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Introduction
• Bayesian learning algorithms calculate explicit

probabilities for hypotheses
• Naïve Bayes classifier is among the most effective

in classifying test documents
• Bayesian methods can also be used to analyze

other algorithms
• Training example incrementally increases or

decreases the estimated probability that a
hypothesis is correct

• Prior knowledge can be combined with observed
data to determine the final probability of a
hypothesis



Prior Knowledge

• Prior knowledge is:
1. Prior probability for each candidate

hypothesis and
2. A probability distribution over observed data

for each possible hypothesis



Bayesian Methods in Practice

• Bayesian methods accommodate hypotheses that
make probabilistic predictions “this pneumonia
patient has a 98% chance of complete recovery”

• New instances can be classified by combining the
predictions of multiple hypotheses, weighted by
their probabilities

• Even when computationally intractable, they can
provide a standard of optimal decision making
against which other practical measures can be
measured



Practical Difficulties

1. Require initial knowledge of many probabilities
- estimated based on background knowledge,
previously available data, assumptions about the
form of the underlying distributions

2. Significant computational cost to determine the
Bayes optimal hypothesis in the general case -
linear in the number of candidate hypotheses - in
certain specialized situations the cost can be
significantly reduced



Bayes Theorem Intuition

• Learning - we want the best hypothesis
from some space H, given the observed
training data D. Best can be defined as most
probable given the data D plus any initial
knowledge about prior probabilities of the
various hypotheses in H.

• This is a direct method!!! (No Search)



Bayes Terminology

• P(h) - the initial probability that hypothesis h holds before
we observe the training data - prior probability - if we have
no prior knowledge we assign the same initial probability
to them all (it is trickier than this!!)

• P(D) - prior probability training data D will be observed
given no knowledge about which hypothesis holds

• P(D|h) - the probability of observing data D given that
hypothesis h holds

• P(h|D) - the probability that h holds given the training data
D - posterior probability



Bayes Theorem

• Probability increases with P(h) and P(D|h) and
decreases with P(D) - this last is not true with a
lost of other scoring functions!
! 

P(h |D) =
P(D | h)P(h)

P(D)



MAP & ML Hypothesis
• So we want a maximum a posteriori hypothesis (MAP) -

P(D) same for every hypothesis

• If we assume every hypothesis is equally likely a priori
then we want the maximum likelihood hypothesis

• Bayes theorem is more general than Machine Learning!!

! 

h
MAP

" argmax
h#H P(D | h)P(h)

! 

h
ML
" argmax

h#H P(D | h)



A general Example
• Two hypothesis: the patient has cancer, ⊕, the patient

doesn’t have cancer, 
• Prior knowledge: over the entire population of people .008

have cancer
• The lab test returns a correct positive result in 98% of the

cases in which cancer is actually present and a correct
negative in 97% of the cases in which cancer is actually
not present

• P(cancer) = .008, P(¬cancer) = .992
• P(⊕|cancer) = .98, P(|cancer) = .02
• P(⊕|¬cancer)=.03, P(|¬cancer)=.97
• So given a new patient with a positive lab test, should we

diagnose the patient as having cancer or not??
• Which is the MAP hypothesis?



Example Answer

• Has cancer - P(⊕|cancer)P(cancer) = (.98).008 =
.0078

• Doesn’t have cancer -
• P(⊕|¬cancer)P(¬cancer)=(.03).992=.0298
• hMAP=¬cancer
• Exact posterior probabilities -

• Posterior as a real probability

! 

P(cancer |") =
P(" | cancer)P(cancer)

P(")
=
.0078

P(")

! 

.0078

P(" | cancer) + P(" |¬cancer)
=

.0078

.0078 + .0298
= .21



Minimum Description Length
• Let us look at hMAP in the light of basic

concepts of information theory

• hMAP ≡ argmaxh∈H P(D|h) P(h)
             = argminh∈H - log2P(D|h) - log2P(h)

• This can be interpreted as a statement that
short hypotheses are preferred.



Information Theory

• Consider the problem of designing a code to
transmit messages drawn at random, where the
probability of encountering message i is pi.

• We want the code that minimizes the expected
number of bits we must transmit in order to
encode a message drawn at random.

• To minimize the expected code length we should
assign shorter codes to more probable messages.



Optimal Code
• Shannon and Weaver (1949) showed the optimal code assigns -

log2pi bits to encode message i. Where pi is the probability of i
appearing.

• LC(i) is the description length of message i with respect to code
C.

• LCH is the size of the description of the hypothesis h using the
optimal representation for encoding the hypothesis space H.

• LCD|h is the size of the description of the training data D given
the hypothesis h using the optimal representation for encoding
the data D assuming that both the sender and receiver know the
hypothesis h.
! 

L
C
H

(h) = "log2 P(h)

! 

L
C
D |h
(D | h) = "log2 P(D | h)



Applying MDL

• To apply this principle we must choose specific
representations C1 and C2 appropriate for the
given learning task!

• Minimum Description Length Principle:

• If C1 and C2 are chosen to be optimal encodings
for their respective tasks, then hMDL=hMAP

! 

h
MDL

" argmin
h#H LC1

(h) + L
C2
(D | h)



MDL Example

• Apply MDL principle to the problem of learning
decision trees.

• C1 is an encoding of trees where the description
length grows with the number of nodes in the tree
and the number of edges.

• C2 transmits misclassified examples by identifying
– which example is misclassified (log2m bits, where m is

the number of training instances) and
– its correct classification (log2k bits, where k is the

number of classes).



MDL Intuition

• MDL principle provides a way of trading off
hypothesis complexity for the number of errors
committed by the hypothesis

• So the MDL principle produces a MAP hypothesis
if the encodings C1 and C2 are optimal.  But to
show that we would need all the prior probabilities
P(h) as well as P(D|h).

• No reason to believe the MDL hypothesis relative
to arbitrary encodings should be preferred!!!!



What I hate about MDL

• “But you didn’t find the optimal encodings
C1 and C2.”

• “Well it doesn’t matter if you see enough
data it doesn’t matter which one you use.”

• So why are we using a Bayesian
approach????



Bayes Optimal Classifier

• What is the most probable classification of
the new instance given the training data?

• Could just apply the MAP hypothesis, but
can do better!!!



Bayes Optimal Intuitions

• Assume three hypothesis h1, h2, h3 whose posterior
probabilities are .4, .3 and .3 respectively.

• Thus h1 is the MAP hypothesis.
• Suppose we have a new instance x which is classified

positive by h1 and negative by h2 and h3.
• Taking all hypothesis into account, the probability that x is

positive is .4 and the probability it is negative is .6.
• The most probable classification (negative) is different

than the classification given by the MAP hypothesis!!!



Bayes Optimal Classifier II
• We want to combine the predictions of all hypotheses

weighted by their posterior probabilities.

• where vj is from the set of classifications V.

• Bayes Optimal Classification:

• No other learner using the same hypothesis space and same
prior knowledge can outperform this method on average.
It maximizes the probability that the new instance is
classified correctly.

! 

P(v j |D) = P(v j | hi)P(hi |D)
hi "H

#

! 

argmaxv j "V P(v j | hi)P(hi |D)
hi "H

#



Gibbs Algorithm
• Bayes Optimal is quite costly to apply. It

computes the posterior probabilities for every
hypothesis in H and combines the predictions of
each hypothesis to classify each new instance.

• An alternative (less optimal) method:
1. Choose a hypothesis h from H at random, according

to the posterior probability distribution over H.
2. Use h to predict the classification of the next instance

x.
• Under certain conditions the expected

misclassification error for Gibbs algorithm is at
most twice the expected error of the Bayes
optimal classifier.



What is Naïve Bayes?
• Results comparable to ANN and decision trees in some

domains
• Each instance x is described by a conjunction of attribute

values and the target value f(x) can take any value from a
set V. A set of training instances are provided and a new
instance is presented and the learner is asked to predict the
target value.

• P(vj) is estimated by the frequency of each target value in
the training data.

• Cannot use frequency for P(a1,a2,…an|vj) unless we have a
very, very large set of training data to get a reliable
estimate.

! 

VMAP = argmaxv j "V P(v j | a1,a2...an )

= argmaxv j "V P(a1,a2,...an | v j )P(v j )



Conditional Independence
• Naïve Bayes assumes attribute values are

conditionally independently given the target
value -

• Naïve Bayes Classifier:

• where vNB denotes the target values
• P(ai|vj) can be estimated by frequency

! 

P(a1,a2,...an | v j ) = P(ai | v j )
i

"

! 

vNB = argmaxv j "V P(v j ) P(ai | v j )
i

#



When is Naïve Bayes a MAP?

• When conditional independence assumption is
satisfied the naïve Bayes classification is a MAP
classification

• Naïve Bayes entails no search!!



An Example
• Target concept PlayTennis
• Classify the following instance: <Outlook=sunny,

Temperature = cool, Humidity = high, Wind =
strong>

• P(PlayTennis=yes)=9/14=.64
• P(PlayTennis=no)=5/14=.36
• P(Wind=strong|PlayTennis=yes)=3/9=.33
• P(Wind=strong|PlayTennis=no)=3/5=.60
• …..

! 

vNB = argmaxv j "{yes,no} P(v j )P(Outlook = sunny | v j )P(Temperature = cool | v j )

P(Humidity = high | v j )P(Wind = strong | v j )



An Example II

• P(yes) P(sunny|yes) P(cool|yes) P(high|yes)
P(strong|yes) = .0053

• P(no) P(sunny|no) P(cool|no) P(high|no)
P(strong|no) = .0206

• Naïve Bayes returns “Play Tennis = no”
with probability

! 

.0206

.0206 + .0053
= 0.7954 = 79.5%



Learning to Classify Text

• Learn “electronic news articles I find interesting”
or “pages on www that discuss machine learning
topics”

• Two design issues: attribute representation and
probability estimates

• Define an attribute for each word position in the
document and define the value to be the word
found in that position

• Notice that short documents will have fewer
attributes than longer ones



Sample Document

• “Our approach to representing….us any
trouble.”

  

! 

vNB = argmaxv j "{ like,dislike} P(v j )

P(a1 ="our"| v j )

P(a2 ="approach"| v j )

K

P(a111 =" trouble"| v j )



Independence Assumption

• The independence assumption states that the word
probabilities for one test position are independent
of words that occur in other positions.

• This is clearly incorrect, but in practice naïve
Bayes performs remarkably well in many text
classification problems.

• Requires estimates of P(vj) and P(ai=wk|vj) where
wk is the kth word in the vocabulary.

• The first is easy but the second is too
computationally complex.



Additional Assumptions

• For 111 text positions and 2 possible targets and
50,000 vocabulary words, the number of
probability estimates is 2 * 111 * 50,000 or about
10 million.

• An Additional assumption is added that the
probability of encountering a specific word is
independent of the specific word position.

• The complexity is now 2* 50,000.
• Even more importantly many less training

examples are needed!!!



M-estimate

• The m-estimate is used for estimating
probabilities

• Where nk is the number of times word wk is
found in the document.

• And n is the number of distinct words in the
text.! 

nk +1

n+ |Vocabulary |



Terms for Text Algorithm

• Examples is a set of text documents along with their target
values.

• V is the set of all possible target values.

• This function learns the probability terms P(wk|vj),
describing the probability that a randomly drawn word
from a document in class vj will be the English work wk.

• It also learns the class prior probabilities P(vj).



Learn Naïve Bayes Text Algorithm
Learn_Naïve_Bayes_Text(Examples,V)
1. Collect all words, punctuation, and other tokens, that

occur in Examples
• Vocabulary <-- the set of all distinct words and other tokens

occurring in any text document from Examples
2. Calculate the required P(vj) and P(wk|vj) probability

terms
• For each target value vj in V do

• docsj <-- the subset of documents from Examples for which the
target value is vj

• P(vj) <--  |docsj| / |Examples|
• Textj <-- a single document created by concatenating all members of

docsj
• n <-- total number of times word wk occurs in Textj
• For each word wk in Vocabulary

• nk <-- number of times word wk occurs in Textj
• P(wk|vj) <-- nk+1 / n+|Vocabulary|



Test Classify algorithm

Classify_Naïve_Bayes_Text(Doc)
Return the estimated target value for the document Doc. ai

denotes the word found in the ith position within Doc.
• positions <-- all word positions in Doc that contain tokens

found in Vocabulary
• Return vNB, where

! 

vNB = argmaxv j "V P(v j ) P(ai | v j )
i"positions

#



Experimental Results

• Newsgroup posting service - learns to assign
documents to the appropriate newsgroup

• 20 newsgroups, 1,000 articles from each
newsgroup, learn over 2/3. Random accuracy
would be 5%.  The program achieved 89%.  Used
algorithm above but only used words which
occurred at least 3 times and were not the 100
most frequent (leaving 38,500 words).

• Usnet articles I find interesting - Newsweeder
system - for some users increases rate of
interesting articles from 16% to 59%.



Bayesian Belief Networks

• Naïve Bayes assumes all the attributes are
conditionally independent

• Bayesian Belief Networks (BBNs) describe a joint
probability distribution over a set of variables by
specifying a set of conditional independence
assumptions and a set of conditional probabilities

• X is conditionally independent of Y means
P(X|Y,Z) = P(X|Z)



A Bayesian Belief Network

Storm BusTourGroup

Lightning Campfire

Thunder ForestFire
Campfire

      S,B  S,¬B ¬S,B ¬S,¬B
C   0.4    0.1    0.8     0.2
¬C 0.6    0.9    0.2     0.8



Representation

• Each variable is represented by a node and has
two types of information specified.
1. Arcs representing the assertions that the variable is

conditionally independent of its nondescendents given
its immediate predecessors (I.e., Parents). X is a
descendent of Y if there is a directed path from Y to
X.

2. A conditional probability table describing the
probability distribution for that variable given the
values of its immediate predecessors.  This joint
probability is computed by

! 

P(y1,...,yn ) = P(yi |Parents(yi))
i=1

n

"



Representation II
• Campfire is conditionally independent of its

nondescendents Lightning and Thunder given its parents
Storm and BusTourGroup

• Also notice that ForestFire is conditionally independent of
BusTourGroup and Thunder given Campfire and Storm
and Lightning.

• Similarly, Thunder is conditionally independent of Storm,
BusTourGroup, Campfire, and ForestFire given Lightning.

• BBNs are a convenient way to represent causal knowledge.
The fact that Lightning causes Thunder is represented in
the BBN by the fact that Thunder is conditionally
independent of other variables in the network given the
value of Lightning.

! 

P(Campfire = True | Storm = True,BusTourGroup = True) = 0.4



Inference
• Can we use the BBN to infer the value of a target variable

ForestFire  given the observed values of the other variables.
• Infer not a single value but the probability distribution for the

target variable which specifies the probability it will take on
each possible value given the observed values of the other
variables

• Generally, we may wish to infer the probability distribution
of a variable (e.g., ForestFire) given observed values for only
a subset of the other variables (e.g., Thunder and
BusTourGroup are the only observed values available).

• Exact inference of probabilities (and even some approximate
methods) for an arbitrary BBN is known to be NP-hard.

• Monte Carlo methods provide approximate solutions by
randomly sampling the distributions of the unobserved
variables



Learning BBNs
• If the network structure was given in advance and the

variables are fully observable, then just use the Naïve
Bayes formula modulo only some of the variables are
conditionally independent.

• If the network structure is given but only some of the
variables are observable, the problem is analogous to
learning weights for the hidden units in an ANN.

• Similarly, use a gradient ascent procedure to search
through the space of hypotheses that corresponds to all
possible entries in the conditional probability tables.  The
objective function that is maximized is P(D|h).

• By definition this corresponds to searching for the
maximum likelihood hypothesis for the table entries.



Gradient Ascent Training of BBN

• Let wijk denote a single entry in one of the conditional
probability tables.  Specifically that variable Yi will take
on value yij given that its parents Ui take on the values uik.

• If wijk is the top right entry, then Yi is the variable
Campfire, Ui is the tuple of parents <Storm,
BusTourGroup>, yij=True and uik=<False,False>.

• The derivative for each wijk is

! 

" lnP(D | h)

"wij

=
P(Yi = yij ,Ui = uik | d)

wijkd #D

$



Weight Updates
• So back to our example we must calculate P(Campfire =

True, Storm = False, BusTourGroup = False | d) for each
training example d in D.  If the required probability is
unobservable then we can calculate it from other
variables using standard BBN inference.

• As weights wijk are updated they must remain in the
interval [0,1] and the sum Σj wijk remains 1 for all i,k.  So
must have a two step process.

1.
2. Renormalize the weights wijk

• Will converge to a locally maximum likelihood
hypothesis for the conditional probabilities in the BBn.

! 

wijk " wijk +#
Ph (yij ,uik | d)

wijkd $D

%



Learning BBN Structure

• Bayesian scoring metric for choosing among
alternative networks.

• The K2 algorithm performs greedy search that
trades off network complexity for accuracy over
the training data when the data is fully observable.



K2 example
• In experiments K2 was given 3,000 training examples

generated at random from a manually constructed BBN
containing 27 nodes and 46 arcs representing anesthesia
problems in hospital operating rooms.

• In addition it was given an initial ordering over the 37
variables that was consistent with the partial ordering in
the actual BBN.

• K2 reconstructed the BBN structure with only the loss of
one arc and the addition of another.



Other approaches
• Other approaches infer dependence and independence

relationships from the data and then use these relationships
to construct BBN.

• This is a very active line of research.



EM Algorithm

• Widely used approach for learning in the presence
of unobserved variables.

• Can be used for variables which are never directly
observed, provided the general form of the
probability distribution is known (unlike Gradient
descent).

• EM algorithm used widely in BBN and clustering
algorithms, and Partially Observable Markov
Models.

• Easiest to describe EM from an example.



Estimating Means of k Gaussians

• The data D is generated by a probability distribution that
is a mixture of k distinct normal distributions.

• Each instance is generated by
1. One of the k distributions is chosen at random.
2. A single random instance xi is generated according to the

selected distribution.

• To simplify our discussion, we will assume the Normal
distributions are chosen at each step based on uniform
probability and each of the k Normal distributions has
the same variance σ2 and σ2 is known.



EM Learning Task

• The learning task is to output h=<µ1,…,µk> which
describes the means of the k distributions.

• We would like to find the maximum likelihood
hypothesis (I.e., the h that maximizes p(D|h)).

• Finding the mean for a single normal distribution
is a special case of the sum of squared errors
formula:

! 

µ
ML

= argminµ (x
i
"µ)2 =

1

m
i=1

m

# x
i

i=1

m

#



K Normal distributions

• But we have k different Normal distributions, and we
cannot observe which instances were generated by which
distributions.  This is a prototypical example of a problem
involving hidden variables!!!

• So each instance can be seen as <zi,zi1,zi2> where xi is the
observed value of the ith instance and zij has the value 1 if
xi was created by the jth Normal distribution and 0
otherwise.

• Note if zi1 and zi2 were observed we could use the sum of
squared errors formula above instead of EM.



EM Algorithm
• In a nut shell, EM repeatedly re-estimates the expected

values of zij given its current hypothesis <µ1,…,µk> then
recalculate the maximum likelihood hypothesis using the
expected values for the hidden variables.

• This instance of the EM algorithm is
1. Calculate the expected value E[zij] of each hidden variable zij

assuming the current hypothesis h=<µ1,µ2> holds.
2. Calculate a new maximum likelihood hypothesis h′=<µ′1,µ′2>

assuming the value taken on by each hidden variable zij is its
expected value E[zij] calculated in Step 1.  Then replace the
hypothesis H=<µ1,µ2> by the new hypothesis h′=<µ′1,µ′2> and
iterate.



K-means Problem Visualization



Practical Implementation for k-means EM

• E[zij] is just the probability that instance xi
was generated by the jth Normal
distribution.

• In the first step,

• In the second step,
• Similar to the formula for a single Normal

distribution

! 

E[zij ] =
p(x = xi |µ = µ j )

p(x = xi |µ = µn )
n=1

2

"
=

e
#
1

2$ 2
(xi #µ j )

2

e
#
1

2$ 2
(xi #µn )

2

n=1

2

"

! 

µ j "
1

m
E[zij ]xi

i=1

m

#



EM Intuition

• The new formula just has each instance weighted
by the expectation E[zij] that it was generated by
the jth Normal distribution.

• The algorithm will converge to a local maximum
likelihood hypothesis for <µ1,µ2>.

• The General EM algorithm without simplifications
is in the book.



Summary
• Bayesian methods provide a basis for probabilistic learning

methods that accommodate knowledge about prior
distributions of alternative hypothesis and about the
probability of observing the data given various hypothesis.
They assign a posterior probability to each candidate
hypothesis, based on these assumed priors and the
observed data,

• Bayesian methods return the most probable hypothesis
(e.g., a MAP hypothesis).

• Bayes Optimal classfier combines the predictions of all
alternative hypotheses weighted by their posterior
probabilities, to calculate the most probable classification
of a new instance.



Naïve Bayes Summary
• Naïve Bayes has been found to be useful in many killer

apps.
• It is naïve because it has no street sense….no no no…it

incorporates the simplifying assumption that attribute
values are conditionally independent given the
classification of the instance.

• When this is true naïve Bayes produces a MAP hypothesis.
• Even when the assumption is violated Naïve Bayes tends

to perform well.
• BBNs provide a more expressive representation for sets of

conditional independence assumptions.



Minimum Description Length
Summary

• The Minimum Description Length principle
recommends choosing the hypothesis that
minimizes the description length of the hypothesis
plus the description length of the data given the
hypothesis.

• Bayes theorem and basic results from information
theory can be used to provide a rationale for this
principle.



EM Summary
• In many practical learning tasks, some of the relevant

instance variables may be unobservable  The EM
algorithm provides quite a general approach to learning in
the presence of unobservable variables.

• It begins with an arbitrary initial hypothesis.  It then
repeatedly calculates the expected values of the hidden
variables (assuming the current hypothesis is correct) and
then recalculates the ML hypothesis (assuming the hidden
variables have the expected values calculated by the first
step).

• This procedure converges to a local ML hypothesis (i.e.,
maximum likelihood hypothesis) along with the estimated
values for the hidden variables.


