
Optimal Efficiency of A*
Revisited

Research Lecture on work by
Mike Barley & Jorn Christensen

39 years ago, in 1968, Peter Hart, Nils
Nilsson, & Bertram Raphael published

 “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”

It described a new search algorithm: A*

A* is the most widely used search algorithm
today!

A* Algorithm
Mark s open and calculate f(s).
While there are open nodes Do
 Select open node n with smallest f value

 resolve ties in favor of goal nodes,
 If goal(n) then terminate with success
 Mark n closed
 For all successors, j, of n Do

 calc f(j)
 if j not in closed or f(j) is lower
 mark j open.

A* Optimal Efficiency Result #1
Let A be any optimal algorithm dominated1 by

A* where f(n) = f(m) implies n = m2,
Then A* is at least as efficient3 as A.

1. A*h1 dominates A*h2 if and only if
for all non-goal nodes, n, h1(n) >= h2(n).

2. The no ties clause.
3. X is as efficient as Y means every node expanded by

X is also expanded by Y.

No Ties Clause

• OE Result #1 is not very useful,
because the “no ties” limitations is too
restrictive.

• We need to allow ties.

Handling Ties

The specification of A* does not state
exactly how to handle ties. This means
that there are many different
refinements of A*, each differing in the
way they order ties. A* is the set of A*
refinements that have different tie
handling strategies.

A* Optimal Efficiency Result #2

Let A be any optimal algorithm that is
“dominated” by every algorithm in A*

Then there exists an A* in A* such that A*
is at least as efficient as A.

Is this good enough?

• This only tells us that some A* is
optimally efficient but not which one!!!!!

• Also it doesn’t tell us what algorithms
any given A* is as efficient as.

A* Optimal Efficiency Result #3

If h1 is less informed1 than h2

then A*h2 is at least as efficient as A*h1

1. Heuristic h1 is less informed than h2 iff
for all non-goal nodes, n, h1(n) < h2(n).

Where that leaves us
• Non-Optimal Efficiency: Don’t know whether

an A*h will be “as or more efficient” than any
other optimal search algorithms that h
dominates.

• Heuristic Non-Equivalence: Given A*’h & A*h,
they may not expand the same number of
nodes.

• Non-Monotonic Improvement: Given an
“improved” heuristic h1, A*h1 may be less
efficient than A*h.

• Inconsistent Performance: If we run A*h twice
in a row, we don’t know whether we will get
the same number of nodes both times.

What happened?

• If we don‘t allow ties then we get the
result we want.

• If we allow ties then we have two very
weak (and unsatisfactory) results.

A* Algorithm - Handling Ties
Mark s open and calculate f(s).
While there are open nodes Do
 Select open node n with smallest f value

 resolve ties in favor of goal nodes,
 If goal(n) then terminate with success
 Mark n closed
 For all successors, j, of n Do

 calc f(j)
 if j not in closed or f(j) is lower
 mark j open.

Handling Ties

The specification of A* does state exactly
that in case of ties in the open list, to
always choose goal nodes over non-
goal nodes with the same f-value.

So why are ties a problem & are all ties a
problem?

Critical Ties:The Problem?

HNR defined critical ties as those nodes
with the same f-value as optimal goal
node.

For them, the existence of critical ties was
the reason why result #1 had to have
the no ties clause.

Are all critical ties a problem?

Tracking down the culprit:
Hof trees

• A homogeneous f-value (Hof) tree is a
sub-tree of a search tree where all
nodes have the same f-value, say f,
where the parent (if there is one) of the
root has a different f-value, and where
all the children (if there are any) of the
leaves have non-f f-values.

Example of Hof trees

Why are Hof trees
problematic?

• To understand this we need to see what
effect Hof trees have on the open list.

• To understand we need to extend our
vocabulary a little.

More Terminology
• A Hof forest is the set of all the Hof

trees in a search tree with the same f-
value.

• A Hof slice is a “cut” through a Hof
forest.

• An f-open list is the open list sublist that
contains all the nodes with the same f-
value.

• A critical f-open list is a f-open list with
same f-value as the optimal goal.

Example of a Hof forest & slices

Critical Hof forest Hof Slices

Tying Things Together

• An f-open list is a slice through a Hof
forest.

• A critical f-open list is the set of critical
ties that A* can see at a point in time.

• If the goal nodes are not in the current
critical f-open list then A* doesn’t know
where any of the optimal goals are.

Tying Things Together cont’d

• The different A*’s in A* represent the
different ways to access the nodes in
the critical f-open list.

• Some A*’s will be luckier than others
and pick the right node that leads to a
goal node in the critical Hof forest.

An Aside

• While A* can’t know which node in the
current critical f-open list leads to a
goal, it can increase its odds by
choosing the node with the lowest h
value.

Where We are Now

• We should understand now why
allowing ties forces us to have such
weak results.

• We now show how to get stronger
results.

• First, we will look at what we want to get
(but can’t currently).

