
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Chapter 4
State-Space Planning

Dana S. Nau

CMSC 722, AI Planning
University of Maryland, Fall 2004

Lecture slides for
Automated Planning: Theory and Practice

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Motivation
 Nearly all planning procedures are search procedures
 Different planning procedures have different search spaces

 Two examples:
 State-space planning

 Each node represents a state of the world
» A plan is a path through the space

 Plan-space planning
 Each node is a set of partially-instantiated operators, plus some

constraints
» Impose more and more constraints, until we get a plan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Outline
 State-space planning

 Forward search
 Backward search
 Lifting
 STRIPS
 Block-stacking

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

Forward Search

take c3

move r1

take c2 …

…

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

Properties
 Forward-search is sound

 for any plan returned by any of its nondeterministic traces, this
plan is guaranteed to be a solution

 Forward-search also is complete
 if a solution exists then at least one of Forward-search’s

nondeterministic traces will return a solution.

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

Deterministic Implementations
 Some deterministic implementations

of forward search:
 breadth-first search
 best-first search
 depth-first search
 greedy search

 Breadth-first and best-first search are sound and complete
 But they usually aren’t practical because they require too much memory
 Memory requirement is exponential in the length of the solution

 In practice, more likely to use a depth-first search or greedy search
 Worst-case memory requirement is linear in the length of the solution
 Sound but not complete

» But classical planning has only finitely many states
» Thus, can make depth-first search complete by doing loop-checking

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Branching Factor of Forward Search

 Forward search can have a very large branching factor (see example)
 Why this is bad:

 Deterministic implementations can waste time trying lots of
irrelevant actions

 Need a good heuristic function and/or pruning procedure
 See Section 4.5 (Domain-Specific State-Space Planning)

and Part III (Heuristics and Control Strategies)

a3

a1
a2

…a1 a2 a50a3

initial state goal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Backward Search
 For forward search, we started at the initial state and computed state

transitions
 new state = γ(s,a)

 For backward search, we start at the goal and compute inverse state
transitions
 new set of subgoals = γ-1(g,a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Inverse State Transitions
 What do we mean by γ-1(g,a)?
 First need to define relevance:

 An action a is relevant for a goal g if
» a makes at least one of g’s literals true

• g ∩ effects(a) ≠ ∅
» a does not make any of g’s literals false

• g+ ∩ effects–(a) = ∅
• g– ∩ effects+(a) = ∅

 If a is relevant for g, then
 γ-1(g,a) = (g – effects(a)) ∪ precond(a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

g0

g1

g2

g3

a1

a2

a3

g4

g5
s0

a4

a5

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

Efficiency of Backward Search

 Backward search’s branching factor is small in our example
 There are cases where it can still be very large

 Many more operator instances than needed

a3

a1
a2

…a1 a2 a50a3

initial state goal

q(a)

foo(x,y)
precond: p(x,y)
effects: q(x)

foo(a,a)

foo(a,b)

foo(a,c)

…

p(a,a)

p(a,b)

p(a,c)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Lifting

 Can reduce the branching factor if we partially instantiate the
operators
 this is called lifting

q(a)foo(a,y)
p(a,y)

q(a)

foo(x,y)
precond: p(x,y)
effects: q(x)

foo(a,a)

foo(a,b)

foo(a,c)

…

p(a,a)

p(a,b)

p(a,c)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Lifted Backward Search
 More complicated than Backward-search

 Have to keep track of what substitutions were performed
 But it has a much smaller branching factor

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

The Search Space is Still Too Large
 Lifted-backward-search generates a smaller search space than Backward-search,

but it still can be quite large
 If some subproblems are independent and something else causes problems

elsewhere, we’ll try all possible orderings before realizing there is no solution
 More about this in Chapter 5 (Plan-Space Planning)

a b
c

b a

b a b

a c

b c a

c b

goal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Other Ways to Reduce the Search
 Search-control strategies

 I’ll say a lot about this later
» Part III of the book

 For now, just two examples
» STRIPS
» Block stacking

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

STRIPS
 π ← the empty plan
 do a modified backward search from g

 instead of γ-1(s,a), each new set of subgoals is just precond(a)
 whenever you find an action that’s executable in the current

state, then go forward on the current search path as far as
possible, executing actions and appending them to π

 repeat until all goals are satisfied

g

g1

g2

g3

a1

a2

a3

g4

g5
g3

a4

a5

current search path

a6

π = 〈a6, a4〉
s = γ(γ(s0,a6),a4)

g6

a3

satisfied in s0

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

unstack(x,y)
Pre: on(x,y), clear(x), handempty
Eff: ~on(x,y), ~clear(x), ~handempty,

 holding(x), clear(y)

stack(x,y)
Pre: holding(x), clear(y)
Eff: ~holding(x), ~clear(y),

 on(x,y), clear(x), handempty

pickup(x)
Pre: ontable(x), clear(x), handempty
Eff: ~ontable(x), ~clear(x), ~handempty, holding(x)

putdown(x)
Pre: holding(x)
Eff: ~holding(x), ontable(x), clear(?x), handempty

Quick Review of Blocks World
c
a b

c
a b

c
a b

c
a b

c
a b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

The Sussman Anomaly

Initial state goal

 On this problem, STRIPS can’t produce an irredundant solution
 Try it and see

c
a b c

a
b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

The Register Assignment Problem

 State-variable formulation:

Initial state: {value(r1)=3, value(r2)=5, value(r3)=0}

Goal: {value(r1)=5, value(r2)=3}

Operator: assign(r,v,r’,v’)
 precond: value(r)=v, value(r’)=v’
 effects: value(r)=v’

 STRIPS cannot solve this problem at all

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

How to Fix?

 Several ways:

 Do something other than state-space search
» e.g., Chapters 5–8

 Use forward or backward state-space search, with domain-
specific knowledge to prune the search space

» Can solve both problems quite easily this way
» Example: block stacking using forward search

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

Domain-Specific Knowledge
 A blocks-world planning problem P = (O,s0,g) is solvable

if s0 and g satisfy some simple consistency conditions
» g should not mention any blocks not mentioned in s0

» a block cannot be on two other blocks at once
» etc.

• Can check these in time O(n log n)
 If P is solvable, can easily construct a solution of length O(2m),

where m is the number of blocks
 Move all blocks to the table, then build up stacks from the

bottom
» Can do this in time O(n)

 With additional domain-specific knowledge can do even better …

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

Additional Domain-Specific Knowledge

 A block x needs to be moved if any of the following is true:
 s contains ontable(x) and g contains on(x,y)
 s contains on(x,y) and g contains ontable(x)
 s contains on(x,y) and g contains on(x,z) for some y≠ z
 s contains on(x,y) and y needs to be moved

initial state goal

e

d

d

ba
c c

a
b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

Domain-Specific Algorithm
loop

if there is a clear block x such that
 x needs to be moved and
 x can be moved to a place where it won’t need to be moved
then move x to that place

else if there is a clear block x such that
 x needs to be moved
then move x to the table

else if the goal is satisfied
then return the plan

else return failure
repeat

initial state goal

e

d

d

ba
c c

a
b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

Easily Solves the Sussman Anomaly
loop

if there is a clear block x such that
 x needs to be moved and
 x can be moved to a place where it won’t need to be moved
then move x to that place

else if there is a clear block x such that
 x needs to be moved
then move x to the table

else if the goal is satisfied
then return the plan

else return failure
repeat

initial state goal

ba
c

c

a
b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Properties
 The block-stacking algorithm:

 Sound, complete, guaranteed to terminate

 Runs in time O(n3)
» Can be modified to run in time O(n)

 Often finds optimal (shortest) solutions
 But sometimes only near-optimal (Exercise 4.22 in the book)

» Recall that PLAN LENGTH is NP-complete

