
Genetic Algorithms

Patricia J Riddle
Computer Science 760

Motivation

• Analogy to biological evolution
• GAs generate successor hypotheses by repeatedly

mutating and recombining parts of the best
currently known hypotheses

• The collection of hypotheses, population, is
updated by replacing some fraction of the
population by offspring of the fittest current
hypotheses

• Generate-and-test beam-search of hypotheses in
which variants of the fittest current hypotheses are
most likely to be considered next

Popularity

• Evolution is known to be a successful, robust
method of adaptation within biological systems

• GAs can search spaces of hypotheses containing
complex interacting parts, where the impact of
each part on overall hypothesis fitness may be
difficult to model.

• Genetic algorithms are easily parallelized and can
take advantage of the decreasing costs of powerful
computer hardware.

Fitness

• The best hypothesis is defined as the one that
optimizes a predefined numerical measure called
fitness function

• Fitness could be
– accuracy of the hypothesis over the training data or
– number of games won by the individual when playing

against other individuals in the current population
• The algorithms iteratively update the pool of

hypotheses (i.e., population)

General Method

• On each iteration:
1. All members of the population are evaluated

according to the fitness function.
2. A new population is generated by probabilistically

selecting the most fit individuals from the current
population.

3. Some of these individuals are carried forward into the
next generation population intact.

4. Others are used for creating new offspring individuals
by applying genetic operations such as crossover and
mutation.

Genetic Algorithm

Algorithm Properties

• Inputs:
– The fitness function,
– The size of the population
– Threshold defining an acceptable level of fitness for

terminating the algorithm
– Parameters that determine how successor populations

are generated
• the fraction of the population to be replaced each generation,

and
• the mutation rate

Probability of Inclusion

• Probability of inclusion of hypothesis, hi , in the
next generation,

• The probability that a hypothesis will be selected
is proportional to its own fitness and inversely
proportional to the fitness of the other competing
hypotheses in the current population

• Hypothesis is chosen with replacement!!

!

!

Pr(hi) =
Fitness(hi)

Fitness(hj)
j=1

p

"

Additional Algorithm Properties
- Crossover

• Additional members are generated using crossover
• Crossover takes two parent hypothesis from the

current population and creates two offspring
hypothesis by recombining portions of both
parents.

• The parents are chosen probabilistically using the
same formula mentioned above.

• Now the new generation contains the desired
number of members.

Additional Algorithm Properties -
Mutation

• Now a certain fraction m of these members
are chosen at random and random mutations
are performed.

What is the hypothesis space?

• Randomized, parallel beam search for
hypothesis that perform well according to
the fitness function

Representing Hypotheses

• Hypothesis in GAs are often represented by
bit strings, which are easily manipulated by
crossover and mutation.

• These can be quite complex
– a set of if-then rules

Representation Example

• Attribute: Outlook
– Values: Sunny, Rainy, Overcast

• Use a bit string of length 3, where each position
corresponds to one of the values. Placing a 1 in
some position indicates that the attribute is
allowed to take on the corresponding value.

• So 010 represents Outlook = Overcast and 011
represents Outlook = Overcast or Rainy

More Representations

• Conjunctions of constraints can be represented by
concatenation. So 011 10 represents Outlook =
Overcast or Rainy and Wind = Strong

• Postconditions can be represented in the same way
111 10 10 represents If Wind = Strong then
PlayTennis = Yes. Notice that 111 represents the
“don’t care” condition on Outlook

• Fixed length bit strings of rules
• Sets of rules can be represented by concatenating

single rules, but now are not fixed length!

Representations III
• It is best if every syntactically legal bit string

represents a well-defined hypothesis
• So 111 10 11 represents a rule whose

postcondition does not constrain the target
PlayTennis. To avoid this
– allocated just one bit to PlayTennis to indicate Yes or

No, or
– alter the genetic operators so they explicitly avoid

constructing such bit strings, or
– assign them a very low fitness (only works if there are

only a few).
• Some GAs represent hypothesis as symbolic

descriptions rather than bit strings (more later).

Genetic Operators

Crossover & Mutation

• Single-point crossover: n chosen randomly each
time the crossover operator is applied

• Two-point crossover: n0 & n1 chosen randomly
each time applied

• Uniform crossover: each bit chosen at random and
independent of the others

• Mutation: Flip one random bit (sometimes two
mutation parameters)

• Some systems add new operators that do
specialization or generalization

Fitness Function Selection

• Fitness proportionate selection: ratio of fitness to
the fitness of other members of the current
population (Roulette wheel)

• Tournament Selection: two hypothesis chosen at
random, with some predefined probability, p, the
more fit is selected and with probability (1-p) the
less fit is selected, More diverse population.

• Rank Selection: Sorted by fitness. The
probability that a hypothesis will be selected is
then proportional to its rank.

GABIL System

• GABIL uses a GA to learn boolean concepts
represented by a disjunctive set of propositional
rules.

• Comparable in generalization accuracy to C4.5
• GABIL used the algorithm given earlier
• r, fraction replaced by crossover, was 0.6
• m, mutation rate, was 0.001
• p, population size varied from 100 to 1000,

depending on the task

GABIL Representation
• Each hypothesis is a disjunctive set of

propositional rules
• Conjunction of constraints on fixed set of

attributes - bit string representations of individual
rules

• So the hypothesis consisting of the two rules
follows:

IF a1= T ∧ a2 = F then c = T ∨ IF a2=T then c=F
10 01 1 11 10 0
• The length of the bit string grows with the number

of rules. This causes a modification to the
crossover operator.

GABIL Genetic Operators
• Same mutation operator
• Crossover occurs only between like sections of the

bit strings
• Standard extension to two-point crossover
• Two crossover points are chosen at random in the

first parent string
• Calculate d1 (d2), the distance from the leftmost

(rightmost) of the crossover points to the rule
boundary immediately to its left

• Crossover points are randomly chosen in the
second parent with the constraint that they must
have the same d1 and d2 values

Genetic Operators Example

• H1: 10 01 1 11 10 0
• H2: 01 11 0 10 01 0
• If the crossover points for the 1st parent are <1,8>

then the allowable crossover points for the second
parent are <1,3>, <1,8> and <6,8>

• If happen to choose <1,3> then the two offspring
would be:
– H3: 11 10 0 and
– H4: 00 01 1 11 11 0 10 01 0

• All bit strings generated in this fashion represent
well-defined rule sets

GABIL Fitness Function

• Fitness(h) = (correct(h))2,

• Where correct(h) is the percent of all
training examples correctly classified by
hypothesis h

GABIL Extensions

• Two new genetic operators
• AddAlternative - generalises constraints by

changing a 0 to a 1
• In an attribute substring 10010 becomes

10110
• This operator was applied with probability

.01

DropCondition
• DropCondition - performs more drastic

generalisation step by replacing all bits for a
particular attribute by a 1

• In an attribute substring 10010 becomes
11111

• This operator was applied with probability
.60

• The addition of these operators increased
accuracy from 92.1% to 95.2% on a range
of datasets

Evolving Search Methods

• Even tried new attributes AA and DC
specifying whether these operators can
apply to these hypothesis

• Worked better on some datasets and worse
on others

• In this way GAs can be used to evolve their
own hypothesis search methods

Hypothesis Space Search

• Randomized beam search method to seek
maximally fit hypothesis

• GAs vs, Backpropagation (GD)
– GD moves smoothly from one hypothesis to a new one

which is very similar
– GAs move much more abruptly - replacing a parent

with an offspring that maybe radically different
• GA is therefore less likely to fall into the same

kind of local minima that plague GD
• GAs have their own problems - crowding

Crowding

• Some individual is more fit and so copies of
this individual and very similar individuals
quickly take over

• This lowers the diversity of the population
and slows further progress by the GA - in
worse case down to mutation

Crowding Solutions

• Use tournament or rank selection
• Fitness sharing: the fitness of an individual is

reduced by the presence of other similar
individuals

• Restrict the kinds of individuals allowed to
recombine - multiple subspecies - related
approach is to spatially distribute individuals and
allow only nearby individuals to recombine

Bloat - The Other Problem

• Problem with variable length
representations

• Longer individuals usually have a better
chance of a higher fitness

• What happens when there is no selection
pressure?

Cameron Skinner’s Thesis
• Discovery & Retention

– Crossover & Mutation???

• Tournament Selection

• Two-point crossover

• Bloat & Absorbing Boundaries

• Reseeding instead of Mutation

• When to use GAs

Creature Demo

Population Evolution

• Can we mathematically characterise the evolution
over time of the population within a GA

• Schema theorem of Holland
• Schema is a string composed of 1s 0s and *s

– * is “don’t care”
• Schema 0*10 represents the set of bit strings 0010,

0110
• The bit string 0010 represents 24 different schemas

Schemas

• Population of bit strings can be viewed by
the set of schemas it represents and the
number of individuals associated with each
schema

• m(s,t) is the number of instances of schema
s at a time t

Schema Theorem

• Determine the expected value of schema

• Average fitness of individuals of schema s

!

E[m(s,t +1)]"
ˆ u (s,t)

f
_

(t)

m(s,t)(1# pc

d(s)

l #1
)(1# pm)

o(s)

!

ˆ u (s,t) =
f (h)

h"s# pt

$
m(s,t)

Terms

• Average fitness of all individuals in the
population at time t

• h ∈ s ∩ pt indicates an individual h is both a
representative of schema s and in the population at
time t

• Pc, probability that the single-point crossover will
be applied

!

f (t)

Terms 2

• Pm, probability that the mutation operator will be
applied

• O(s) is the number of defined bits

• d(s) is the distance between the leftmost and
rightmost defined bits

• l is the length of the bitstrings

Schema Theorem Intuition
• Whether an individual representing schema s at

time t will be selected for time t+1, or still
represent s after crossover, or still represent s after
mutation

• Effects of crossover increase with the number of
defined bits

• Effects of mutation increase with the distance
between defined bits

• More fit schemas will grow in influence,
especially schemas with a small number of defined
bits and especially when these defined bits are
near each other in the bit string

Problems with Schema Theorem

• Incomplete because it fails to take into
account the positive effects of crossover and
mutation (i.e., only gives lower bound) -
numerous more recent theoretical analyses

Genetic Programming

• Form of evolutionary computation where the
individuals are computer programs instead of bit
strings

• Typically represented by trees corresponding to
parse trees of the program

• User must define primitive functions
• Fitness is determined by executing the program on

the training data
• Crossover replaces a randomly chosen subtree

from one parent with one from the other

Program Tree

Crossover of Program Trees

Genetic Programming Example
• Develop an algorithm for stacking blocks in a

single stack that spells the word “universal”
independent of the initial configuration of the
blocks

• In GP applications, problem representation has a
significant impact on the ease of solving the
problem, 3 terminal arguments:
– CS returns the name of the top block on the stack or F

if there is no current stack
– TB returns the top block on the stack that is in the

correct order
– NN returns the name of the next block needed or F if no

blocks are needed
• Imagine the difficulty if the terminal arguments

returned x,y coordinates of the blocks

Primitive Functions!!!

• (MS x) moves x to the top of the stack and returns
T otherwise does nothing and returns F,

• (MT x) if block x is in the stack it moves the top
block off the stack and puts it on the table and
returns T otherwise it does nothing and returns F

• (EQ x y) returns T if x=y and returns F otherwise
• (Not x) returns T if x=F and F if x=T
• (Du x y) executes the expression x repeatedly until

y returns the value T

Experiment Results

• 106 training examples representing a broad
variety of initial block configurations and
degrees of difficulty - must contain all
boundary conditions!

• Fitness of a program was the number of
these examples solved, population was
initialized to 300 random programs

Experiment Results II

• After 10 generations -
– (EQ (DU (MT CS)(Not CS))(DU (MS NN)(Not

NN)))
– solves all 166 problems
– unstack loop followed by a stack loop
– EQ used for sequencing only

• was 10 runs an average or just a lucky try?
• what was the variance?

Experiment Results III

• GAs have been used to design electronic
filter circuits and classify segments of
protein molecules
– But circuit example used a population of

640,000!!!

Models of Evolution

• Lamarkian Evolution - evolution over many
generations was directly influenced by the
experiences of individual organisms - if an
individual learned during its lifetime to avoid
some toxic food it could pass the trait on
genetically to its offspring.

• Repudiated in biological systems but this can be
used to improve the effectiveness of GAs

Baldwin Effect

• Evolutionary pressure to favor individuals
who can learn

• An individual can perform a small local
search during its lifetime to maximize its
fitness

• It can support a more diverse gene pool and
therefore more rapid evolutionary
adaptation

Baldwin Effect Example

• Evolving population of neural networks
– genes determined which weights could change
– weights changed during lifetime
– over generations more weights became fixed as

the population optimized
– what would happen if the fitness function kept

moving??

Parallelizing Genetic Algorithms

• Coarse grain - subdivide population into demes,
each deme is assigned a computational node, GA
search performed at each node, communication
and cross-fertilization across demes occurs less
frequently by migration, also reduces crowding

• Fine grain - assign one processor per individual -
recombination occurs among neighbors -
neighborhood could be planar or torus

Summary

• GAs randomized parallel hill-climbing search for
hypothesis that optimize a predefined fitness
function

• Based on analogy to biological evolution
• Diverse population of competing hypotheses, at

each iteration most fit members of the population
are selected, combined by crossover and subjected
to random mutation

Summary II

• GAs show how learning can be seen as a
special case of optimization
– learning task is finding optimal hypothesis

• this suggests other optimization techniques -
like simulated annealing - can be applied to
machine learning

Summary III

• GAs most commonly been applied to optimization
problems outside machine learning
– especially suited to learning tasks where hypotheses are

complex and the objective to be optimized may be an
indirect function of the hypothesis (e.g., the acquired
rules successfully controls a robot).

• Genetic Programming is a variant of GAs where
the hypotheses are programs. Demonstrated to
learn programs to simulate robot control and
recognize objects in visual scenes.

