Lecture slides for Automated Planning: Theory and Practice

Chapter 4 State-Space Planning

Dana S. Nau

CMSC 722, AI Planning
University of Maryland, Fall 2004

Motivation

- Nearly all planning procedures are search procedures
- Different planning procedures have different search spaces
- Two examples:
- State-space planning
- Each node represents a state of the world
» A plan is a path through the space
- Plan-space planning
- Each node is a set of partially-instantiated operators, plus some constraints
» Impose more and more constraints, until we get a plan

Outline

- State-space planning
- Forward search
- Backward search
- Lifting
- STRIPS
- Block-stacking

Forward-search $\left(O, s_{0}, g\right)$

$s \leftarrow s_{0}$
$\pi \leftarrow$ the empty plan
loop
if s satisfies g then return π
$E \leftarrow\{a \mid a$ is a ground instance an operator in O, and precond (a) is true in $s\}$
if $E=\emptyset$ then return failure
nondeterministically choose an action $a \in E$
$s \leftarrow \gamma(s, a)$
$\pi \leftarrow \pi \cdot a$

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Properties

- Forward-search is sound
- for any plan returned by any of its nondeterministic traces, this plan is guaranteed to be a solution
- Forward-search also is complete
- if a solution exists then at least one of Forward-search's nondeterministic traces will return a solution.

Deterministic Implementations

- Some deterministic implementations of forward search:
- breadth-first search
- best-first search
- depth-first search
- greedy search

- Breadth-first and best-first search are sound and complete
- But they usually aren't practical because they require too much memory
- Memory requirement is exponential in the length of the solution
- In practice, more likely to use a depth-first search or greedy search
- Worst-case memory requirement is linear in the length of the solution
- Sound but not complete
» But classical planning has only finitely many states
» Thus, can make depth-first search complete by doing loop-checking

Branching Factor of Forward Search

- Forward search can have a very large branching factor (see example)
- Why this is bad:
- Deterministic implementations can waste time trying lots of irrelevant actions
- Need a good heuristic function and/or pruning procedure
- See Section 4.5 (Domain-Specific State-Space Planning) and Part III (Heuristics and Control Strategies)

Backward Search

- For forward search, we started at the initial state and computed state transitions
- new state $=\gamma(s, a)$
- For backward search, we start at the goal and compute inverse state transitions
- new set of subgoals $=\gamma^{-1}(g, a)$

Inverse State Transitions

- What do we mean by $\gamma^{-1}(g, a)$?
- First need to define relevance:
- An action a is relevant for a goal g if
» a makes at least one of g 's literals true
- $g \cap \operatorname{effects}(a) \neq \varnothing$
» a does not make any of g 's literals false
- $g^{+} \cap \operatorname{effects}^{-}(a)=\varnothing$
- $g^{-} \cap \operatorname{effects}^{+}(a)=\varnothing$
- If a is relevant for g, then
- $\gamma^{-1}(g, a)=(g-\operatorname{effects}(a)) \cup \operatorname{precond}(a)$

Backward-search $\left(O, s_{0}, g\right)$

$\pi \leftarrow$ the empty plan

loop

if s_{0} satisfies g then return π
$A \leftarrow\{a \mid a$ is a ground instance of an operator in O and $\gamma^{-1}(g, a)$ is defined $\}$
if $A=\emptyset$ then return failure
nondeterministically choose an action $a \in A$
$\pi \leftarrow a . \pi$
$g \leftarrow \gamma^{-1}(g, a)$

Efficiency of Backward Search

- Backward search's branching factor is small in our example
- There are cases where it can still be very large
- Many more operator instances than needed

Lifting

- Can reduce the branching factor if we partially instantiate the operators
- this is called lifting

$$
\mathrm{p}(\mathrm{a}, y) \stackrel{\operatorname{foo}(\mathrm{a}, y)}{\longleftarrow} \mathrm{q}(\mathrm{a})
$$

Lifted Backward Search

- More complicated than Backward-search
- Have to keep track of what substitutions were performed
- But it has a much smaller branching factor

```
Lifted-backward-search \(\left(O, s_{0}, g\right)\)
    \(\pi \leftarrow\) the empty plan
    loop
    if \(s_{0}\) satisfies \(g\) then return \(\pi\)
    \(A \leftarrow\{(o, \theta) \mid o\) is a standardization of an operator in \(O\),
        \(\theta\) is an mgu for an atom of \(g\) and an atom of effects \({ }^{+}(o)\),
        and \(\gamma^{-1}(\theta(g), \theta(o))\) is defined \(\}\)
    if \(A=\emptyset\) then return failure
    nondeterministically choose a pair \((o, \theta) \in A\)
    \(\pi \leftarrow\) the concatenation of \(\theta(o)\) and \(\theta(\pi)\)
    \(g \leftarrow \gamma^{-1}(\theta(g), \theta(o))\)
```


The Search Space is Still Too Large

- Lifted-backward-search generates a smaller search space than Backward-search, but it still can be quite large
- If some subproblems are independent and something else causes problems elsewhere, we'll try all possible orderings before realizing there is no solution
- More about this in Chapter 5 (Plan-Space Planning)

Other Ways to Reduce the Search

- Search-control strategies
- I'll say a lot about this later
» Part III of the book
- For now, just two examples
» STRIPS
» Block stacking

STRIPS

- $\pi \leftarrow$ the empty plan
- do a modified backward search from g
- instead of $\gamma^{-1}(s, a)$, each new set of subgoals is just precond (a)
- whenever you find an action that's executable in the current state, then go forward on the current search path as far as possible, executing actions and appending them to π
- repeat until all goals are satisfied

$$
\begin{aligned}
& \pi=\left\langle a_{6}, a_{4}\right\rangle \\
& s=\gamma\left(\gamma\left(s_{0}, a_{6}\right), a_{4}\right)
\end{aligned} \underbrace{g_{3} \text { satisfied in } s_{0}}_{\text {current search path }}
$$

Quick Review of Blocks World

The Sussman Anomaly

Initial state

goal

- On this problem, STRIPS can't produce an irredundant solution
- Try it and see

The Register Assignment Problem

- State-variable formulation:

```
Initial state: \(\quad\{\) value \((r 1)=3\), value \((r 2)=5\), value \((r 3)=0\}\)
Goal:
\(\{\) value(r1) \(=5\), value(r2)=3\}
Operator: \(\quad \operatorname{assign}\left(r, v, r^{\prime}, v v^{\prime}\right)\)
    precond: value \((r)=v\), value \(\left(r^{\prime}\right)=v^{\prime}\)
    effects: value \((r)=v\) '
```

- STRIPS cannot solve this problem at all

How to Fix?

- Several ways:
- Do something other than state-space search
» e.g., Chapters 5-8
- Use forward or backward state-space search, with domainspecific knowledge to prune the search space
» Can solve both problems quite easily this way
» Example: block stacking using forward search

Domain-Specific Knowledge

- A blocks-world planning problem $P=\left(O, s_{0}, g\right)$ is solvable if s_{0} and g satisfy some simple consistency conditions
» g should not mention any blocks not mentioned in s_{0}
» a block cannot be on two other blocks at once
» etc.
- Can check these in time $\mathrm{O}(n \log n)$
- If P is solvable, can easily construct a solution of length $\mathrm{O}(2 m)$, where m is the number of blocks
- Move all blocks to the table, then build up stacks from the bottom
» Can do this in time $\mathrm{O}(n)$
- With additional domain-specific knowledge can do even better ...

Additional Domain-Specific Knowledge

- A block x needs to be moved if any of the following is true:

Domain-Specific Algorithm

loop

if there is a clear block x such that
x needs to be moved and
x can be moved to a place where it won't need to be moved then move x to that place
else if there is a clear block x such that
x needs to be moved
then move x to the table
else if the goal is satisfied then return the plan
else return failure repeat

Easily Solves the Sussman Anomaly

loop

if there is a clear block x such that
x needs to be moved and
x can be moved to a place where it won't need to be moved then move x to that place
else if there is a clear block x such that
x needs to be moved
then move x to the table
else if the goal is satisfied then return the plan
else return failure repeat

Properties

- The block-stacking algorithm:
- Sound, complete, guaranteed to terminate
- Runs in time $O\left(n^{3}\right)$
» Can be modified to run in time $O(n)$
- Often finds optimal (shortest) solutions
- But sometimes only near-optimal (Exercise 4.22 in the book)
» Recall that PLAN LENGTH is NP-complete

