
Learning Sets of Rules

Computer Science 760
Patricia J Riddle

Motivation

• Set of if-then rules that jointly define the target
function

• Rules are easy (?) for people to understand and
edit

• Rules we’ve seen
– Translate a decision tree into a set of rules
– Use a genetic algorithm that encodes a rule set

• But also first-order rules or partial or overlapping
models

Sequential Covering

• Learn one-rule, remove the data it covers, then
iterate

• Our rule must have high accuracy but not
necessarily high-coverage (what does this do to
the overfitting/oversearching problem??)

• Only throw out positive examples covered
• Final rules sorted by accuracy over the *whole*

training set
• Widely used

Issues with Sequential Covering

• Greedy search so no guarantees about
smallest set or best set of rules

• So each rule is learned on a different
distribution of the training set…..isn’t this a
problem???

• Definitely skewed to best “set of rules” not
best “rules”

Sequential Covering Algorithm
Sequential-covering(Target-attribute, Attributes, Examples,

Threshold)
• Learned_rules←{}
• Rule←LEARN-ONE-RULE(Target-attribute, Attributes,

Examples)
• While PERFORMANCE(Rule, Examples) > Threshold, do

– Learned-rules←Learned-rules + Rule
– Examples←Examples-{examples correctly classified by Rule}
– Rule←LEARN-ONE-RULE(Target-attribute, Attributes,

Examples)
• Learned-rules ←sort Learned-rules according to

PERFORMANCE over Examples
• Return Learned-rules

How to Learn-One-Rule

• General-to-specific search through the space of
possible rules in search of a rule with high
accuracy

• Many ways to evaluate best descendant (same as
decision trees) - like entropy

• (greedy, no-backtracking) can extend to beam-
search - CN2

• Search continues until it reaches a maximally
specific hypothesis that contains all available
attributes

• Postcondition is determined last

General to Specific Beam Search

Variation
• Learning rules for only a single class - negation as

failure - “pregnant women who are likely to have
twins”

• Must change “performance” to fractions of
positives covered - AQ - Skewed sample size
encourages this also!

• AQ uses single positive seed example to focus
search in Learn-One-Rule

• Only considers attributes satisfied by that positive
instance

• A new seed example is chosen from those positive
examples not yet covered

Design Choices:
Sequential versus Simultaneous

• Sequential Covering Algorithms learn one rule at a time,
remove the covered examples, and repeat.

• Decision trees can be seen as Simultaneous Covering
Algorithms

• Sequential covering algorithms perform n*k primitive
search steps to learn n rules each containing k attribute-
value tests. If the decision trees is a complete binary tree,
it makes (n-1) primitive search steps where n is the number
of paths (i.e., rules).

• So Sequential Covering Algorithms must be supported by
additional data, but have the advantage of allowing rules
with different tests.

General-to-Specific versus
Specific-to-General

• General to specific starts at the one
maximally general hypothesis

• In specific to general there are many
maximally specific hypothesis (the training
data).

• Golem chooses several randomly and picks
the best learned hypothesis.

Generate-then-test or
Example-driven

• GTT hypothesis performance is based on
many training examples

• the effect of noisy data is minimized

Post-pruning

• In either system post-pruning can be used to
increase the effectiveness of rules on a
validation set

Rule Performance Measures

• Relative frequency - AQ -

• M-estimate of accuracy - CN2 -

• Entropy - CN2 -

!

n
c

n

!

Nc + mp

n + m

!

"Entropy(S) = pi log2 pi
i=1

c

#

Exhaustive Rule Learning

• Greedy search can miss good rules
– What about over-searching???

• Really multiple comparison problem
• Disallowing overlapping rules can cause

problems
• Solution: look at every rule and keep it if it

is good

Brute
• Exhaustive depth bounded search
• When evaluating single rules coverage is

important
– Chi-squared statistic

• Multiple comparisons more of a problem!!
– Validation sets difficult for rules
– We use randomization testing

• Presenting multiple rules are difficult
– Also a problem with similar rules and additional

conjuncts
• “equivalent to” association rules

Brute Run
> brute -T iopus -d 4 -S chi -F simnum -F simparent -r 100 dataset3 b
Setting up tests...
Doing search...
 1: MinPos = 1, Tests = 1899 Rules = 1,899, Seconds = 1.
 2: MinPos = 1, Tests = 1899 Rules = 168,025, Seconds = 1.
 3: MinPos = 1, Tests = 1899 Rules = 7,673,351, Seconds = 21.
 4: MinPos = 1, Tests = 1899 Rules = 161,432,100, Seconds = 464.
done.

Data positive coverage = 69.2%.
Test positive coverage = 25.0%.

Search time = 486 seconds.
Rules examined = 169,275,375.
Search speed = 348,303 rules per second.
>

Brute Top Rules
 Data Test
 Acc Cov Chi Acc Cov Chi
IF attr6 = a && attr11 <> e &&
 attr31 >= 21 THEN attr1 = b 100.0 34.6 116.7 50.0 12.5 8.3
IF attr6 <> c && attr6 <> b &&
 attr11 <> e && attr31 >= 24
 THEN attr1 = b 100.0 34.6 116.7 50.0 12.5 8.3
IF attr6 <> c && attr7 >= 27 &&
 attr11 <> e && attr31 >= 24
 THEN attr1 = b 100.0 34.6 116.7 50.0 12.5 8.3
IF attr2 = c && attr3 <> c &&
 attr7 >= 27 && attr35 < 1029
 THEN attr1 = b 78.6 42.3 107.4 0.0 0.0 0.1
IF attr3 <> c && attr7 >= 24 &&
 attr31 >= 21 && attr39 >= 7
 THEN attr1 = b 83.3 38.5 104.7 20.0 12.5 2.3
IF attr6 <> c && attr7 >= 24 &&
 attr31 >= 27 && attr39 >= 7
 THEN attr1 = b 100.0 30.8 103.7 20.0 12.5 2.3

Brute Bottom Rules
 Data Test
 Acc Cov Chi Acc Cov Chi
IF attr6 <> c && attr6 <> b &&
 attr25 >= 9 && attr31 < 139
 THEN attr1 = b 100.0 23.1 77.8 33.3 12.5 4.9
IF attr6 <> c && attr6 <> b &&
 attr25 >= 9 && attr31 >= 16
 THEN attr1 = b 100.0 23.1 77.8 50.0 12.5 8.3
IF attr6 <> c && attr6 <> b &&
 attr25 >= 9 && attr35 < 1029
 THEN attr1 = b 100.0 23.1 77.8 0.0 0.0 0.1
IF attr6 <> c && attr6 <> b &&
 attr25 >= 9 && attr35 >= 64
 THEN attr1 = b 100.0 23.1 77.8 33.3 12.5 4.9
IF attr6 <> c && attr6 <> b &&
 attr25 >= 9 && attr36 = i
 THEN attr1 = b 100.0 23.1 77.8 33.3 12.5 4.9
IF attr6 <> c && attr6 <> b &&
 attr25 >= 9 && attr30 = u
 THEN attr1 = b 100.0 23.1 77.8 33.3 12.5 4.9

Other Brute Features

• Only does one class at a time
• Chi-square allows negative rules to be

found
• Can use beam-search
• Can make decision list

Confusion Matrix

NNTFNTT

NIFdcIF False

NITbaIF True

Then
False

Then True

Let us look at Accuracy & Error

• Acc = a/NIT

• Error = b/NIT

Yates Chi Square Formula

• Uses the WHOLE table!

!

"
2

=

N(| ad # bc |#
N

2
)
2

N
IT
N

IF
N
TT
N
TF

Learning First Order Rules

• Inductive logic programming (ILP)

• Automatically inferring Prolog programs
from examples

Why Not Propositional Rules?
• Name1=Sharon, Mother1=Louise,
 Father1=Bob, Male1=False,
 Female1=True, Name2=Bob,
 Mother2=Nora, Father2=Victor,
 Male2=True, Female2=False

• If (Father1=Bob) ^ (Name2=Bob) ^
Female1=True then Daughter1-2=True

• Can’t describe relations between attributes!

First Order Horn Clauses

• If Father(y,x) ^ Female(y) then Daughter(x,y)
• Can also have variables in the preconditions which

are not used in the postconditions - such variables
are assumed to be existentially quantified
– If Father(y,z) ^ Mother(z,x) ^ Female(y) then

GrandDaughter(x,y)
• Can also represent (and learn!) recursive functions

– If Parents(x,z) ^ Ancestor(z,y) then Ancestor(x,y)

Terminology I
• Every well-formed expression is composed of constants

(e.g., Mary, 23, or Joe), variables (e.g., x), predicates (e.g.,
Female, as in Female(Mary)), and functions (e.g., age is in
age(Mary)).

• A term is any constant, any variable, or any function
applied to any term. Examples include Mary, x,
age(Mary), age(x).

• A literal is any predicate (or its negation) applied to any
set of terms. Examples include Female(Mary),
¬Female(x), Greater_than(age(Mary),20)).

• A ground literal is a literal that does not contain any
variables (e.g., ¬Female(Joe)).

Terminology II
• A negative literal is a literal containing a negated predicate

(e.g., ¬Female(Joe)).
• A positive literal is a literal eith no negation sign (e.g.,

Female(Mary)).
• A clause is any disjunction of literals M1v…Mn whose

variables are universally quantified.
• A Horn clause is an expression of the form H←

(L1^…^Ln) where H, L1…Ln are positive literals. H is
called the head or consequent of the Horn clause. The
conjunction of literals L1 ^ L2^…^Ln is called the body or
antecedents of the Horn clause.

Terminology III
• For any literals A and B, the expression (A←B) is

equivalent to (A v ¬B), and the expression ¬(A ^ B) is
equivalent to (¬A v ¬B). Therefore a Horn clause can
equivalently be written as the disjunction H v ¬L1 v … v
¬Ln.

• A substitution is any function that replaces variables by
terms. For example, the substitution {x/3, y/z} replaces the
variable x by the term 3 and replaces the variable y by the
term z. Given a substitution θ and a literal L we write Lθ
to denote the result of applying substitution θ to L.

• A unifying substitution for two literals L1 and L2 is any
substitution θ such that L1θ = L2θ.

FOIL

• Extension of Sequential Covering to first order
representations

• Learns Horn clauses with 2 exceptions
1. More restrictive - literals are not permitted to contain

function symbols - reduces complexity of hypothesis
space

2. More expressive - literals appearing in the body may
be negated

– Learn recursive Quicksort & legal from illegal
chess positions

FOIL Algorithm
FOIL(Target-predicate, Predicates, Examples)
• Pos←those Examples for which the Target-predicate is True
• Neg←those Examples for which the Target-predicate is False
• Learned-rules←{}
• While Pos, do

Learn a NewRule
– NewRule←the rule that predicts Target-predicate with no

preconditions
– NewRuleNeg←Neg
– While NewRuleNeg, do

Add a new literal to specialize NewRule
• Candidate_literals← generate candidate new literals for NewRule,

based on Predicates
• Best_literal←argmaxL∈Candidate-literalsFoil-Gain(L,NewRule)
• Add Best-literal to preconditions of NewRule
• NewRuleNeg←subset of NewRuleNeg that satisfies NewRule

preconditions
– Learned-rules←Learned-rules + NewRule
– Pos←Pos-{members of Pos covered by NewRule}

• Return Learned-rules

Differences between FOIL &
Sequential Covering

• Seeks only rules where target literal is True
• Performs simple hill-climbing search rather than

beam search
• Adding each new rule generalizes the disjunctive

hypothesis so viewed at this level the search is
specific-to-general

• Adding new conjuncts to each rule is a general-
to-specific hill-climbing search

Issues for FOIL

1. How to generate candidate specializations
of a rule - need to accommodate variables

2. What performance measure to use - need
to distinguish between different bindings
of the rules variables

Generating Candidate
Specializations

1. Q(v1,…,vr) - where Q is any predicate occurring
in Predicates and the vi are either new variables
or variables already present in the rule. At least
one vi in the created literal must already exist in
the rule

2. Equal(xj,xk) = where xj and xk are variables
already present in the rule

3. The negation of either of the above

FOIL Example

• GrandDaughter(x,y) where Predicates
contains Father and Female

• Candidate Literals: Equal(x,y), Female(x),
Female(y), Father(x,y), Father(y,x),
Father(x,z), Father(z,x), Father(y,z),
Father(z,y) and the negation of each

• Let us assume FOIL greedily selects
GrandDaugther(x,y) ← Father(y,z)

FOIL Example II

• FOIL now considers all those before and
Female(z), Equal(z,x), Equal(z,y),
Father(z,w), Father(w,z) and their negations

• Continues until it covers only positive
examples, then remove all positive
examples covered and start search for next
rule

Guiding Search in FOIL

• Performance of the rule over the training
data

• Must consider all possible bindings of each
variable

• Use the closed world assumption - any
literal involving these predicates and these
constants that is not listed is assumed false

Evaluation Function

• Target literal GrandDaughter(x,y)
• Assertions - GrandDaughter(Victor,Sharon),

Father(Sharon,Bob), Father(Tom,Bob),
Female(Sharon), Father(Bob,Victor)

• Given the 4 constants there are 16 possible
variable bindings for the initial rule - 1 positive
x/Victor,y/Sharon and 15 negative

• Evaluation function let R´ be the rule created by
adding a new literal L to the old rule R

Foil-Gain

• Where p0 is the number of positive bindings of
rule R and n0 is the number of negative bindings,
p1 is the number of positive bindings of rule R´, n1
is the number of negative bindings of rule R´, and
t is the number of positive bindings of rule R
which are still covered by R´

• Reduction due to L in the total bits needed to
encode the classification of all positive bindings of
R.

!

Foil "Gain(L,R) # t(log2
p1

p1 + n1
" log2

p0

p0 + n0
)

Learning Recursive Rule Sets

• Just include the target in the list of
Predicates

• Need test to avoid learning rules sets that
produce infinite recursion

Summary of FOIL

• FOIL extension of CN2
• General-to-specific search adding new literals
• Literals may introduce new variables
• Foil-Gains used as evaluation function
• FOIL has been shown to successfully learn

recursive rule sets
• To handle noisy data, some tradeoff between

accuracy, coverage, and complexity tells it when
to stop adding new literals

• FOIL also performs post-pruning

Induction as Inverted Deduction
• Induction is the inverse of deduction
• Given some data D and some partial background

theory B, learning generates a hypothesis h that
together with B explains D

• More precisely, if the training data is a set of
examples of the form <xi,f(xi)> where xi denotes
the ith training example and f(xi) denotes its target
value.

• Then learning is the problem of discovering h
such that

!

(" < xi, f (xi) ># D)(Bh xi) entails f (xi)

Inverted Deduction Example I

• Target concept is Child(u,v)
• Single positive example Child(Bob,Sharon) where

instance is described by Male(Bob),
Female(Sharon), and Father(Sharon,Bob)

• General background knowledge of Parent(u,v) ←
Father(u,v)

• Two of the many hypothesis that satisfy
 (B ^ h ^ xi) entails f(xi) are:
 h1: Child(u,v) ←Father(v,u) and
 h2: Child(u,v) ← Parent(v,u)

Inverted Deduction Example II

• New predicates which were not present in
the initial description can be introduced into
the hypothesis - constructive induction

• Well understood algorithms for automated
deduction

• Inverses of these procedures can automate
inductive generalization

Inverse Entailment Operators

• Usually many hs so use Minimum Description Length
• Incorporating background knowledge allows a more rich

definition of when the hypothesis is said to fit the data
• Several practical difficulties:

– Noisy training data
– First order logic is so expressive that the search is intractable -

restricted forms of expression or additional second-order
knowledge

– The complexity of the hypothesis space search increases as
background knowledge is increased

!

O(B,D) = h such that (" < xi, f (xi) ># D)(Bh xi)entails f (xi)

Inverting Resolution
• Resolution rule - Robinson 65 - sound and complete
• This operator used in Cigol
• C=A v B and C2 = B v D
• Any literal present in C but not in C1 must be

present in C2
• The literal that occurs in C1 but not in C must be the

literal removed by the resolution rule and therefore
its negation must occur in C2

• C2 = A v ¬D or C2 = A v ¬D v B
• Not deterministic! - so prefer shorter clauses
• Cigol uses inverse resolution with sequential

covering but with 1st order representations

Resolution P v L
¬L v R

 P v R

C1: Pass v ¬KnowMaterial C2: KnowMaterial v ¬Study

C: PassExam v ¬Study

Inverse Resolution

C1: Pass v ¬KnowMaterial C2: KnowMaterial v ¬Study

C: PassExam v ¬Study

First Order Resolution

• Substitutions
• θ = x/Bob, y/z, L=Father(x,Bill)
• Lθ = Father(Bob,Bill)
• Unifying substitutions
• L1=Father(x,y), L2=Father(Bill,z), θ=x/Bill,z/y
• L1θ=L2θ=Father(Bill,y)
• C=(C1-L1)θ∪(C2-L2)θ

Example

• C1=White(x)←Swan(x) and
 C2=Swan(Fred)
• L1=¬Swan(x)
• L2=Swan(Fred)
• θ=x/Fred
• L1θ=¬L2θ=¬Swan(Fred)
• C=White(Fred)

1st Order Resolution Rule

• Find a literal L1 from clause C1, literal L2
from clause C2, and substitution θ such that
L1θ = ¬L2θ

• Form the resolvent C by including all
literals from C1θ and C2θ, except for L1θ
and ¬L2θ. More precisely, the set of literals
occurring in the conclusion C is
C= (C1 - {L1})θ ∪ (C2 - {L2})θ

Inverting First Order resolution

• C2=(C-(C1-L1θ1)θ2
-1∪¬L1θ1θ2

-1

• Nondeterministic because of C1,θ1,θ2

• Grandchild(y,x)←Father(x,z) ^ Father(z,y)

Inverse Example

GrandChild(Bob,Shannon)

Father(Shannon,Tom)

Father(Tom,Bob)

GrandChild(Bob,x) v ¬Father(x,Tom)

GrandChild(y,x) v ¬Father(x,z) v ¬Father(z,y)

{Bob/y,Tom/z}

{Shannon/x}

Summary Inverse Resolution

• Only generates “good” hypothesis as
opposed to generate and test

• So we would expect it to be more focused
and efficient

• But hobbled because can only consider a
small fraction of the data when generating a
hypothesis at each step

Generalization, Subsumption,
Entailment

• More general than - given two boolean
functions hj(x) and hk(x) we say that hj ≥ghk
if and only if (∀x)hk(x) → hj(x)

• θ-subsumption - Clause Cj is said to θ-
subsume clause Ck if an only if there exists
a substitution θ such that Cjθ⊆Ck

• Entailment Cj entails Ck if and only if Ck
follows deductively from Cj

Inverse Examples

• A θ-subsumes B but A is not more general than B
– A: Mother(x,y)←Father(x,z) ^ Spouse(z,y)
– B: Mother(x,Louise)←Father(x,Bob) ^ Spouse(Bob,y)

^ Female(x)

• A entails B but A does not θ-subsume B
– A: Elephant(father_of(x))←Elephant(x)
– B: Elephant(father_of(father_of(y)))←Elephant(y)

Progol

• Inverse entailment to generate the single
most specific hypothesis

• Then general to specific search using this
bound

1. Restricted language
2. Sequential Covering

1. Inverse entail most specific hypothesis
2. General to specific search

Summary

• Sequential covering learns disjunctive set of
rules

• First-order rules with FOIL
• Inverse entailment

