Learning Sets of Rules

Computer Science 760
Patricia J Riddle

Motivation

- Set of if-then rules that jointly define the target function
- Rules are easy (?) for people to understand and edit
- Rules we've seen
- Translate a decision tree into a set of rules
- Use a genetic algorithm that encodes a rule set
- But also first-order rules or partial or overlapping models

Sequential Covering

- Learn one-rule, remove the data it covers, then iterate
- Our rule must have high accuracy but not necessarily high-coverage (what does this do to the overfitting/oversearching problem??)
- Only throw out positive examples covered
- Final rules sorted by accuracy over the *whole* training set
- Widely used

Issues with Sequential Covering

- Greedy search so no guarantees about smallest set or best set of rules
- So each rule is learned on a different distribution of the training set.....isn't this a problem???
- Definitely skewed to best "set of rules" not best "rules"

Sequential Covering Algorithm

Sequential-covering(Target-attribute, Attributes, Examples, Threshold)

- Learned_rules $\leftarrow\}$
- Rule \leftarrow LEARN-ONE-RULE(Target-attribute, Attributes, Examples)
- While PERFORMANCE(Rule, Examples) > Threshold, do
- Learned-rules \leftarrow Learned-rules + Rule
- Examples \leftarrow Examples-\{examples correctly classified by Rule\}
- Rule \leftarrow LEARN-ONE-RULE(Target-attribute, Attributes, Examples)
- Learned-rules \leftarrow sort Learned-rules according to PERFORMANCE over Examples
- Return Learned-rules

How to Learn-One-Rule

- General-to-specific search through the space of possible rules in search of a rule with high accuracy
- Many ways to evaluate best descendant (same as decision trees) - like entropy
- (greedy, no-backtracking) can extend to beamsearch - CN2
- Search continues until it reaches a maximally specific hypothesis that contains all available attributes
- Postcondition is determined last

General to Specific Beam Search

Variation

- Learning rules for only a single class - negation as failure - "pregnant women who are likely to have twins"
- Must change "performance" to fractions of positives covered - AQ - Skewed sample size encourages this also!
- AQ uses single positive seed example to focus search in Learn-One-Rule
- Only considers attributes satisfied by that positive instance
- A new seed example is chosen from those positive examples not yet covered

Design Choices: Sequential versus Simultaneous

- Sequential Covering Algorithms learn one rule at a time, remove the covered examples, and repeat.
- Decision trees can be seen as Simultaneous Covering Algorithms
- Sequential covering algorithms perform $\mathrm{n} * \mathrm{k}$ primitive search steps to learn n rules each containing k attributevalue tests. If the decision trees is a complete binary tree, it makes ($\mathrm{n}-1$) primitive search steps where n is the number of paths (i.e., rules).
- So Sequential Covering Algorithms must be supported by additional data, but have the advantage of allowing rules with different tests.

General-to-Specific versus Specific-to-General

- General to specific starts at the one maximally general hypothesis
- In specific to general there are many maximally specific hypothesis (the training data).
- Golem chooses several randomly and picks the best learned hypothesis.

Generate-then-test or Example-driven

- GTT hypothesis performance is based on many training examples
- the effect of noisy data is minimized

Post-pruning

- In either system post-pruning can be used to increase the effectiveness of rules on a validation set

Rule Performance Measures

- Relative frequency $-\mathrm{AQ}-\frac{n_{c}}{n}$
- M-estimate of accuracy - CN2 - $\frac{N_{c}+m p}{n+m}$
- Entropy - CN2- $-\operatorname{Entropy}(S)=\sum_{i=1}^{c} p_{i} \log _{2} p_{i}$

Exhaustive Rule Learning

- Greedy search can miss good rules
- What about over-searching???
- Really multiple comparison problem
- Disallowing overlapping rules can cause problems
- Solution: look at every rule and keep it if it is good

Brute

- Exhaustive depth bounded search
- When evaluating single rules coverage is important
- Chi-squared statistic
- Multiple comparisons more of a problem!!
- Validation sets difficult for rules
- We use randomization testing
- Presenting multiple rules are difficult
- Also a problem with similar rules and additional conjuncts
- "equivalent to" association rules

Brute Run

$>$ brute -T iopus -d 4 -S chi -F simnum -F simparent -r 100 dataset 3 b Setting up tests...
Doing search...
1: MinPos $=1$, Tests $=1899 \ldots$ Rules $=1,899$, Seconds $=1$.
2: MinPos $=1$, Tests $=1899 \ldots$ Rules $=168,025$, Seconds $=1$.
3: MinPos $=1$, Tests $=1899 \ldots$. Rules $=7,673,351$, Seconds $=21$.
4: MinPos $=1$, Tests $=1899 \ldots$ Rules $=161,432,100$, Seconds $=464$. done.

Data positive coverage $=69.2 \%$.
Test positive coverage $=25.0 \%$.

Search time $=486$ seconds.
Rules examined $=169,275,375$.
Search speed $=348,303$ rules per second.
$>$

Brute Top Rules

Data	Test		
Acc Cov Chi	Acc	Cov	Chi
100.034 .6116 .7	50.0	12.5	8.3
100.034 .6116 .7	50.0	12.5	8.3
100.034 .6116 .7	50.0	12.5	8.3
78.642 .3107 .4	0.0	0.0	0.1
83.3 38.5 104.7	20.0	12.5	2.3
100.030 .8103 .7	20.0	12.5	2.3

IF attr6 = a \&\& attr11 <> e \&\& $\operatorname{attr} 31>=21$ THEN $\operatorname{attr} 1=b$
IF attr6 <> c \& \& attr6 <> b \&\& $\operatorname{attr} 11<>$ e \& \& attr31>= 24
THEN $\operatorname{attr} 1=b$
IF attr6 <> c \& \& attr7 >= $27 \& \&$ $\operatorname{attr} 11<>$ e $\& \& \operatorname{attr} 31>=24$
THEN $\operatorname{attr} 1=b$
IF attr2 $=\mathrm{c} \& \& \operatorname{attr} 3<>\mathrm{c} \& \&$ attr7 >= $27 \& \& \operatorname{attr} 35<1029$ THEN attr1 = b
IF attr3 <> c \& \& attr7 >= $24 \& \&$ $\operatorname{attr} 31>=21 \& \& \operatorname{attr} 39>=7$ THEN $\operatorname{attr} 1=b$
IF attr6 <> c \& \& attr7 >= $24 \& \&$ $\operatorname{attr} 31>=27 \& \& \operatorname{attr} 39>=7$
THEN attrl = b

Brute Bottom Rules

Data
 Acc Cov Chi Acc Cov Chi

```
IF attr6 <> c \&\& attr6 <> b \&\&
    attr25 >= \(9 \& \& \operatorname{attr} 31<139\)
    THEN \(\operatorname{attr} 1=\mathrm{b} \quad 100.0 \quad 23.177 .8 \quad 33.312 .54 .9\)
IF attr6 <> c \&\& attr6 <> b \&\&
    \(\operatorname{attr} 25>=9 \& \& \operatorname{attr} 31>=16\)
    THEN \(\operatorname{attr} 1=\mathrm{b} \quad 100.0 \quad 23.177 .8 \quad 50.0 \quad 12.5 \quad 8.3\)
IF attr6 <> c \& \& attr6 <> b \&\&
    \(\operatorname{attr} 25>=9 \& \& \operatorname{attr} 35<1029\)
    THEN \(\operatorname{attr} 1=b\)
\(100.0 \quad 23.1 \quad 77.8 \quad 0.0 \quad 0.0 \quad 0.1\)
IF attr6 <> c \& \& attr6 <> b \&\&
    \(\operatorname{attr} 25>=9 \& \& \operatorname{attr} 35>=64\)
    THEN attrl \(=\mathrm{b} \quad 100.0 \quad 23.177 .8 \quad 33.312 .5 \quad 4.9\)
IF attr6 <> c \&\& attr6 <> b \&\&
    \(\operatorname{attr} 25>=9 \& \& \operatorname{attr} 36=\mathrm{i}\)
    THEN \(\operatorname{attr} 1=\mathrm{b}\)
    \(\begin{array}{llllll}100.0 & 23.1 & 77.8 & 33.3 & 12.5 & 4.9\end{array}\)
IF attr6 <> c \&\& attr6 <> b \&\&
    \(\operatorname{attr} 25>=9 \& \& \operatorname{attr} 30=u\)
    THEN \(\operatorname{attr} 1=b\)
    \(100.0 \quad 23.1 \quad 77.8 \quad 33.3 \quad 12.5 \quad 4.9\)
```


Other Brute Features

- Only does one class at a time
- Chi-square allows negative rules to be found
- Can use beam-search
- Can make decision list

Confusion Matrix

	Then True	Then False	
IF True	a	b	N_{IT}
IF False	c	d	N_{IF}
	N_{TT}	N_{TF}	N

Let us look at Accuracy \& Error

- $\operatorname{Acc}=\mathrm{a} / \mathrm{N}_{\mathrm{IT}}$
- Error $=\mathrm{b} / \mathrm{N}_{\mathrm{IT}}$

Yates Chi Square Formula

$$
\mathrm{X}^{2}=\frac{N\left(|a d-b c|-\frac{N}{2}\right)^{2}}{N_{I T} N_{I F} N_{T T} N_{T F}}
$$

- Uses the WHOLE table!

Learning First Order Rules

- Inductive logic programming (ILP)
- Automatically inferring Prolog programs from examples

Why Not Propositional Rules?

- Name 1=Sharon, Mother1=Louise,

Father1=Bob, Male1=False,
Female1=True, Name2=Bob,
Mother2=Nora, Father2=Victor,
Male2=True, Female2=False

- If (Father1=Bob) ^(Name2=Bob) ^ Female1=True then Daughter1-2=True
- Can't describe relations between attributes!

First Order Horn Clauses

- If Father $(\mathrm{y}, \mathrm{x})^{\wedge}$ Female(y) then Daughter($\left.\mathrm{x}, \mathrm{y}\right)$
- Can also have variables in the preconditions which are not used in the postconditions - such variables are assumed to be existentially quantified
- If Father $(\mathrm{y}, \mathrm{z})^{\wedge} \operatorname{Mother}(\mathrm{z}, \mathrm{x})^{\wedge}$ Female(y) then GrandDaughter(x,y)
- Can also represent (and learn!) recursive functions
- If Parents(x,z) ^ Ancestor(z,y) then Ancestor(x, y)

Terminology I

- Every well-formed expression is composed of constants (e.g., Mary, 23, or Joe), variables (e.g., x), predicates (e.g., Female, as in Female(Mary)), and functions (e.g., age is in age(Mary)).
- A term is any constant, any variable, or any function applied to any term. Examples include Mary, x, age(Mary), age(x).
- A literal is any predicate (or its negation) applied to any set of terms. Examples include Female(Mary), \neg Female(x), Greater_than(age(Mary),20)).
- A ground literal is a literal that does not contain any variables (e.g., $\neg F e m a l e(J o e))$.

Terminology II

- A negative literal is a literal containing a negated predicate (e.g., \neg Female(Joe)).
- A positive literal is a literal eith no negation sign (e.g., Female(Mary)).
- A clause is any disjunction of literals $\mathrm{M}_{1} \mathrm{v} \ldots \mathrm{M}_{\mathrm{n}}$ whose variables are universally quantified.
- A Horn clause is an expression of the form $\mathrm{H} \leftarrow$ $\left(\mathrm{L}_{1} \wedge \ldots{ }^{\wedge} \mathrm{L}_{\mathrm{n}}\right)$ where $\mathrm{H}, \mathrm{L}_{1} \ldots \mathrm{~L}_{\mathrm{n}}$ are positive literals. H is called the head or consequent of the Horn clause. The conjunction of literals $L_{1} \wedge L_{2}{ }^{\wedge} \ldots{ }^{\wedge} L_{n}$ is called the body or antecedents of the Horn clause.

Terminology III

- For any literals A and B, the expression $(A \leftarrow B)$ is equivalent to $(A \vee \neg B)$, and the expression $\neg(A \wedge B)$ is equivalent to $(\neg \mathrm{A} \vee \neg \mathrm{B})$. Therefore a Horn clause can equivalently be written as the disjunction $\mathrm{H} v \neg \mathrm{~L}_{1} \mathrm{v} \ldots \mathrm{v}$ $\neg \mathrm{L}_{\mathrm{n}}$.
- A substitution is any function that replaces variables by terms. For example, the substitution $\{x / 3, y / z\}$ replaces the variable x by the term 3 and replaces the variable y by the term z. Given a substitution θ and a literal L we write $\mathrm{L} \theta$ to denote the result of applying substitution θ to L .
- A unifying substitution for two literals L_{1} and L_{2} is any substitution θ such that $\mathrm{L}_{1} \theta=\mathrm{L}_{2} \theta$.

FOIL

- Extension of Sequential Covering to first order representations
- Learns Horn clauses with 2 exceptions

1. More restrictive - literals are not permitted to contain function symbols - reduces complexity of hypothesis space
2. More expressive - literals appearing in the body may be negated

- Learn recursive Quicksort \& legal from illegal chess positions

FOIL Algorithm

FOIL(Target-predicate, Predicates, Examples)

- Pos \leftarrow those Examples for which the Target-predicate is True
- Neg \leftarrow those Examples for which the Target-predicate is False
- Learned-rules $\leftarrow\}$
- While Pos, do

Learn a NewRule

- NewRule \leftarrow the rule that predicts Target-predicate with no preconditions
- NewRuleNeg \leftarrow Neg
- While NewRuleNeg, do

Add a new literal to specialize NewRule

- Candidate_literals \leftarrow generate candidate new literals for NewRule, based on Predicates
- Best_literal $\leftarrow \operatorname{argmax}_{\text {L } \in \text { Candidate-literals }}$ Foil-Gain(L,NewRule)
- Add Best-literal to preconditions of NewRule
- NewRuleNeg \leftarrow subset of NewRuleNeg that satisfies NewRule preconditions
- Learned-rules \leftarrow Learned-rules + NewRule
- Pos \leftarrow Pos-\{members of Pos covered by NewRule\}
- Return Learned-rules

Differences between FOIL \& Sequential Covering

- Seeks only rules where target literal is True
- Performs simple hill-climbing search rather than beam search
- Adding each new rule generalizes the disjunctive hypothesis so viewed at this level the search is specific-to-general
- Adding new conjuncts to each rule is a general-to-specific hill-climbing search

Issues for FOIL

1. How to generate candidate specializations of a rule - need to accommodate variables
2. What performance measure to use - need to distinguish between different bindings of the rules variables

Generating Candidate Specializations

1. $\mathrm{Q}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}}\right)$ - where Q is any predicate occurring in Predicates and the v_{i} are either new variables or variables already present in the rule. At least one v_{i} in the created literal must already exist in the rule
2. Equal $\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{k}}\right)=$ where x_{j} and x_{k} are variables already present in the rule
3. The negation of either of the above

FOIL Example

- GrandDaughter(x,y) where Predicates contains Father and Female
- Candidate Literals: Equal(x,y), Female(x), Female(y), Father(x,y), Father(y, x), Father (x,z), Father(z, x), Father (y, z), Father (z, y) and the negation of each
- Let us assume FOIL greedily selects GrandDaugther $(\mathrm{x}, \mathrm{y}) \leftarrow$ Father (y, z)

FOIL Example II

- FOIL now considers all those before and Female(z), Equal(z,x), Equal(z,y), Father(z,w), Father(w,z) and their negations
- Continues until it covers only positive examples, then remove all positive examples covered and start search for next rule

Guiding Search in FOIL

- Performance of the rule over the training data
- Must consider all possible bindings of each variable
- Use the closed world assumption - any literal involving these predicates and these constants that is not listed is assumed false

Evaluation Function

- Target literal GrandDaughter(x,y)
- Assertions - GrandDaughter(Victor,Sharon), Father(Sharon,Bob), Father(Tom,Bob), Female(Sharon), Father(Bob,Victor)
- Given the 4 constants there are 16 possible variable bindings for the initial rule - 1 positive $\mathrm{x} /$ Victor, $\mathrm{y} /$ Sharon and 15 negative
- Evaluation function let R' be the rule created by adding a new literal L to the old rule R

Foil-Gain

$$
\text { Foil }-\operatorname{Gain}(L, R) \equiv t\left(\log _{2} \frac{p_{1}}{p_{1}+n_{1}}-\log _{2} \frac{p_{0}}{p_{0}+n_{0}}\right)
$$

- Where p_{0} is the number of positive bindings of rule R and n_{0} is the number of negative bindings, p_{1} is the number of positive bindings of rule R^{\prime}, n_{1} is the number of negative bindings of rule R^{\prime}, and t is the number of positive bindings of rule R which are still covered by R'
- Reduction due to L in the total bits needed to encode the classification of all positive bindings of R.

Learning Recursive Rule Sets

- Just include the target in the list of Predicates
- Need test to avoid learning rules sets that produce infinite recursion

Summary of FOIL

- FOIL extension of CN2
- General-to-specific search adding new literals
- Literals may introduce new variables
- Foil-Gains used as evaluation function
- FOIL has been shown to successfully learn recursive rule sets
- To handle noisy data, some tradeoff between accuracy, coverage, and complexity tells it when to stop adding new literals
- FOIL also performs post-pruning

Induction as Inverted Deduction

- Induction is the inverse of deduction
- Given some data D and some partial background theory B , learning generates a hypothesis h that together with B explains D
- More precisely, if the training data is a set of examples of the form $<\mathrm{x}_{\mathrm{i}}, \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)>$ where x_{i} denotes the ith training example and $f\left(x_{i}\right)$ denotes its target value.
- Then learning is the problem of discovering h such that

$$
\left(\forall<x_{i}, f\left(x_{i}\right)>\in D\right)\left(B \wedge h \wedge x_{i}\right) \text { entails } f\left(x_{i}\right)
$$

Inverted Deduction Example I

- Target concept is Child(u,v)
- Single positive example Child(Bob,Sharon) where instance is described by Male(Bob), Female(Sharon), and Father(Sharon,Bob)
- General background knowledge of Parent(u,v) \leftarrow Father(u,v)
- Two of the many hypothesis that satisfy $\left(B^{\wedge} h^{\wedge} x_{i}\right)$ entails $f\left(x_{i}\right)$ are: h1: Child $(\mathrm{u}, \mathrm{v}) \leftarrow$ Father (v, u) and h2: Child(u,v) $\leftarrow \operatorname{Parent}(\mathrm{v}, \mathrm{u})$

Inverted Deduction Example II

- New predicates which were not present in the initial description can be introduced into the hypothesis - constructive induction
- Well understood algorithms for automated deduction
- Inverses of these procedures can automate inductive generalization

Inverse Entailment Operators

$$
O(B, D)=h \text { such that }\left(\forall<x_{i}, f\left(x_{i}\right)>\in D\right)\left(B \wedge h \wedge x_{i}\right) \text { entails } f\left(x_{i}\right)
$$

- Usually many hs so use Minimum Description Length
- Incorporating background knowledge allows a more rich definition of when the hypothesis is said to fit the data
- Several practical difficulties:
- Noisy training data
- First order logic is so expressive that the search is intractable restricted forms of expression or additional second-order knowledge
- The complexity of the hypothesis space search increases as background knowledge is increased

Inverting Resolution

- Resolution rule - Robinson 65 - sound and complete
- This operator used in Cigol
- $\mathrm{C}=\mathrm{A} \vee \mathrm{B}$ and $\mathrm{C}_{2}=\mathrm{B}$ v D
- Any literal present in C but not in C_{1} must be present in C_{2}
- The literal that occurs in C_{1} but not in C must be the literal removed by the resolution rule and therefore its negation must occur in C_{2}
- $\mathrm{C}_{2}=\mathrm{A} v \neg \mathrm{D}$ or $\mathrm{C}_{2}=\mathrm{A} \vee \neg \mathrm{D} \vee \mathrm{B}$
- Not deterministic! - so prefer shorter clauses
- Cigol uses inverse resolution with sequential covering but with 1 st order representations

```
                                    Resolution
    P v L
\neg v R
P v R
```

C_{1} : Pass $v \neg$ KnowMaterial
C2: KnowMaterial v \neg Study

Inverse Resolution

First Order Resolution

- Substitutions
- $\theta=x / B o b, y / z, L=F a t h e r(x, B i l l)$
- L $\theta=$ Father(Bob,Bill)
- Unifying substitutions
- $\mathrm{L}_{1}=$ Father $(\mathrm{x}, \mathrm{y}), \mathrm{L}_{2}=$ Father(Bill,z), $\theta=\mathrm{x} /$ Bill, z / y
- $\mathrm{L}_{1} \theta=\mathrm{L}_{2} \theta=$ Father $(B i l l, y)$
- $\mathrm{C}=\left(\mathrm{C}_{1}-\mathrm{L}_{1}\right) \theta \cup\left(\mathrm{C}_{2}-\mathrm{L}_{2}\right) \theta$

Example

- $\mathrm{C}_{1}=$ White $(\mathrm{x}) \leftarrow \operatorname{Swan}(\mathrm{x})$ and
$\mathrm{C}_{2}=\operatorname{Swan}$ (Fred)
- $\mathrm{L}_{1}=\neg \operatorname{Swan}(\mathrm{x})$
- $\mathrm{L}_{2}=$ Swan(Fred)
- $\theta=x /$ Fred
- $\mathrm{L}_{1} \theta=\neg \mathrm{L}_{2} \theta=\neg \operatorname{Swan}$ (Fred)
- $\mathrm{C}=$ White(Fred)

1st Order Resolution Rule

- Find a literal L_{1} from clause C_{1}, literal L_{2} from clause C_{2}, and substitution θ such that $\mathrm{L}_{1} \theta=\neg \mathrm{L}_{2} \theta$
- Form the resolvent C by including all literals from $\mathrm{C}_{1} \theta$ and $\mathrm{C}_{2} \theta$, except for $\mathrm{L}_{1} \theta$ and $\neg_{2} \theta$. More precisely, the set of literals occurring in the conclusion C is

$$
\mathrm{C}=\left(\mathrm{C}_{1}-\left\{\mathrm{L}_{1}\right\}\right) \theta \cup\left(\mathrm{C}_{2}-\left\{\mathrm{L}_{2}\right\}\right) \theta
$$

Inverting First Order resolution

- $\mathrm{C}_{2}=\left(\mathrm{C}-\left(\mathrm{C}_{1}-\mathrm{L}_{1} \theta_{1}\right) \theta_{2}^{-1} \cup \neg \mathrm{~L}_{1} \theta_{1} \theta_{2}{ }^{-1}\right.$
- Nondeterministic because of $\mathrm{C} 1, \theta_{1}, \theta_{2}$
- Grandchild $(\mathrm{y}, \mathrm{x}) \leftarrow \operatorname{Father}(\mathrm{x}, \mathrm{z})^{\wedge}$ Father (z, y)

Inverse Example

Summary Inverse Resolution

- Only generates "good" hypothesis as opposed to generate and test
- So we would expect it to be more focused and efficient
- But hobbled because can only consider a small fraction of the data when generating a hypothesis at each step

Generalization, Subsumption,

Entailment

- More general than - given two boolean functions $h_{j}(x)$ and $h_{k}(x)$ we say that $h_{j} \geq_{g} h_{k}$ if and only if $(\forall x) h_{k}(x) \rightarrow h_{j}(x)$
- θ-subsumption - Clause C_{j} is said to θ subsume clause C_{k} if an only if there exists a substitution θ such that $C_{j} \theta \subseteq C_{k}$
- Entailment C_{j} entails C_{k} if and only if C_{k} follows deductively from C_{j}

Inverse Examples

- A θ-subsumes B but A is not more general than B
- A: Mother $(\mathrm{x}, \mathrm{y}) \leftarrow$ Father $(\mathrm{x}, \mathrm{z})^{\wedge} \operatorname{Spouse}(\mathrm{z}, \mathrm{y})$
- B: Mother (x,Louise) \leftarrow Father (x,Bob) ${ }^{\wedge}$ Spouse (Bob,y) ${ }^{\wedge}$ Female(x)
- A entails B but A does not θ-subsume B
- A: Elephant(father_of $(x)) \leftarrow$ Elephant (x)
- B: Elephant(father_of(father_of(y))) \leftarrow Elephant(y)

Progol

- Inverse entailment to generate the single most specific hypothesis
- Then general to specific search using this bound

1. Restricted language
2. Sequential Covering
3. Inverse entail most specific hypothesis
4. General to specific search

Summary

- Sequential covering learns disjunctive set of rules
- First-order rules with FOIL
- Inverse entailment

