
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Chapter 4
State-Space Planning

Dana S. Nau

CMSC 722, AI Planning
University of Maryland, Fall 2004

Lecture slides for
Automated Planning: Theory and Practice

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Motivation
 Nearly all planning procedures are search procedures
 Different planning procedures have different search spaces

 Two examples:
 State-space planning

 Each node represents a state of the world
» A plan is a path through the space

 Plan-space planning
 Each node is a set of partially-instantiated operators, plus some

constraints
» Impose more and more constraints, until we get a plan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Outline
 State-space planning

 Forward search
 Backward search
 Lifting
 STRIPS
 Block-stacking

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

Forward Search

take c3

move r1

take c2 …

…

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

Properties
 Forward-search is sound

 for any plan returned by any of its nondeterministic traces, this
plan is guaranteed to be a solution

 Forward-search also is complete
 if a solution exists then at least one of Forward-search’s

nondeterministic traces will return a solution.

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

Deterministic Implementations
 Some deterministic implementations

of forward search:
 breadth-first search
 best-first search
 depth-first search
 greedy search

 Breadth-first and best-first search are sound and complete
 But they usually aren’t practical because they require too much memory
 Memory requirement is exponential in the length of the solution

 In practice, more likely to use a depth-first search or greedy search
 Worst-case memory requirement is linear in the length of the solution
 Sound but not complete

» But classical planning has only finitely many states
» Thus, can make depth-first search complete by doing loop-checking

s0

s1

s2

s3

a1

a2

a3

s4

s5

sg

a4

a5 …

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Branching Factor of Forward Search

 Forward search can have a very large branching factor (see example)
 Why this is bad:

 Deterministic implementations can waste time trying lots of
irrelevant actions

 Need a good heuristic function and/or pruning procedure
 See Section 4.5 (Domain-Specific State-Space Planning)

and Part III (Heuristics and Control Strategies)

a3

a1
a2

…a1 a2 a50a3

initial state goal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Backward Search
 For forward search, we started at the initial state and computed state

transitions
 new state = γ(s,a)

 For backward search, we start at the goal and compute inverse state
transitions
 new set of subgoals = γ-1(g,a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Inverse State Transitions
 What do we mean by γ-1(g,a)?
 First need to define relevance:

 An action a is relevant for a goal g if
» a makes at least one of g’s literals true

• g ∩ effects(a) ≠ ∅
» a does not make any of g’s literals false

• g+ ∩ effects–(a) = ∅
• g– ∩ effects+(a) = ∅

 If a is relevant for g, then
 γ-1(g,a) = (g – effects(a)) ∪ precond(a)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

g0

g1

g2

g3

a1

a2

a3

g4

g5
s0

a4

a5

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

Efficiency of Backward Search

 Backward search’s branching factor is small in our example
 There are cases where it can still be very large

 Many more operator instances than needed

a3

a1
a2

…a1 a2 a50a3

initial state goal

q(a)

foo(x,y)
precond: p(x,y)
effects: q(x)

foo(a,a)

foo(a,b)

foo(a,c)

…

p(a,a)

p(a,b)

p(a,c)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Lifting

 Can reduce the branching factor if we partially instantiate the
operators
 this is called lifting

q(a)foo(a,y)
p(a,y)

q(a)

foo(x,y)
precond: p(x,y)
effects: q(x)

foo(a,a)

foo(a,b)

foo(a,c)

…

p(a,a)

p(a,b)

p(a,c)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

Lifted Backward Search
 More complicated than Backward-search

 Have to keep track of what substitutions were performed
 But it has a much smaller branching factor

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

The Search Space is Still Too Large
 Lifted-backward-search generates a smaller search space than Backward-search,

but it still can be quite large
 If some subproblems are independent and something else causes problems

elsewhere, we’ll try all possible orderings before realizing there is no solution
 More about this in Chapter 5 (Plan-Space Planning)

a b
c

b a

b a b

a c

b c a

c b

goal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Other Ways to Reduce the Search
 Search-control strategies

 I’ll say a lot about this later
» Part III of the book

 For now, just two examples
» STRIPS
» Block stacking

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

STRIPS
 π ← the empty plan
 do a modified backward search from g

 instead of γ-1(s,a), each new set of subgoals is just precond(a)
 whenever you find an action that’s executable in the current

state, then go forward on the current search path as far as
possible, executing actions and appending them to π

 repeat until all goals are satisfied

g

g1

g2

g3

a1

a2

a3

g4

g5
g3

a4

a5

current search path

a6

π = 〈a6, a4〉
s = γ(γ(s0,a6),a4)

g6

a3

satisfied in s0

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

unstack(x,y)
Pre: on(x,y), clear(x), handempty
Eff: ~on(x,y), ~clear(x), ~handempty,

 holding(x), clear(y)

stack(x,y)
Pre: holding(x), clear(y)
Eff: ~holding(x), ~clear(y),

 on(x,y), clear(x), handempty

pickup(x)
Pre: ontable(x), clear(x), handempty
Eff: ~ontable(x), ~clear(x), ~handempty, holding(x)

putdown(x)
Pre: holding(x)
Eff: ~holding(x), ontable(x), clear(?x), handempty

Quick Review of Blocks World
c
a b

c
a b

c
a b

c
a b

c
a b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

The Sussman Anomaly

Initial state goal

 On this problem, STRIPS can’t produce an irredundant solution
 Try it and see

c
a b c

a
b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

The Register Assignment Problem

 State-variable formulation:

Initial state: {value(r1)=3, value(r2)=5, value(r3)=0}

Goal: {value(r1)=5, value(r2)=3}

Operator: assign(r,v,r’,v’)
 precond: value(r)=v, value(r’)=v’
 effects: value(r)=v’

 STRIPS cannot solve this problem at all

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

How to Fix?

 Several ways:

 Do something other than state-space search
» e.g., Chapters 5–8

 Use forward or backward state-space search, with domain-
specific knowledge to prune the search space

» Can solve both problems quite easily this way
» Example: block stacking using forward search

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

Domain-Specific Knowledge
 A blocks-world planning problem P = (O,s0,g) is solvable

if s0 and g satisfy some simple consistency conditions
» g should not mention any blocks not mentioned in s0

» a block cannot be on two other blocks at once
» etc.

• Can check these in time O(n log n)
 If P is solvable, can easily construct a solution of length O(2m),

where m is the number of blocks
 Move all blocks to the table, then build up stacks from the

bottom
» Can do this in time O(n)

 With additional domain-specific knowledge can do even better …

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

Additional Domain-Specific Knowledge

 A block x needs to be moved if any of the following is true:
 s contains ontable(x) and g contains on(x,y)
 s contains on(x,y) and g contains ontable(x)
 s contains on(x,y) and g contains on(x,z) for some y≠ z
 s contains on(x,y) and y needs to be moved

initial state goal

e

d

d

ba
c c

a
b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

Domain-Specific Algorithm
loop

if there is a clear block x such that
 x needs to be moved and
 x can be moved to a place where it won’t need to be moved
then move x to that place

else if there is a clear block x such that
 x needs to be moved
then move x to the table

else if the goal is satisfied
then return the plan

else return failure
repeat

initial state goal

e

d

d

ba
c c

a
b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

Easily Solves the Sussman Anomaly
loop

if there is a clear block x such that
 x needs to be moved and
 x can be moved to a place where it won’t need to be moved
then move x to that place

else if there is a clear block x such that
 x needs to be moved
then move x to the table

else if the goal is satisfied
then return the plan

else return failure
repeat

initial state goal

ba
c

c

a
b

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

Properties
 The block-stacking algorithm:

 Sound, complete, guaranteed to terminate

 Runs in time O(n3)
» Can be modified to run in time O(n)

 Often finds optimal (shortest) solutions
 But sometimes only near-optimal (Exercise 4.22 in the book)

» Recall that PLAN LENGTH is NP-complete

