Topological Analysis of Admissible Heuristics in IDA*

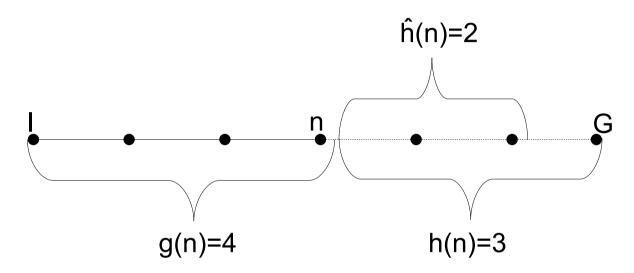
Heuristics

- Heuristics are evaluation functions, \hat{f} , used in state space search to decide which node is the best to expand next.
- $\hat{f}(n) = g(n) + \hat{h}(n) = estimated optimal distance$
- Admissible heuristics: $\forall n \rightarrow \hat{h}(n) \leq h(n)$
- Heuristic search algorithms using admissible heuristics are guaranteed to find the optimal solution (eventually).

Heuristic Informed search

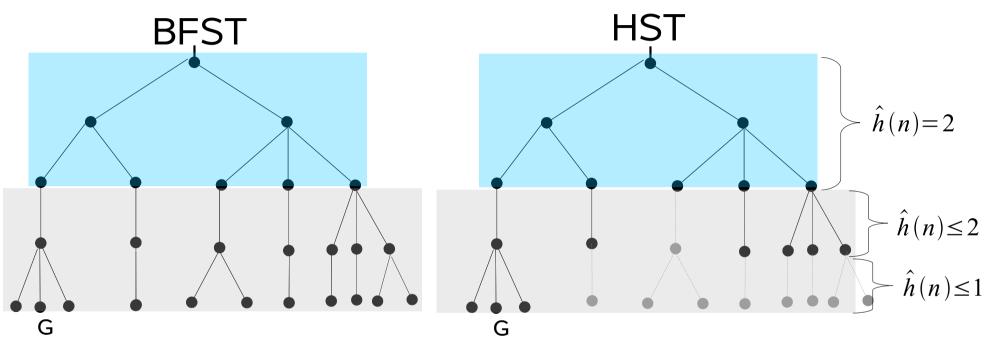
- Heuristic Search generates a Heuristic Search Tree(HST) from initial state(I) to goal state (G) using $\hat{f}(n)$.
- Each node in the HST represent a state in the domain, and each of its children represents the result of an action applied to the parent node.
- HST is a sub-tree of the Brute Force Search Tree(BFST) and thus smaller
- The smaller the HST the better is the heuristic.

Example 1



- •I is initial state, G is Goal state, n is current state.
- •g(n) is the Optimal Distance(OD) from I to n
- •h(n) is the OD from n to G
- • \hat{h} is the heuristic estimate OD from n to G.
- •f(n)=g(n)+h(n)=7=OD.
- $\hat{f}(n) = g(n) + \hat{h}(n) = 6 = estimated heuristic OD$

BFST vs HST

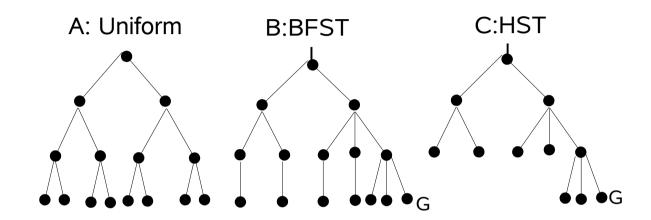


- $max(\hat{h}(n))=3$; OD=4; $\{\forall n | \hat{f}(n)>4\}$ will be culled
- Blue area represents "out of shadow". Same as BFST.
- Grey area represents "heuristic shadow" area. Some nodes culled.
- Heuristic shadow is a very common phenomenon.

Goals

- Given:
 - An admissible heuristic
 - A problem instance
 - A search based problem solver
- We want to be able to predict the size of the search tree generated to find the optimal solution.
- We need to determine how the HST grows.

Example 2



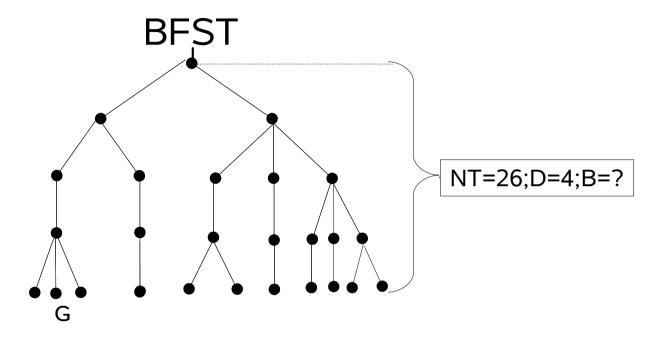
$$N_T = \frac{B^{D+1} - 1}{B - 1}$$

Eq. 1; N_T =nodes created; B=branching factor; D=depth

Problem Evaluation

- To characterize the size reduction associated to a heuristic is not trivial.
- Uniform search tree model being used.
 Possible Variants are Depth and Branching Factor.
- Effective Branching Factor (EBF) is used on Eq 1 for size of BFST.

Effective Branching Factor



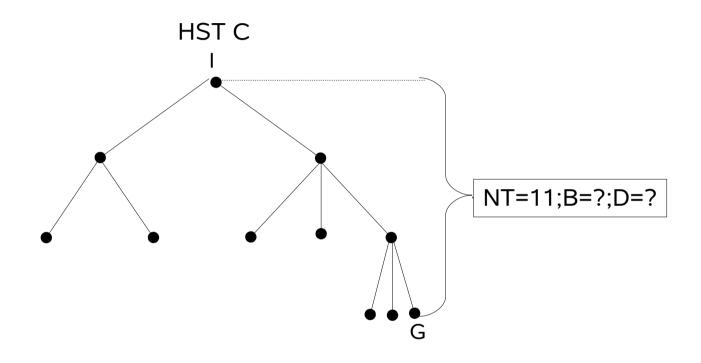
$$N_T = \frac{EBF^{D+1} - 1}{EBF - 1} \rightarrow EBF = 1.8625$$

Eq. 2; N_T =nodes created; EBF=branching factor;D=depth

EBF Example

- EBF is an attempt at finding features which are stable as the tree grows.
- If EBF is stable then we should be able to predict the size of the BFST of any depth without expanding it.
- BFST are very expensive to grow pass a certain depth.

What about the HST?



$$N_T = \frac{B^{D+1} - 1}{B - 1}; N_T = 11; B = ?, D = ?$$

2 Schools on reduction approach

- Which is the variant from BFST to HST?
- Text-Book standard(Nilson, Russell):
 - EBF_{HST}≤ EBF_{BFST.}
 - Depth is fixed to the Optimal Distance.
- Korf:
 - EBF = EBF BFST
 - Effective Depth is reduced.
- Both of them gather statistics across the problem domain for different depths.

Text-Book school: issues

- In order to gather statistics for different problem instances we need to solve a significant amount of problem instances. We use heuristics because this problems are not easy to solve.
- Counter-intuitive to say depth is constant. Whenever a HST node is culled the path depth becomes smaller.
- Korf technique based on depth reduction more plausible.

Korf approach: issues

- Korf technique requires formula for BFST topology plus a Heuristic Value Distribution. That requires costly statistics on the domain again.
- Korf claims EBF does not change from BFST to HST. But node types frequency may change. EBF is still a potential variant.

Issues for Both Approaches

- Statistics on domain average out problem instances differences.
- Both claim that EBF can not increase from BFST to HST. We will proof this is not the case.

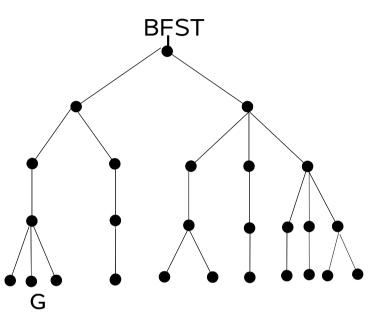
Goal is impossible

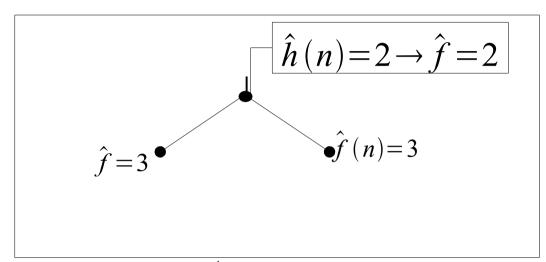
- Even if we have formula describing HST size, it is a function of Optimal Distance.
- We do not know the Optimal Distance until we solve the problem!
- Best next Goal: Predict the size of a depth bounded HST.
- IDA* iterative nature is the answer.

Korf's IDA*

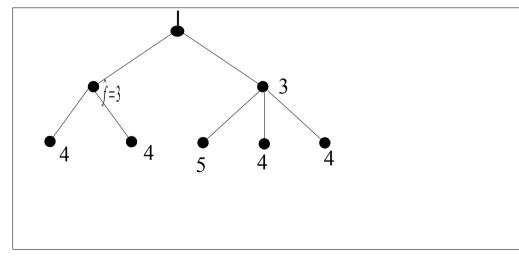
- IDA* is a linear-space version of A*.
- It performs a series of depth first searches, pruning a path and backtracking when the cost, $\hat{f}(n)$, of a node n on the path exceeds a bound C for that iteration.
- The initial bound C_o is set to the heuristic estimate of the initial state, and increases in each iteration to the lowest cost of all the nodes pruned on the last iteration, until a goal node is expanded.
- IDA* guarantees an optimal solution if the heuristic function is admissible.

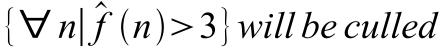
IDA* iterations

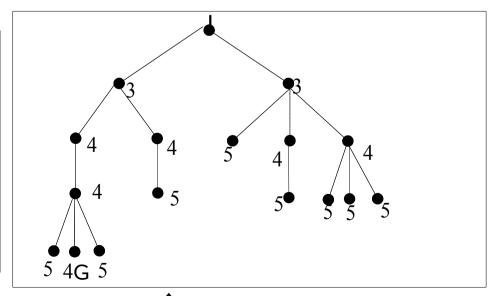




 $\{ \forall n | \hat{f}(n) > 2 \}$ will be culled







 $\{ \forall n | \hat{f}(n) > 4 \}$ will be culled

New Goal

- Given:
 - An admissible heuristic
 - A problem instance
 - IDA*
- We want to be able to predict the depth-bounded size of the HST generated to find the optimal solution.

Proposed Model

- The HST for any iteration is a subtree of the corresponding BFST. So we can describe the size of the bounded HST as a function of the pruning of the BFST.
- EBF,ED are variants. First two iterations for solving system of eq:

$$\bullet \quad N_T = \frac{(EBF_{BFST} - EBFR)^{\hat{f} - EDR + 1} - 1}{EBF_{BFST} - EBFR - 1}$$

•
$$f(EBFR, EDR) = \frac{\ln(N_T * (EBF - EBFR - 1) + 1) - 1}{\ln(EBF - EBFR)} - \hat{f} - EDR + 1 = 0$$

Example for Eight Puzzle, OD=20

- 3 heuristics
 - Out of place
 - Manhattan
 - Relaxed Adjacency
- Comparing:
 - EDR=0 -->Text-book approach
 - EBFR=0-->Korf-like approach
 - 2 iterations, EDR, EBFR unknown.

BFST for OD 20

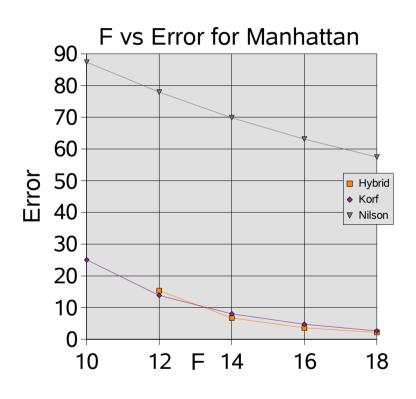
F	Existing	Predicted	Future	Error %	EBFR	EBF_BFST	ED_BFST
2	6	22.04	48	54.08	1.04	1.79	2
4	48	254.87	384	33.63	0.54	2.29	4
6	384	2353.45	3072	23.39	0.35	2.47	6
8	3072	20218.48	24576	17.73	0.26	2.57	8
10	24576	168601.16	196608	14.25	0.21	2.62	10
12	196611	1385682.63	1.57E+006	11.9	0.17	2.65	12
14	1572890	11297049.48	1.26E+007	10.22	0.15	2.68	14
16	12583100	91649952.24	1.01E+008	8.95	0.13	2.7	16
18	102679000	757696506.78	8.05E+008	5.91	0.11	2.72	18

$$EBF_{ASYMPTOTIC} = \sqrt{8} \approx 2.8284$$

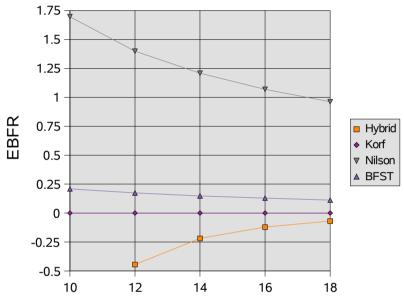
Manhattan

F	#Nodes Created IDA*		
10	22		
12	240		
14	2233		
16	19434		
18	163202		
20	1340980		

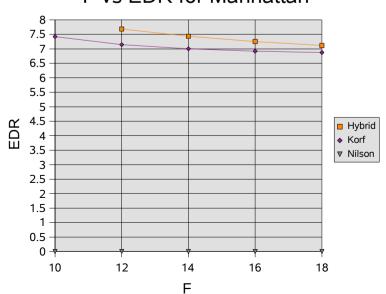
Manhattan



F vs EBFR for Manhattan



F vs EDR for Manhattan

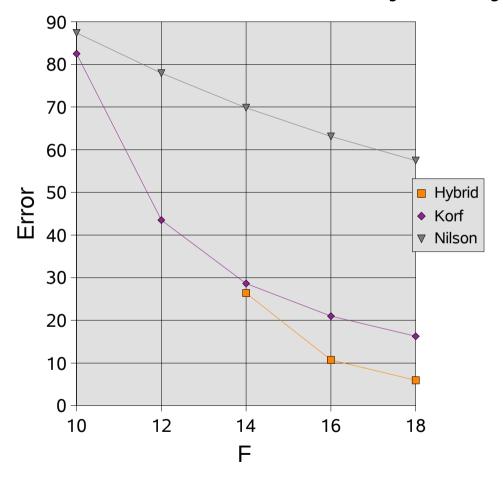


Relaxed Adjacency

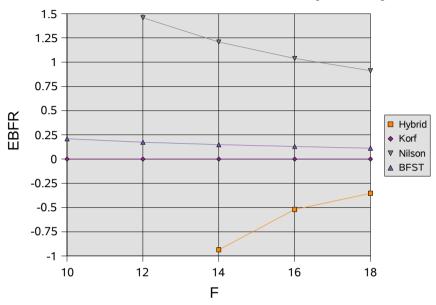
F	#Nodes Created IDA*
10	3
12	159
14	2258
16	25321
18	256379
20	2449791

Relaxed Adjacency

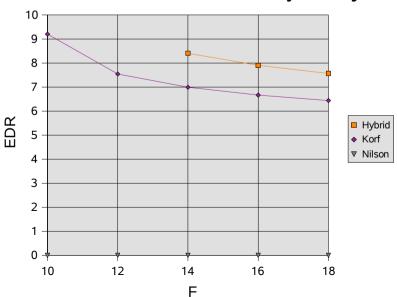
F vs Error for Relaxed Adjacency



F vs EBFR for Relaxed Adjacency



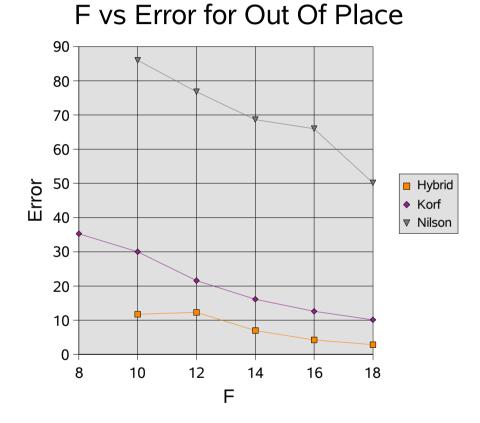
F vs EDR for Relaxed Adjacency



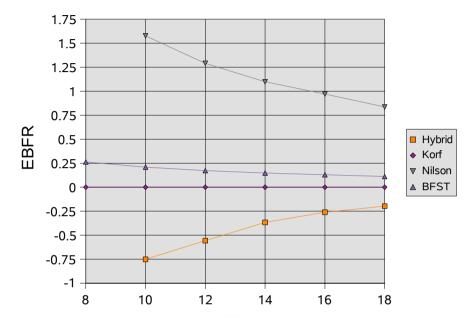
Out Of Place

F	#Nodes Created IDA*		
8	3		
10	43		
12	497		
14	5075		
16	48410		
18	443029		
20	3943141		

Out Of Place



F vs EBFR for Out Of Place



F vs EDR for Out Of Place



Statistic approach Avg BFST vs Instance BFST

F	Avg Russell	Instance	Error %
2	10	6	-66.67
4	112	48	-133.33
6	680	384	-77.08
8	6384	3072	-107.81
10	47127	24576	-91.76
12	364403	196608	-85.34

3 Claims

- Hybrid model makes better prediction of bounded HST than existing approaches.
- EBF can increase from BFST to HST.
- Statistical models deviate too much from individual problem instances to be useful.

Future

- Selection of generated heuristics for individual problem instances.
- Calculate time savings associated to the use of a heuristic on a individual instance.
- Extension of our approach to other search algorithms like A*.