
What We Want (& Will Get)
1. Consistent Performance: If we run

“A*h” twice in a row, we want to get the
same nodes both times.

2. Monotonic Improvement: Given an
“improved” heuristic h1, we want “A*h1”
to be at lest as efficient as “A*h”.

3. Heuristic Equivalence: Given “A*’h”,
we want them both to expand the
same nodes.

4. Optimal Efficiency: We want it to be at
least as efficient as any other optimal
search algorithms that h dominates.



How can we do this?

• We could “modify” A*.

• We could place more restrictions on the
heuristics being used.

• We will look at both ways.



Modifying A*

• What type of modification should we be
looking at?

• At least part of the problem seems to be
that the handling of critical ties is
underspecified.

• We need to refine our definition of A* to
describe how ties are handled.



Consistent Performance

• How is it possible to get different nodes
when running the same algorithm
twice?

• Make the selection of nodes from the
open list determined solely by either the
structure of the search tree or by its
traversal.

• Then will get consistent performance.



Monotonic Improvements

• Why don’t we currently have monotonic
improvements?

• To understand this we have to look at
how current open list access
mechanisms lead to this problem.



Common Open List Access
Mechanisms

• Stack
• Queue
• Both of these leads to non-monotonic

improvements.
• We will now look at why.



Search Tree Expansion
Aways expanded

Never expanded

Sometimes 
expanded



Stack Access Mechanism

Stack:
[N4,N6,N7]
[N6,N7]
[N8,N7]



Stack Access Mechanism

Stack:
[N4,N7,N3]
[N7,N3]
[N3]
[N6]
[N8]

Wasn’t expanded 
last timeImproved heuristic

value



Access Mechanism Problem

• Saw example of using a stack access
mechanism, where an improved
heuristic led to a loss of efficiency.

• We can do the same sort of thing for
queue access mechanisms.

• Why do these access mechanisms
have this type of problem?


