What We Want (& Will Get)

1. Consistent Performance: If we run
“A*," twice in a row, we want to get the
same nodes both times.

2. Monotonic Improvement: Given an
“iImproved” heuristic h,, we want "A*, .~
to be at lest as efficient as "A*,".

3. Heuristic Equivalence: Given “A*,",
we want them both to expand the
same nodes.

4. Optimal Efficiency: We want it to be at
least as efficient as any other optimal
search algorithms that h dominates.



How can we do this?

* We could “modify” A*.

* We could place more restrictions on the
heuristics being used.

* We will look at both ways.



Modifying A*

* What type of modification should we be
looking at”?
» At least part of the problem seems to be

that the handling of critical ties is
underspecified.

 \We need to refine our definition of A* to
describe how ties are handled.



Consistent Performance

 How is it possible to get different nodes
when running the same algorithm
twice?

* Make the selection of nodes from the
open list determined solely by either the
structure of the search tree or by its
traversal.

* Then will get consistent performance.



Monotonic Improvements

* Why don’t we currently have monotonic
Improvements?

* To understand this we have to look at
how current open list access
mechanisms lead to this problem.



Common Open List Access
Mechanisms

Stack
Queue

Both of these leads to non-monotonic
improvements.

We will now look at why.



Search Tree Expansion

Aways expanded

1.1.0
&Nodo 10

Node 2
1.0 20
2.0 9 '\,\
1.J ) 'I.U\\&
N°2d8 4 N%‘?S 9 Node 11
: 20
1.0
_ Node 6
Sometimes 1.0 20
expanded Nods @ . 1.0
. .
ode
Y 0.0 \ Vi

Node 5 e )
Node 12
3.0 x 50

Node 7
Never expanded 40




Stack Access Mechanism

10 1.0 1.0
Node 2 ‘{7
10 ol Node o
_StaCk: 1.0 1.0 10
N4,N6,N7] I 1 i
N61 N7] No;c 4 No:o 6 No‘lgg 7
N8,N7] 1.0 1i0
1.0
%




Stack Access Mechanism

ode
20
1.0 1.0
N°f82 10 No1d89
10 1.0
Stack: v & n
N4,N7,N3] Noﬁgli N%C?SB Noﬁg?
N71N3] / 1;0 \
N S ik Wasn’t expanded
N6] Improved heuristic | ast fime
N8] value




Access Mechanism Problem

« Saw example of using a stack access
mechanism, where an improved
heuristic led to a loss of efficiency.

* We can do the same sort of thing for
queue access mechanisms.

* Why do these access mechanisms
have this type of problem?



