Topological Analysis of Admissible Heuristics
in IDA*



Heuristics

« Heuristics are evaluation functions, 7,used in
state space search to decide which node is the
best to expand next.

o f(n)=g(n)+h(n)=estimated optimal distance
« Admissible heuristics:¥Y n—h (n)<h(n)

* Heuristic search algorithms using admissible
heuristics are guaranteed to find the optimal
solution (eventually).



Heuristic Informed search

 Heuristic Search generates a Heuristic Search
Tree(HST) from imitial state(I) to goal state (G)

using 7 (n).
 Each node 1n the HST represent a state in the

domain, and each of its children represents the result
of an action applied to the parent node.

e HST 1s a sub-tree of the Brute Force Search
Tree(BFST) and thus smaller

e The smaller the HST the better 1s the heuristic.



Example 1

Y N

g(n)=4 h(n)=3

| Is initial state, G is Goal state, n is current
state.

*g(n) is the Optimal Distance(OD) from | to n
*h(n) is the OD from nto G

*h is the heuristic estimate OD from n to G.
f(n)=g(n)+h(n)=7=0D.

o 7 (n)=g(n)+h(n)=6=estimated heuristic OD



BFST vs HST

BFST HST
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o max(h(n))=3 ;:0D=4;{¥ n| f (n)>4|will be culled

* Blue area represents “out of shadow”. Same as BFST.

* Grey area represents “heuristic shadow” area. Some
nodes culled.

Heuristic shadow is a very common phenomenon.



Goals

e (iven:
— An admissible heuristic
— A problem instance
— A search based problem solver

 We want to be able to predict the size of the search
tree generated to find the optimal solution.

 We need to determine how the HST grows.



Example 2

AT
BP+1_1q
B—1

N =

Eq. I, N=nodes created;
B=branching factor;D=depth



Problem Evaluation

e To characterize the size reduction associated to
a heuristic is not trivial.

* Uniform search tree model being used.
Possible Variants are Depth and Branching
—actor.

« Effective Branching Factor (EBF) is used on Eqg
1 for size of BFST.



Effective Branching Factor
BFST

NT=26;D=4:B=>

D+1
N =EBE —1  ppr—qg62s
" EBF -1

Eq. 2; N/=nodes created;
EBF=branching factor;D=depth



EBF Example

 EBF is an attempt at finding features which are
stable as the tree grows.

e |If EBF Is stable then we should be able to
predict the size of the BFST of any depth
without expanding It.

« BFST are very expensive to grow pass a
certain depth.



What about the HST?

HST C
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- NT=11;B=?;D=?
G
D+1
NTZB 1;NT=11;B=?,D=?

B—1



2 Schools on reduction approach

e Which is the variant from BFST to HST?

e Text-Book standard(Nilson, Russell):
- EBFHS < EBF

T BFST.

- Depth is fixed to the Optimal Distance.

e Korf:
- EBF =EBF
HST

BFST

- Effective Depth is reduced.

» Both of them gather statistics across the
problem domain for different depths.



Text-Book school: issues

* In order to gather statistics for different problem
Instances we need to solve a significant amount of
problem instances. We use heuristics because this
problems are not easy to solve.

« Counter-intuitive to say depth is constant. Whenever
a HST node is culled the path depth becomes smaller.

« Korf technique based on depth reduction more
plausible.



Korf approach: issues

« Korf technique requires formula for BFEST
topology plus a Heuristic Value Distribution.
That requires costly statistics on the domain
again.

e Korf claims EBF does not change from BFST to
HST. But node types frequency may change.
EBF is still a potential variant.



Issues for Both Approaches

 Statistics on domain average out problem
Instances differences.

 Both claim that EBF can not increase from
BFST to HST. We will proof this is not the
case.



Goal Is impossible

Even if we have formula describing HST size, it
IS a function of Optimal Distance.

We do not know the Optimal Distance until we
solve the problem!

Best next Goal: Predict the size of a depth
oounded HST.

DA* iterative nature is the answer.




Korf's IDA¥*

DA¥* is a linear-space version of A*.

t performs a series of depth first searches, pruning a
path and backtracking when the cost, /(#n),0f a node n
on the path exceeds a bound C for that iteration.

The initial bound C0 Is set to the heuristic estimate of

the initial state, and increases in each iteration to the
lowest cost of all the nodes pruned on the last
iteration, until a goal node is expanded.

IDA* guarantees an optimal solution if the heuristic
function is admissible.



IDA* 1terations
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New Goal

e (Given:
— An admissible heuristic
— A problem 1nstance
- IDA¥*

 We want to be able to predict the depth-bounded
size of the HST generated to find the optimal
solution.



Proposed Model

 The HST for any iteration is a subtree of the
corresponding BFST. So we can describe the
size of the bounded HST as a function of the
pruning of the BFST.

e EBF,ED are variants. First two iterations for

solving system of eq:

(EBF ,,.,— EBFR) ~"P%*'_1
EBF,,. — EBFR—1
In(N,*(EBF — EBFR—1)+1)—1
In(EBF — EBFR)

() NT:

e /(EBFR,EDR)= — f—EDR+1=0




Example for Eight Puzzle, OD=20

* 3 heuristics

- Out of place

- Manhattan

- Relaxed Adjacency
 Comparing:

- EDR=0 -->Text-book approach

- EBFR=0-->Korf-like approach

- 2 Iterations, EDR,EBFR unknown.




BFST for OD 20

F | Existing Predicted Future Error % EBFR [EBF_BFST|/ED BFST
2 6 22.04 48 54.08 1.04 1.79 2
4 48 254.87 384 33.63 0.54 2.29 4
6 384 2353.45 3072 23.39 0.35 2.47 6
8 3072 20218.48 24576 17.73 | 0.26 2.57 8
10 24576 168601.16 196608 | 14.25  0.21 2.62 10
12 196611 1385682.63 |1.57E+006, 11.9 | 0.17 2.65 12
141 1572890 @ 11297049.48 1.26E+007 10.22 @ 0.15 2.68 14
16 12583100 91649952.24 1.01E+008 8.95 @ 0.13 2.7 16
18102679000 757696506.78 8.05E+008| 5.91 0.11 2.72 18

EBF ,syviproric = V8~2.8284




Manhattan

F #Nodes Created IDA*
10 22
12 240
14 2233
16 19434
18 163202
20 1340980




Error

Manhattan

F vs EBFR for Manhattan

F vs Error for Manhattan
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Relaxed Adjacency

F #Nodes Created IDA*
10 3

12 159

14 2258

16 25321

18 256379

20 2449791




F vs Error for Relaxed Adjacency
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Out Of Place

F #Nodes Created IDA*
8 3

10 43

12 497

14 5075

16 48410

18 443029

20 3943141




Error
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Statistic approach Avg BFST vs
Instance BFST

F |Avg Russell  Instance @ Error %
2 10 6 -66.67
4 112 48 -133.33
6 680 384 -77.08
8 6384 3072 -107.81
10 47127 24576 -91.76
12 364403 196608 -85.34




3 Claims

* Hybrid model makes better prediction of
bounded HST than existing approaches.

e EBF can increase from BFST to HST.

 Statistical models deviate too much from
iIndividual problem instances to be useful.




Future

» Selection of generated heuristics for individual
problem instances.

» Calculate time savings associated to the use of
a heuristic on a individual instance.

« Extension of our approach to other search
algorithms like A*,



