristic, branching factor and number of solutions as 

random variables over predefined distributions. To 

determine the influence of the simplifying assumptions on 

the search, the model is configured to simulate the 15 

puzzle search space. Heuristics and search parameters are 

constructed to compare the performance of the mode1 to 

results obtained from searches in the 15 puzzle space. 

This research was supported by the Air Force Office of 
Scientific Research/AFSC under contract number F49620- 
WC0013 SB5851-0360. 
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2. Search simulation 

A simulation of the A* algorithm is constructed to 

study the effects of heuristics and the structure of the 

graph on the search. The implicit search space is a tree 

defined by three parameters; the length of a minimal 

solution path (PMIN), the branching factor (BF) and the 

number of successful children per node (SC). The arcs of 

the tree are assumed to have unit length. A node in the 

tree is characterized by two integer values; its level in the 

seach tree and the minimal distance to a goal node. Using 

the A* terminology, these values are denoted g(N) and 

h*(N) respectively. A successful child is a node whose h* 

value is one less than that of its parent. The diagram 

shows the h* values of the nodes in a search space 

defined by a uniform branching factor of three, one 

successful child per node and minima1 path length n. 

PMIN = n 
BF = 3 
SC = 1 

. . . 

. . . n 

A 0 2 2 
. . 
. . 
. . 

The number of solution paths in the search space can 

be calculated for constant values of BF and SC using a 

recurrence relation. We let S(k,n) denote the number of 

nodes on level k with h* = n and pas(n) be 1 if n is 

positive, 0 otherwise. 

S(O,n) = 
if n = PMIN 

S(k+l,n) = SCS(k,n+l) + pos(n).(BF-SC)G(k,n-1) 

S(k,j) is zero for all values of j outside the interval 

[minimum(O, PMIN-2 k), PMIN+Z k]. The number of 

solution paths of length k is given by S(k,O). In a search 

space with one successful child there are (BF-1) PMIN 

solution paths of length PMIN+Z. If SC = 2, ZPMIN of 

the BFPMIN nodes on level PMIN are the terminal nodes 

of minimal solution paths. 

A heuristic function h(N) is used to estimate the 

value h*(N). This function is defined by a distribution 

for each h* value. We assume that the heuristic values of 

two distinct nodes are conditionally independent. The 

heuristic function is also assumed to return 0 for all goal 

nodes. 

The search is guided by an evaluation function f that 

is a linear combination of the g and h values of the node. 

The scaling factor is a constant w in the interval [0, l] 

known as the weight. The evaluation function f will be 

denoted 

f(g(N), h(N), w) = (1-w)g(N) + w* h(N) 

indicating the dependence on h, g and w. Searches using 

weights 1 and .5 will be refered to as depth first and even 

weighting respectively. 

A node N will be represented by a triple [h*(N), 

g(N), f(g(N), h(N), w)]. A variation of the A* algorithm 

for this search space is given below. We will refer to this 

search simulation as HSM (Heuristic Search Model). 

1. Place [n,O,f(n,O,w)] on OPEN. 

2. Choose a node N from OPEN with minimal f value. 

Remove N from OPEN. 

If h*(N) = 0, then exit with a solution of length g(N). 

3. Determine the branching factor for N, call it j. 

Determine the number of successful children of N, call 

it k. 

C 0 otherwise 
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Build k nodes as follows (successful children): 

[h*(N)-1, gW)+l, fh’+Lg(N)+l,w)l 

Build j-k nodes as follows (unsuccessful children): 

[h*(N)+L g(N)+l, f(h*(N)+l,g(N)+l.w)] 

4. Place the j nodes on OPEN. 

5. Go to 2. 

Steps 3 and 4 constitute the expansion the node N. 

The list OPEN contains all nodes available for expansion. 

The standard A* algorithm maintains an additional list 

which contains the expanded nodes. The tree structure of 

the search space guarantees that no node will be 

rediscovered, removing the need for this additional list. 

The number of nodes expanded and the length of the 

solution paths are used to measure the performance of the 

search algorithm. The results for a set of search 

parameters (heuristic, BF and SC distributions and 

weighting) represent the average over 35 applications of 

the algorithm. Due to memory restrictions, a search is 

terminated unsuccessfully when the size of the OPEN list 

exceeds 100,000 nodes. If one instance of the search 

terminates unsuccessfully, no results are given for that 

PMIN value. 

3. Bounded error 

A heuristic function is said to have bounded error if 

h*(N) - c \< h(N) 6 h*(N) + c for a constant c. Pohl [6] 

[7] gives a worst case analysis of the performance of the 

A* algorithm guided by this type of heurisitic in the 

single solution model. The heuristic is assumed to assign 

a pessimistic value to all nodes on the minimal solution 

path and an optimistic value to all others; that is, h(N) = 

h*(N) + c for all nodes on the minimal solution path and 

h*(N) - c for all others. The model also assumes that ties 

are broken in favor of nongoal nodes. Under these 

conditions the number of nodes expanded is shown to 

grow linearly with the length of the minimal solution 

path for both the even weighting and depth first searches. 

To compare the average and worst Case Performances 

of the A* algorithm the search program was exercised 

with parameters simulating single solution model with 

constant branching factor 2. bounded error 5 and 

distribution of successful children defined by 

1 if h*(N) = PMIN - g(N) 
SC(N) = 

0 otherwise. 

Like the worst case analysis [6], the results of the searches 

with the uniform error distribution exhibit a linear 

growth of node expansions with path length. The growth 

rate, however, is much more moderate than that of a 

completely misleading heuristic. Under these conditions 

there appears to be little difference in the work required 

by the even weighting and the depth first strategies. 

PMIN 

25 

even weighting depth first 

Worst HSM Worst HSM 
case case 

801 70.9 12801 78.7 
50 1601 159.6 25601 159.5 

100 3201 343.7 51201 337.6 
200 6401 700.0 102401 668.3 

4. Bounded error and multiple solutions 

Worst case performance estimates are established for 

the even weighting search when the search space contains 

multiple optimal and nonoptimal solutions. The same 

conditions are assumed as in the single solution analysis. 

The presence additional solutions is shown to force the 

search to explore additional paths. 

Theorem. The worst case performance of A* with weight 

bounded error c and constant branching factor has the 

following properties: 

i) If SC is a constant greater than 1, the number of 

nodes expanded grows exponentially with the minimal 

solution length. 

ii) If SC = 1 then the number of nodes expanded grows 

polynomially with the minimal solution length. For 

bounded error c, the number of node expansions is at 

least O(PMIN2’C). 
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Proof. A search space with SC >2 has a binary subtree 

of minimal solution paths. All nodes in this subtree on 

levels less than PMIN - 2c must be expanded by an even 

weighting search. Thus the worst case complexity is 

O(2PMIN). 

The existence of nonoptimal paths affects the 

complexity of the search model with only one minimal 

solution. For c = 1, all paths that contain only one 

unsuccessful move must be explored to level PMIN. Each 

node on such a path has an f value less than or equal to 

that of the minimal goal node and all goal nodes on level 

PMIN+Z. The expansion of a node in the minimal 

solution path generates BF-1 such paths. A path with one 

unsuccessful move that diverges from the minimal 

solution path at level k consists of PMIN-k nodes which 

must be expanded. The number of such nodes along 

nonoptimal paths can be computed by 

PMIN 

z (BF-l).(PMIN - i) 
I=1 

yielding the PMIN* growth. 

For a constant error of 2, paths with 2 unsuccessful 

moves must be explored. Let N be a node on a path 

containing one unsuccessful move. There are (BF-l)*k 

such nodes on level k of the search tree. Paths from N 

containing one additional unsuccessful move must 

explored. All nodes with g value < PMIN on such paths 

will be expanded. Using the previous result, if N occurs 

on level k there are (BF-I).( (PMIN-k)2 - (PMIN-k) )/2 

nodes on such paths. Summing over all paths yields 

O(PMIN4) growth. 

Since paths, not subtrees, are explored the exponential 

growth is avoided. Following the technique above, 

estimates for bounded error c can be obtained by 

considering paths with c or fewer unsuccessful moves. 

To obtain a comparison between the average and 

worst case performance, the bounded error search was 

simulated on HSM. The heuristic distributions were 

defined to be uniform within the ranges 

[ h* - C, h* + c ] if h*(N), c 

LO, 2*H*W)I otherwise, 

where c is the maximal error. The latter condition forces 

the heuristic function to be nonnegative and return 0 for 

a goal node. 

Figure 1 a) shows the results of a series of searches 

with bounded error heuristic. These seaches used one, two 

and a variable number of successful children per node. 

The number of successful children in the variable search 

was defined as a uniform distribution between 1 and BF. 

The results indicate that the exponential growth occurs 

not only in a worst case scenario, but also when the 

heuristic error is uniformly distributed over its range. 

The depth first results (Figure 1 b) ) exhibit a linear 

growth of node expansions with respect to path length, 

regardless of the number of solution paths in the graph. 

The nodes expanded and solution lengths in the searches 

with a single successful child grow significantly with 

increases in the heuristic error and branching factor. 

Increasing the number of solution paths dampens the 

effects of the other parameters. 
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An analytic approach for worst case estimates of the 

depth first strategy appears more complicated than for 

the even weighting. It is not clear what properties 

characterize the worst performing heuristic. The heuristic 

used in the even weighting analysis will lead to a solution 

with length PMIN+2 in exactly PMIN+Z node expansions. 

a) even weighting 

BF = 3, BE =. 5 

b) depth first 

BF = 3, BE = 10 

BF = 3, BE = 5 BF = 3, BE = 5 

5. Linearly bounded heuristic 

A heuristic is said to be linearly bounded if 

h*(N) - bh+(N)z h(N)5 h*(N) + bah+(N), 

for some constant b between 0 and 1. The single solution 

model with an even weighting has been shown to have 

exponential complexity when using a linearly bounded 

BF = 3, BE = 10 

BF = 3, BE = 10 
1000 

0 25 SO 100 200 
?YlN 

Figure 1. Results of hounded error starches. 

k 
2 

$ JO0 Legend .- 3 
2 m 1 SC 

m 2 SC 
EEEl v SC 

25 50 100 200 
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heuristic [2]. The extended model can easily be shown to 

exhibit a similar worst case behaviour. 

The model was exercised with one and two successful 

children per node. In the former case there is only one 

node on each level lying on a minimal solution path. 

With two successful children there are 2” such nodes on 

level n. To bridge the gap between one and an 

exponentially growing number of minimal solutions, a 

search space was defined in which the number of nodes 

on level n lying on optimal solution paths is n2. 

The results of searches with the heuristic values 

uniformly distributed within the linear bounds and 

constant branching factor 3 are given in Table I. The 

results for the search space with PMIN’ optimal solutions 

is labelled SQ. 

The even weighting search fails to find a solution for 

path length 200 regardless of the number of solution 

paths. The additional solution paths causes the generation 

of the search tree to behave in a breadth first manner. 

With the heuristic providing less accurate estimates as 

the solution length increases, the depth first strategy in a 

space in which the number of solution paths increase 

polynomially with the minimal solution length does not 

avoid the combinatorial explosion. The addition of 

multiple optimal solutions appears to retain the linear 

complexity of the search, at least within this range of 

PMIN values. 

6. Effects of domain assumptions. 

The models of Pohl, Gaschnig, Pearl and HSM all 

impose restrictions on the search graph and the heuristic 

function to facilitate the analysis of the search 

performance. One such simplification is assuming the 

search space to be a tree rather than an arbitrary graph. 

When the heuristic function is defined by a distribution, 

the conditional independence of the heuristic values is 

assumed. We will now compare the performance of the 

model to searches in a “real” domain in an attempt to 

exhibit the consequences of these assumptions. 

For this purpose we consider graphs generated by the 

15 puzzle. The 15 puzzle consists of tiles numbered 1 to 15 

in a four by four square. The configuration of the puzzle 

may be altered by sliding an adjacent tile into the 

unoccupied square. The objective of the puzzle is to 

manipulate the tiles to obtain a predefined goal 

configuration. 

1 2 3 4 

5 6 7 8 

•a 

9 10 11 12 

13 14 15 . 

15 puzzle 
goal configuration 

Search space parameters and heuristic distributions 

are constructed to simulate the 15 puzzle search space. 

The objective is to compare the model to the results 

obtained by the A* algorithm in a domain which includes 

cycles and nonoptimal solutions. 

Two heuristics from the literature [Doran and Michie 

1, Pohl 51 will be used to study the 15 puzzle and 

simulated for the evaluation program. 

hi(N) : The sum of the distance of each tile from its 

currentposition to its position in the goal state, 

assuming thatthere are no obstacles in this path 

(Manhattan distance). 

h3(N) : The sum over the tiles of the square root of 

the Manhattan distance from a tile to the blank 

times the square of the Manhattan distance of 

the tile from its goal position. 

A sample of 15 puzzles was constructed for PMIN 

values 1 to 18 and even values from 20 to 40. These 

samples were used to build the distributions necessary to 

simulate the 15 puzzle heuristics. The distribution of 

values of the Manhattan distance heuristic for a sample 

of 140 puzzles with PMIN 30 is given betow. 
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0 
14 16 I8 20 22 24 26 28 30 

Heuristic values 

A node with an odd h* value greater than 17 will use 

the distribution of previous value increased by one. The 

distributions generated by the Manhattan distance 

heuristic underestimate h*, retaining admissibility when 

the even weighting is used. 

A 15 puzzle search is terminated unsuccessfully if 

20,000 nodes are expanded without discovering the goal. 

The sample with minimal solution length 25 contains a 

puzzle which is not solved by the depth first, Manhattan 

distance combination. It must be noted that many puzzles 

with PMIN 7 25 can be solved with fewer than 20,000 

node expansions. 

The exponential growth of node expansions of the 

even weighting is evident for both heuristics (Table II). 

Like the linearly bounded searches, it is not clear whether 

a weak heuristic (hl) with a depth first strategy can 

avoid the exponential explosion. This differs from the 

conclusions of studies of the 8 puzzle search performance. 

In this simpler domain Gaschnig [2] observed that the 

depth first strategy always provided economical solutions. 

The search model was exercised with a single, 

successful child and a branching factor distribution of 

25% of the nodes having one child, 50% with two children 

and 25% with three. A comparison of these results with 

the 15 puzzle dramatically illustrates the effects of the 

assumptions of the search performance. 

The even weighting searches in the 15 puzzle domain 

are not greatly effected by the cycles in the search graph. 

The number of nodes rediscovered and reopened by the 

search (ReO in Table II) make up less than 10% of the 

nodes expanded by the search. The simulation 

the exponential growth shown by the 15 puzzle 

combinatorial explosion delayed in the model. 

exhibits 

with the 

For the 15 puzzle domain, depth first searches with 

large PMIN values reopen more than half of the nodes 

expanded. For the larger PMIN values, the nodes on the 

solution path in the 15 puzzle space make up less than 5% 

of those expanded while in the simulation over half of 

the expanded nodes lie on the solution. The acyclic model 

does not permit this type of behaviour, greatly 

simplifying the depth first approach. In this case it 

appears that depth first models, both worst case or 

average using a tree for the underlying graph, do not 

accurately reflect the complexity of searches in a more 

complicated domain. 

7. Future work 

The comparison of the 15 puzzle results to the results 

of the model vividly illustrates the differences between 

simplified models and general graph searching. One 

direction of research is to refine the model to more 

accurately reflect various domains. An assumption whose 

effect can be evaluated with only a minimal change to 

the existing model is the conditional independence of the 

heuristic function. The heuristic distribution must be 

defined for the h* value of the node and the h value of 

its parent. The Mahanattan distance heuristic exhibits 

this dependence of heuristic values in the 15 puzzle 

domain. The h value of a child can differ from that of 

its parent by at most 1. 
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PMIN 
------ 15 puzzle ewe--- --mm HSM ---- 

EXP Path ReO E~P Path 

10 12.5 10.0 0.0 11.1 10.0 
15 39.4 15.0 0.0 20.7 15.0 
20 188.9 20.0 0.0 40.1 20.0 
25 1437.5 25.0 0.0 138.7 25.0 
30 3869.5 30.0 0.0 696.1 30.0 
35 3812.5 35.0 
40 22934.0 40.0 

hl : even weighting (admissible). 

PMIN 
------ 15 puzzle mm---- ---- HS* ---- 
EXP Path ReO EXP Path 

10 62.9 15.8 16.9 10.9 10.2 
15 461.0 43.5 196.3 19.5 17.0 
20 1418.7 97.0 561.2 32.4 26.1 
25 48.3 35*3 
30 66.3 44.7 
35 90.0 56.5 
40 113.1 66.9 

hl : depth first. 

PMIN 
------ 15 puzzle w----s ---- HSM ---- 

EXP Path ReO EXP Path 

10 12.5 10.0 0.1 11.3 10.9 
15 54.9 16.5 1.6 20.5 16.7 
20 282.2 25.2 8.2 33.6 23.4 
25 894.7 33.1 55.1 51.7 31.5 
30 1880.1 42.7 136.8 73.9 40.8 
35 91.1 47.1 
40 110.1 56.0 

h3 : even weightlng. 

PMIN 
------ 15 puzzle ------ --es f.fSM --I- 

J-P Path ReO Exp 
Path 

10 28.8 14.0 0.6 
15 650.1 37.6 350.9 
20 1230.4 69.3 578.9 
25 2326.6 119.5 1146.4 
30 3807.7 123.0 2177.3 
35 3928.7 154.5 2110.0 
40 4119.4 176.0 2298.4 

h3 
: depth first. 

11.3 1oc9 
19.0 17.1 
32.2 25.5 
46.8 34.0 
65.1 43.7 
80-3 53.1 

101.4 62.0 

Table II. 15 puzzle and HSM results. 
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