
Reinforcement Learning

Patricia J Riddle
Computer Science 760

Agents

• Building a learning robot (or agent)
• Sensors observe the state of the world - camera

and sonar
• A set of actions can be performed to alter the state

- move forward, turn left
• Its task is to learn a control policy for choosing

actions that achieve goals - docking onto a battery
charger whenever its battery is low

Agent Goals

• We assume the goals of the agent can be
defined by a reward function that assigns a
numerical value - an immediate payoff - to
each distinct action from each distinct state
(a reward of +100) to state-action
transitions that immediately result in a
connection to the charger and 0 for all other
state-action transitions

An Agent

Agent

Environment

ActionState Reward

Control Policy

• The reward function can be built into the robot or
known only to an external teacher

• The task of the robot is to perform sequences of
actions, observe their consequences, and learn a
control policy

• The desired control policy is one that from any
initial state chooses actions that maximise the
reward accumulated over time by the agent

General Problem

• Learning to control sequential processes -
manufacturing optimization problems where
reward is goods-produced minus costs involved

• Sequential scheduling - choosing which taxis to
send for passengers in a big city where reward is a
function of the wait time of passengers and the
total fuel costs of the taxi fleet

• Specific settings: actions are deterministic or
nondeterministic, agent does or does not have
prior knowledge of the effects of its actions on the
environment

Reinforcement Learning
Problems

• Delayed Reward
• Exploration versus Exploitation
• Partially Observable States
• Life-long Learning

Delayed Reward

• π:S→A that outputs an appropriate action, a, from
the set A, given the current state s from the set S.

• Delayed Reward: no training example in <s,π(s)>
form, the trainer provides only a sequence of
immediate reward values as the agent executes its
sequence of actions. The agent faces the problem
of temporal credit assignment

Exploration versus Exploitation

• The agent influences the distribution of
training examples by the action sequence it
chooses. Which experimentation strategy
produces most effective learning.

• The learner faces tradeoffs in choosing
exploration of unknown states or
exploitation of known states that it has
already learned will yield high rewards

Partially Observable States

• In many practical situations sensors only
provide partial information. An agent may
have to consider its previous observations
together with its current sensor data. The
best policy may be one which chooses
specifically to improve the observability of
the environment.

Life-long Learning

• Agents often require that the robot learn several
related tasks within the same environment. A
robot might need to learn how to dock on its
battery charger, how to navigate through narrow
corridors, and how to pickup output from laser
printers. This raises the possibility of using
previously obtained experience or knowledge to
reduce sample complexity when learning new
tasks.

Learning Task
• Based on Markov decision processes

(MDP)
• At each time step t, the agent senses a

current state st and chooses an action at and
performs it.

• The environment responds with a reward
r(st,at) and by producing the succeeding
state st+1 = δ(st,at)

Learning Task II

• The functions r and δ are part of the environment
and not necessarily known to the agent. They also
only depend on the current state and action.

• We only consider finite sets S, A and deterministic
functions, but these are not required.

• Learn a policy π(st)=at, with the greatest
cumulative reward over time.

Reward Functions

• Discounted cumulative reward

• Where rt+i is generated by beginning at state st and
repeatedly using policy π to select actions

• 0 ≤ γ < 1 is a constant that determines the relative
value of delayed versus immediate rewards - if γ
=0 only immediate reward is considered, as γ
moves closer to 1 future rewards are given more
emphasis

!

V
"
(s

t
) # r

t
+ $r

t+1 + $ 2r
t+2 + ...# $ ir

t+ i
i= 0

%

&

Other Reward Functions

• Finite horizon reward

• Average reward

• We will only focus on discounted
cumulative reward!

!

r
t+ i

i= 0

h

"

!

lim
h"#

1

h
r
t+1

i= 0

h

$

Optimal Policy

• We require the agent to learn the optimal
policy,

• π*≡argmaxπVπ(s),(∀s)
• whose value function is Vπ*(s) or for

simplicity V*(s)

Grid-world

One optimal policy

Q(s,a) values

r(s,a) values
(immediate rewards)

V*(s) values

Finding Optimal Policies

• G is an absorbing state.

• If γ=0.9 an optimal policy can be defined.
(any optimal policy will do)

Q Function

• Optimal action is the one that maximizes the sum
r(s,a) and V* to the immediate successor state
discounted by γ

• π*(s)=argmaxa[r(s,a)+γV*(δ(s,a))]
• But must have perfect knowledge of reward

function r and the state transition function δ!!!
• So create the Q function
• Q(s,a)≡r(s,a)+γV*(δ(s,a))

Q Learning

• Now π*(s)=argmaxaQ(s,a)
• Now we can select optimal actions even

when we have no knowledge of r or δ
• Q value for each state-action transition

equals the r value for this transition plus the
V* value for the resulting state discounted
by γ

Q Learning Properties

• Still need V* - iterative approximation or
recursive definition

• V*(s)=maxa´Q(s,a´), so
• Q(s,a)=r(s,a)+γmaxa´Q(δ(s,a),a´)
• Qˆ(s,a), the learner’s estimate of Q, is stored

in a big table which is initially filled with
random values or zero

Table Update

• The agent starts in some state, s, and chooses
some action, a, and observes the result reward,
r(s,a), and the new state, δ(s,a)

• It then updates the table, Qˆ(s,a)←r+γ
maxa´Qˆ(s´,a´)

• Doesn’t need to know functions δ or r just
executes the action and observes s´ and r so just
sampling these functions at the current values of s
and a

Q learning Algorithm

• For each s,a initialise the table entry Q^(s,a) to zero.
• Observe the current state s
• Do forever:

– Select an action a and execute it
– Receive immediate reward r
– Observe the new state s´
– Update the table entry for Q^(s,a) as follows:

– s ← s´

!

ˆ Q (s,a)" r + #max
$ a

ˆ Q ($ s , $ a)

Illustrative Example

!

ˆ Q (s1,aright)" r + #max
$ a

ˆ Q (s2, $ a)

" 0 + 0.9max(63,81,100)

" 90

Convergence

• Qˆ values never decrease during training
– (∀s,a,n)Qˆn+1(s,a) ≥Qˆn(s,a)

• Qˆ will remain in the interval between 0 and Q
– (∀s,a,n)0≤Qˆn(s,a)≤Q(s,a)

• Will converge if
1. Deterministic MDP,
2. Immediate rewards are bounded - |r(s,a)|<c
3. The agent selects actions such that it visits every

state-action pair infinitely often - must execute a from
s with nonzero frequency as the length of its action
sequence approaches infinity

Experimentation Strategies

• Common to use probabilistic approach to selecting
actions

• Actions with higher Qˆ are assigned higher
probabilities, but every action has a non-zero
probability

• P(ai|s) is the probability of selecting action ai,
given the agent is in state s, where k>0 is the
constant that determines how strongly the
selection favors actions with high Qˆ values

Probability of Selecting Action

• Sometimes k is varied with the number of
iterations so the agent favors exploration
during the early stages of learning, then
gradually shifts toward a strategy of
exploitation!

P(ai | s) =
k

ˆ Q (s,ai)

k
ˆ Q (s,a j)

j
"

Updating Sequence

• Q learning need not train on optimal action
sequences to converge to the optimal policy

• After the first full episode only one entry in the
table will be updated. If the agent follows the
same sequence of actions the second table entry
will be updates. So perform updates in reverse
chronological order! Will converge in fewer
iterations, although the agent has to use more
memory to store the entire episode.

Retraining

• Another strategy - store past state-action
transitions and immediate rewards and
retrain on them periodically - This is a real
win depending on relative costs (robot is
very slow in comparison to replaying)

• Many more efficient techniques when the
system knows the δ and r functions

Nondeterministic Rewards and
Actions

• The functions δ(s,a) and r(s,a) can be
viewed as first producing a probability
distribution over outcomes based on s and a
and then drawing an outcome at random
according to this distribution -
nondeterministic markov decision process

• Q(s,a) = E[r(s,a)]+γΣs´P(s´|s,a)maxa´Q(s´,a´),
but is not guaranteed to converge

Decaying Weighted Average

• Decaying weighted average of the current
Qˆ and the revised estimate

• Qˆn(s,a)←(1-αn)Qˆn-1(s,a)+αn[r+maxa´Qn-1(s´,a´)],
where

• Convergence long = 1.5 million games in
Tesauro’s backgammon program

!

"
n

=
1

1+ visits
n
(s,a)

Temporal Difference Learning

• Q learning is a special case of temporal
difference learning

• Q learning can be seen as one-step
lookahead, Q(1)(st,at)≡rt+γmaxaQˆ(st+1,a)

• Two-step look ahead
• Q(2)(st,at)≡rt+γrt+1+γ2maxaQˆ(st+2,a)

General Formula

• N-step lookahead,
• Q(n)(st,at)≡rt+γrt+1+…+γ(n-1)rt+n-1+γnmaxaQˆ(st+n,a)
• So can use a constant 0≤λ≤1 to combine estimates

from various lookahead distances
• Qλ(st,at)≡(1-λ)[Q(1)(st,at)+λQ(2)(st,at)+λ2Q(3)(st,at)+…]

• Recursive definition:
• Qλ(st,at)≡rt+γ[(1-λ)maxaQˆ(st,at)+λQλ(st+1,at+1)]

Motivation

• The motivation is that when the agent
follows an optimal policy for choosing
actions if λ=1 then Qλ will provide the
perfect estimate of Q regardless of errors in
Qˆ, if suboptimal action sequences are
chosen then rt+i observed far in the future
can be misleading.

Generalizing from Examples

• Previous algorithms make no attempt to
estimate the Q value for unseen state-action
pairs, unrealistic in large or infinite spaces
or when the cost of executing actions is high

• Substituted ANN for the table lookup and
use each Qˆ(s,a) update as a training
example

Multiple ANN

• A more successful alternative is to train a
separate ANN for each action using state as
input and Qˆ as output

• Another common alternative is to train one
network with state as input and with one Qˆ
output for each action

• The convergence theorems no longer hold!!

Relationship to Dynamic
Programming

• Agent possesses perfect knowledge of the
functions δ(s,a) and r(s,a)

• Focused on how to compute the optimal
policy with the least computational effort,
assuming the environment can be simulated

• Q learning has NO knowledge of the
functions δ(s,a) and r(s,a)

Focus of Reinforcement Learning

• Focused on the number of real-world
actions the agent must perform to converge
to an acceptable policy

• In many practical domains, such as
manufacturing problems, the costs in dollars
and time of performing actions in the
external world dominate computational
costs

Summary

• Reinforcement learning - learning control
strategies for autonomous agents. Training
information is real-valued reward for each state-
action transition. Learn action policy that
maximizes total reward from any starting state.

• Reinforcement learning algorithms fit Markov
decision processes where the outcome of applying
an action to a state depends only on this action and
state (not preceding actions or states). MDPs
cover a wide range of problems - robot control,
factory automation, and scheduling problems.

Summary II
• Q learning is one form of reinforcement learning

where the function Q(s,a) is defined as the
maximum expected, discounted, cumulative
reward the agent can achieve by applying action a
to state s. In Q learning no knowledge of how the
actions effect the environment is required.

• Q learning is proven to converge under certain
assumptions when the hypothesis Qˆ(s,a) is
represented by a lookup table. Will converge
deterministic and nondeterministic MDPs, but
requires thousands of training iterations to
converge in even modest problems.

Summary III

• Q learning is a member of the class of temporal
difference algorithms. These algorithms learn by
iteratively reducing discrepancies between
estimates produced by the agent at different times.

• Reinforcement learning is closely related to
dynamic programming. The key difference is that
dynamic programming assumes the agent
possesses knowledge of the functions δ(s,a) and
r(s,a) while Q learning assumes the learner lacks
this knowledge.

