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Evaluating Hypothesis

• Given observed accuracy of a hypothesis over a
limited sample of data, how well does this
estimate it’s accuracy over additional examples?

• Given that one hypothesis outperforms another
over some sample of data, how probable is it that
this hypothesis is more accurate in general?

• When data is limited what is the best way to use
this data to both learn a hypothesis and estimate its
accuracy?



Estimating Hypothesis Accuracy

• Estimating the accuracy with which it will classify
future instances - also probable error of this
accuracy estimate!!!

• A space of possible instances X.
• Different instances in X may be encountered with

different frequencies which is modeled by some
unknown probability distribution D.

• Notice D says nothing about whether x is a
positive or negative instance.



Learning Task

• The learning task is to learn the target concept, f,
by considering a space H of possible hypothesis.

• Training examples of the target function f are
provided to the learner by a trainer who draws
each instance independently, according to the
distribution D and who then forwards the instance
x along with the correct target value f(x) to the
learner.

• Are instances ever really drawn independently?



Sample error

• Are instances ever really drawn
independently?

• Sample error - the fraction of instances in
some sample S that it misclassifies

• Where n is the number of samples in S, and
δ(f(x),h(x)) is 1 if f(x) ≠h(x) and 0
otherwise
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True Error

• True error - probability it will misclassify a
single randomly drawn instance from the
distribution D

• Where Prx∈D denotes that the probability is
taken over the instance distribution D.
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Sample error versus True error

• Really want errorD(h) but can only get
errorS(h).

• How good an estimate of errorD(h) is
provided by errorS(h)?



Problems with Estimating
Accuracy

• Bias in Estimate
• Variance in the Estimate



Bias in Estimate

• Observed accuracy of the learned hypothesis over
the training examples is an optimistically biased
estimate of hypothesis accuracy over future
examples.

• Especially likely when the learner considers a very
rich hypothesis space, enabling it to overfit the
training examples.

• Typically we test the hypothesis on some set of
test examples chosen independently of the training
examples and the hypothesis.



Variance in Estimate

• Even if the hypothesis accuracy is measured
over an unbiased set of test examples, the
measured accuracy can still vary from true
accuracy, depending on the makeup of the
particular set of  test examples.

• The smaller the set of test examples, the
greater the expected variance.



Types of Bias

• Machine Learning Bias
• Systematic Error Bias
• “Statistical” Bias



Machine Learning Bias

• Every inductive learning algorithm must
adopt a bias in order to generalize beyond
the training data.

• This is good and bad!



Systematic Error Bias

• If there is systematic error in the training
set, the learning algorithm cannot tell the
difference between systematic error and real
structure in the dataset.

• Therefore systematic error will also create a
bias in the estimate.

• Systematic error example - pull-down
menus



Statistical Bias

• Statistical Bias is the systematic error for a
given sample size m.

• “statistical bias”is the notion that as the
training set size gets smaller, then the
systematic error will go up.



We can test for Bias

• But we can’t separate the 3 biases from each
other.

• So this will include “statistical bias” and
also the ML Bias and the Systematic Error
Bias.



Bias Formula

• Bias(A,m,x) = f´(x) - f(x), where A is the
learning algorithm, m is the training set
size, x is a random example, and f´ is the
expected value of f, where the expectation is
taken over all possible training sets of fixed
size m.
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Variance

• Variance(A,m,x) =E[(fS(x)-f´(x))2], where fS
is a particular hypothesis learned on training
set S.

• Variance comes from variation in the
training data, random noise in the training
data, or random behavior in the learning
algorithm itself.



Error

• So error is just made up of Bias and
Variance.

• Error(A,m,x)=Bias(A,m,x)2+Variance(A,m,x)
• Remember that the Bias includes “statistical

bias”, Machine Learning Bias, and
Systematic Error Bias

• Also Bias is squared only because Variance
is already squared



Absolute and Relative ML Bias

• Remember these definitions from decision
tree lectures

• Absolute Bias - certain hypothesis are
entirely eliminated from the hypothesis
space - also called restriction of language
bias

• Relative Bias - certain hypothesis are
preferred over others - also called
preference or search bias



Effect of ML Bias on Stat Bias
and Variance



Four Important Sources of Error

• Random variation in the selection of the test data -
got today right

• Random variation in the selection of the training
data - stock newsletters

• Randomness in the learning algorithm (e.g., initial
weights) - trying 2000 seeds and only one works
well

• Random classification error - guys on the line
entering data



Dealing with Error
• Good statistical test should not be fooled by these

sources of variation.
• To account for test-data variation and the

possibility of random classification error, the
statistical procedure must consider the size of the
test set and the consequences of changes in the test
set.

• To account for training-data variation and internal
randomness, the statistical procedure must execute
the learning algorithm multiple times and measure
the variation in accuracy of the resulting
classifiers.



What is Overfitting

• Given a hypothesis space H, a hypothesis h
∈H is said to overfit the training data if
there exists some alternative hypothesis h´∈
H, such that h has a smaller error than h´
over the training examples, but h´ has a
smaller error that h over the entire
distribution of instances.

• Not a very useful definition!



What causes Overfitting?

• Why would complexity cause overfitting???

• What about multiple comparisons?



Sampling Distributions for 1 die and 10 dice?



Multiple Comparisons

• Cause overfitting, oversearching, feature selection
problems

• Solutions
– New test data
– Bonferroni & Sidak (mathematical adjustment, assumes

independence)
– Cross validation - biased if k is to large because then

the training sets are virtually the same - leave one out
– Randomization tests - my favorite - drawback is time

complexity - but to estimate p-values between .1 and
.01 usually requires no more than 100-1000 trials



Why does Pruning Decision
Trees Work?

• By pruning decision trees we are making
the hypothesis space smaller (only small
decision trees are allowed) so the effect of
the multiple comparison’s problem is
reduced.

• Do I believe this?



Statistical Questions in Machine
Learning



Question Assumptions

• We assume that all datapoints (examples)
are drawn independently from a fixed
probability distribution defined by the
particular problem.

• This is almost never the case!!!



Question 1

• Given a large data set, S, suppose we apply
learning algorithm A to S to construct classifier
CA; how accurately will CA classify new
examples?

• The classifier C may have been constructed using
part of the data, but there is enough data
remaining for a separate test set.  Measure the
accuracy of C on the test set and construct a
binomial confidence interval.  Note C need not
have been produced by a learning algorithm.



Confidence Intervals for Discrete
Value Hypotheses

• Assume S contains n examples drawn independently of
each other and of h, according to the probability
distribution D.

• Also assume n≥30 and h commits r errors over these n
examples (errors(h)=r/n)

• The most probable value of errorD(h) is errorS(h) and
• With 95% probability errorD(h) lies in the interval

• This can be done for any percent confidence level, all that
must change is the constant 1.96.  The smaller the percent
the smaller the confidence interval.
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Question 3

• Given two classifiers CA and CB and enough
data for a separate test set, determine which
classifier will be more accurate on the new
test examples.

• Measure the accuracy of each classifier on
the separate test set and apply McNemar’s
test.



Comparing Learning Algorithms

• Divide sample into training set, R, and test
set, T

• Train both algorithms A and B on R
yielding the classifiers fA and fB

• Test classifiers on T and construct
contingency table



Confusion Matrix

n11

Number of examples
misclassified by
neither fA nor fB

n10

Number of examples
misclassified by fB but
not by fA

n01

Number of examples
misclassified by fA but
not by fB

n00

Number of examples
misclassified by both
fA and fB



McNemar’s Test

• Null hypothesis is incorrect if greater than
3.81459
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Problems with McNemar

• Did not measure variability due to choice of
training set or internal randomness - only
use if we believe these to be small

• It does not directly compare performance on
training sets of size |S| but only |R| - we
must assume the relative difference will still
hold for training sets of size |S|



Question 6
• Given a learning algorithm A and a small dataset

S, what is the accuracy of the classifiers produced
by A when A is trained on new training sets of the
same size as S?

• Kohavi shows that stratified 10-fold cross
validation produces fairly good estimates.

• Note in any resampling approach we cannot train
on training sets of exactly the same size.  We train
on smaller datasets (90% the size of S) and rely on
the assumption that the performance of learning
algorithms changes smoothly with changes in the
size of the training data.  This assumption is not
always valid.



10-fold Cross Validation

• Break data into 10 sets of size n/10.

• Train on 9 datasets and test on 1.

• Repeat 10 times and take a mean accuracy.



Question 8
• Given two learning algorithms A and B and a

small data set S, which algorithm will produce
more accurate classifiers when trained on datasets
of the same size as S?

• Because S is small it will be necessary to use
holdout and resampling methods.

• This means we cannot answer the question
directly without making the assumption that the
performance of the two learning algorithms
changes smoothly with changes in the size of the
training set.

• The technique for this analysis is 5*2 cross
validation



Comparing Algorithms with
Small Samples

• do 5*2 cross validation
• Each time train both algorithms and test them on

each set - this gives 4 error estimates - pA
(1), pB

(1),
pA

(2), pB
(2)

• Use these measures in the augmented t test as
follows

• pA
(1) is (n00+n01)/n for algorithm A and trained

on S1 and tested on S2
• Subtract corresponding error estimates to get two

estimated differences p(1)=pA
(1)-pB

(1) and likewise
for p(2)



Estimated Variance

• The estimated variance is (n is 2 in this
case)

• Where p¯ is

• Do this for each cross validation so Si
2 is the

variance computed for the ith repetition
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5x2cv t statistic

• 5x2cv t statistic is:

• Using 2-fold cv gives large test sets and
disjoint training sets, but training sets are
only 1/2 the size which may cause problems

• 5 replications shown to produce lowest
Type I error (incorrectly detecting a
difference when no difference exists)
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Question 9

• Given two learning algorithms A and B and
datasets from several domains, which algorithm
will produce more accurate classifiers when
trained on examples from new domains?

• This is perhaps the most fundamental and difficult
question in machine learning

• We need to combine the results from several
answers to question 8, where each answer has an
associated uncertainty



Four Spurious Effects

• Ceiling Effect - Holte’s 1R example

89.495.697.597.710077.587.495.9Max

87.995.2879598.477.387.495.91R

89.495.697.597.710077.577.293.8C4

VIVOSOSEMULYLAIRData
set



Other 3 Effects

• Regression Effects - if chance plays a role,
then always run the same problems

• Order Effects - counter balancing or at least
a few orders

• Sampling Bias - how data was collected is
very important - the independent variable
can change the location of the distribution
but not its shape



Experiments with Standard
Deviation



Experiments with Learning
Curves



Experiments with Difference in
Performance Graph



Experiments with Pairwise
Combination Chart



Summary

• What questions are we interested in asking?
• Binomial Confidence intervals, McNemar

test, 5x2cv paired t test
• Problems to watch out for in experimental

design
• Real cause of overfitting.


