# Topological Analysis of Admissible Heuristics in IDA\*

#### Heuristics

- Heuristics are evaluation functions,  $\hat{f}$ , used in state space search to decide which node is the best to expand next.
- $\hat{f}(n) = g(n) + \hat{h}(n) = estimated optimal distance$
- Admissible heuristics:  $\forall n \rightarrow \hat{h}(n) \leq h(n)$
- Heuristic search algorithms using admissible heuristics are guaranteed to find the optimal solution (eventually).

### Heuristic Informed search

- Heuristic Search generates a Heuristic Search Tree(HST) from initial state(I) to goal state (G) using  $\hat{f}(n)$ .
- Each node in the HST represent a state in the domain, and each of its children represents the result of an action applied to the parent node.
- HST is a sub-tree of the Brute Force Search Tree(BFST) and thus smaller
- The smaller the HST the better is the heuristic.

# Example 1



- •I is initial state, G is Goal state, n is current state.
- •g(n) is the Optimal Distance(OD) from I to n
- •h(n) is the OD from n to G
- • $\hat{h}$  is the heuristic estimate OD from n to G.
- •f(n)=g(n)+h(n)=7=OD.
- $\hat{f}(n) = g(n) + \hat{h}(n) = 6 = estimated heuristic OD$

#### BFST vs HST



- $max(\hat{h}(n))=3$ ; OD=4;  $\{\forall n | \hat{f}(n)>4\}$  will be culled
- Blue area represents "out of shadow". Same as BFST.
- Grey area represents "heuristic shadow" area. Some nodes culled.
- Heuristic shadow is a very common phenomenon.

### Goals

- Given:
  - An admissible heuristic
  - A problem instance
  - A search based problem solver
- We want to be able to predict the size of the search tree generated to find the optimal solution.
- We need to determine how the HST grows.

# Example 2



$$N_T = \frac{B^{D+1} - 1}{B - 1}$$

Eq. 1;  $N_T$ =nodes created; B=branching factor; D=depth

#### Problem Evaluation

- To characterize the size reduction associated to a heuristic is not trivial.
- Uniform search tree model being used.
  Possible Variants are Depth and Branching Factor.
- Effective Branching Factor (EBF) is used on Eq 1 for size of BFST.

# Effective Branching Factor



$$N_T = \frac{EBF^{D+1} - 1}{EBF - 1} \rightarrow EBF = 1.8625$$

Eq. 2;  $N_T$ =nodes created; EBF=branching factor;D=depth

# EBF Example

- EBF is an attempt at finding features which are stable as the tree grows.
- If EBF is stable then we should be able to predict the size of the BFST of any depth without expanding it.
- BFST are very expensive to grow pass a certain depth.

#### What about the HST?



$$N_T = \frac{B^{D+1} - 1}{B - 1}; N_T = 11; B = ?, D = ?$$

# 2 Schools on reduction approach

- Which is the variant from BFST to HST?
- Text-Book standard(Nilson, Russell):
  - EBF<sub>HST</sub>≤ EBF<sub>BFST.</sub>
  - Depth is fixed to the Optimal Distance.
- Korf:
  - EBF = EBF BFST
  - Effective Depth is reduced.
- Both of them gather statistics across the problem domain for different depths.

#### Text-Book school: issues

- In order to gather statistics for different problem instances we need to solve a significant amount of problem instances. We use heuristics because this problems are not easy to solve.
- Counter-intuitive to say depth is constant. Whenever a HST node is culled the path depth becomes smaller.
- Korf technique based on depth reduction more plausible.

# Korf approach: issues

- Korf technique requires formula for BFST topology plus a Heuristic Value Distribution. That requires costly statistics on the domain again.
- Korf claims EBF does not change from BFST to HST. But node types frequency may change. EBF is still a potential variant.

# Issues for Both Approaches

- Statistics on domain average out problem instances differences.
- Both claim that EBF can not increase from BFST to HST. We will proof this is not the case.

# Goal is impossible

- Even if we have formula describing HST size, it is a function of Optimal Distance.
- We do not know the Optimal Distance until we solve the problem!
- Best next Goal: Predict the size of a depth bounded HST.
- IDA\* iterative nature is the answer.

#### Korf's IDA\*

- IDA\* is a linear-space version of A\*.
- It performs a series of depth first searches, pruning a path and backtracking when the cost,  $\hat{f}(n)$ , of a node n on the path exceeds a bound C for that iteration.
- The initial bound C<sub>o</sub> is set to the heuristic estimate of the initial state, and increases in each iteration to the lowest cost of all the nodes pruned on the last iteration, until a goal node is expanded.
- IDA\* guarantees an optimal solution if the heuristic function is admissible.

### **IDA\*** iterations





 $\{ \forall n | \hat{f}(n) > 2 \}$  will be culled







 $\{ \forall n | \hat{f}(n) > 4 \}$  will be culled

#### **New Goal**

- Given:
  - An admissible heuristic
  - A problem instance
  - IDA\*
- We want to be able to predict the depth-bounded size of the HST generated to find the optimal solution.

# **Proposed Model**

- The HST for any iteration is a subtree of the corresponding BFST. So we can describe the size of the bounded HST as a function of the pruning of the BFST.
- EBF,ED are variants. First two iterations for solving system of eq:

$$\bullet \quad N_T = \frac{(EBF_{BFST} - EBFR)^{\hat{f} - EDR + 1} - 1}{EBF_{BFST} - EBFR - 1}$$

• 
$$f(EBFR, EDR) = \frac{\ln(N_T * (EBF - EBFR - 1) + 1) - 1}{\ln(EBF - EBFR)} - \hat{f} - EDR + 1 = 0$$

# Example for Eight Puzzle, OD=20

- 3 heuristics
  - Out of place
  - Manhattan
  - Relaxed Adjacency
- Comparing:
  - EDR=0 -->Text-book approach
  - EBFR=0-->Korf-like approach
  - 2 iterations, EDR, EBFR unknown.

### BFST for OD 20

| F  | Existing  | Predicted    | Future    | Error % | EBFR | EBF_BFST | ED_BFST |
|----|-----------|--------------|-----------|---------|------|----------|---------|
| 2  | 6         | 22.04        | 48        | 54.08   | 1.04 | 1.79     | 2       |
| 4  | 48        | 254.87       | 384       | 33.63   | 0.54 | 2.29     | 4       |
| 6  | 384       | 2353.45      | 3072      | 23.39   | 0.35 | 2.47     | 6       |
| 8  | 3072      | 20218.48     | 24576     | 17.73   | 0.26 | 2.57     | 8       |
| 10 | 24576     | 168601.16    | 196608    | 14.25   | 0.21 | 2.62     | 10      |
| 12 | 196611    | 1385682.63   | 1.57E+006 | 11.9    | 0.17 | 2.65     | 12      |
| 14 | 1572890   | 11297049.48  | 1.26E+007 | 10.22   | 0.15 | 2.68     | 14      |
| 16 | 12583100  | 91649952.24  | 1.01E+008 | 8.95    | 0.13 | 2.7      | 16      |
| 18 | 102679000 | 757696506.78 | 8.05E+008 | 5.91    | 0.11 | 2.72     | 18      |

$$EBF_{ASYMPTOTIC} = \sqrt{8} \approx 2.8284$$

# Manhattan

| F  | #Nodes Created IDA* |  |  |
|----|---------------------|--|--|
| 10 | 22                  |  |  |
| 12 | 240                 |  |  |
| 14 | 2233                |  |  |
| 16 | 19434               |  |  |
| 18 | 163202              |  |  |
| 20 | 1340980             |  |  |

## Manhattan



#### F vs EBFR for Manhattan



F vs EDR for Manhattan



# Relaxed Adjacency

| F  | #Nodes Created IDA* |
|----|---------------------|
| 10 | 3                   |
| 12 | 159                 |
| 14 | 2258                |
| 16 | 25321               |
| 18 | 256379              |
| 20 | 2449791             |

# Relaxed Adjacency

#### F vs Error for Relaxed Adjacency



#### F vs EBFR for Relaxed Adjacency



#### F vs EDR for Relaxed Adjacency



# Out Of Place

| F  | #Nodes Created IDA* |  |  |
|----|---------------------|--|--|
| 8  | 3                   |  |  |
| 10 | 43                  |  |  |
| 12 | 497                 |  |  |
| 14 | 5075                |  |  |
| 16 | 48410               |  |  |
| 18 | 443029              |  |  |
| 20 | 3943141             |  |  |

## Out Of Place



#### F vs EBFR for Out Of Place



F vs EDR for Out Of Place



# Statistic approach Avg BFST vs Instance BFST

| F  | Avg Russell | Instance | Error % |
|----|-------------|----------|---------|
| 2  | 10          | 6        | -66.67  |
| 4  | 112         | 48       | -133.33 |
| 6  | 680         | 384      | -77.08  |
| 8  | 6384        | 3072     | -107.81 |
| 10 | 47127       | 24576    | -91.76  |
| 12 | 364403      | 196608   | -85.34  |

### 3 Claims

- Hybrid model makes better prediction of bounded HST than existing approaches.
- EBF can increase from BFST to HST.
- Statistical models deviate too much from individual problem instances to be useful.

#### **Future**

- Selection of generated heuristics for individual problem instances.
- Calculate time savings associated to the use of a heuristic on a individual instance.
- Extension of our approach to other search algorithms like A\*.