
Optimal Efficiency of A*
Revisited

Research Lecture on work by
Mike Barley & Jorn Christensen

39 years ago, in 1968, Peter Hart, Nils
Nilsson, & Bertram Raphael published

 “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”

It described a new search algorithm: A*

A* is the most widely used search algorithm
today!

A* Algorithm
Mark s open and calculate f(s).
While there are open nodes Do
 Select open node n with smallest f value

 resolve ties in favor of goal nodes,
 If goal(n) then terminate with success
 Mark n closed
 For all successors, j, of n Do

 calc f(j)
 if j not in closed or f(j) is lower
 mark j open.

A* Optimal Efficiency Result #1
Let A be any optimal algorithm dominated1 by

A* where f(n) = f(m) implies n = m2,
Then A* is at least as efficient3 as A.

1. A*h1 dominates A*h2 if and only if
for all non-goal nodes, n, h1(n) >= h2(n).

2. The no ties clause.
3. X is as efficient as Y means every node expanded by

X is also expanded by Y.

No Ties Clause

• OE Result #1 is not very useful,
because the “no ties” limitations is too
restrictive.

• We need to allow ties.

Handling Ties

The specification of A* does not state
exactly how to handle ties. This means
that there are many different
refinements of A*, each differing in the
way they order ties. A* is the set of A*
refinements that have different tie
handling strategies.

A* Optimal Efficiency Result #2

Let A be any optimal algorithm that is
“dominated” by every algorithm in A*

Then there exists an A* in A* such that A*
is at least as efficient as A.

Is this good enough?

• This only tells us that some A* is
optimally efficient but not which one!!!!!

• Also it doesn’t tell us what algorithms
any given A* is as efficient as.

A* Optimal Efficiency Result #3

If h1 is less informed1 than h2

then A*h2 is at least as efficient as A*h1

1. Heuristic h1 is less informed than h2 iff
for all non-goal nodes, n, h1(n) < h2(n).

Where that leaves us
• Non-Optimal Efficiency: Don’t know whether

an A*h will be “as or more efficient” than any
other optimal search algorithms that h
dominates.

• Heuristic Non-Equivalence: Given A*’h & A*h,
they may not expand the same number of
nodes.

• Non-Monotonic Improvement: Given an
“improved” heuristic h1, A*h1 may be less
efficient than A*h.

• Inconsistent Performance: If we run A*h twice
in a row, we don’t know whether we will get
the same number of nodes both times.

What happened?

• If we don‘t allow ties then we get the
result we want.

• If we allow ties then we have two very
weak (and unsatisfactory) results.

A* Algorithm - Handling Ties
Mark s open and calculate f(s).
While there are open nodes Do
 Select open node n with smallest f value

 resolve ties in favor of goal nodes,
 If goal(n) then terminate with success
 Mark n closed
 For all successors, j, of n Do

 calc f(j)
 if j not in closed or f(j) is lower
 mark j open.

Handling Ties

The specification of A* does state exactly
that in case of ties in the open list, to
always choose goal nodes over non-
goal nodes with the same f-value.

So why are ties a problem & are all ties a
problem?

Critical Ties:The Problem?

HNR defined critical ties as those nodes
with the same f-value as optimal goal
node.

For them, the existence of critical ties was
the reason why result #1 had to have
the no ties clause.

Are all critical ties a problem?

Tracking down the culprit:
Hof trees

• A homogeneous f-value (Hof) tree is a
sub-tree of a search tree where all
nodes have the same f-value, say f,
where the parent (if there is one) of the
root has a different f-value, and where
all the children (if there are any) of the
leaves have non-f f-values.

Example of Hof trees

Why are Hof trees
problematic?

• To understand this we need to see what
effect Hof trees have on the open list.

• To understand we need to extend our
vocabulary a little.

More Terminology
• A Hof forest is the set of all the Hof

trees in a search tree with the same f-
value.

• A Hof slice is a “cut” through a Hof
forest.

• An f-open list is the open list sublist that
contains all the nodes with the same f-
value.

• A critical f-open list is a f-open list with
same f-value as the optimal goal.

Example of a Hof forest & slices

Critical Hof forest Hof Slices

Tying Things Together

• An f-open list is a slice through a Hof
forest.

• A critical f-open list is the set of critical
ties that A* can see at a point in time.

• If the goal nodes are not in the current
critical f-open list then A* doesn’t know
where any of the optimal goals are.

Tying Things Together cont’d

• The different A*’s in A* represent the
different ways to access the nodes in
the critical f-open list.

• Some A*’s will be luckier than others
and pick the right node that leads to a
goal node in the critical Hof forest.

An Aside

• While A* can’t know which node in the
current critical f-open list leads to a
goal, it can increase its odds by
choosing the node with the lowest h
value.

Where We are Now

• We should understand now why
allowing ties forces us to have such
weak results.

• We now show how to get stronger
results.

• First, we will look at what we want to get
(but can’t currently).

What We Want (& Will Get)
1. Consistent Performance: If we run

“A*h” twice in a row, we want to get the
same nodes both times.

2. Monotonic Improvement: Given an
“improved” heuristic h1, we want “A*h1”
to be at lest as efficient as “A*h”.

3. Heuristic Equivalence: Given “A*’h”,
we want them both to expand the
same nodes.

4. Optimal Efficiency: We want it to be at
least as efficient as any other optimal
search algorithms that h dominates.

How can we do this?

• We could “modify” A*.

• We could place more restrictions on the
heuristics being used.

• We will look at both ways.

Modifying A*

• What type of modification should we be
looking at?

• At least part of the problem seems to be
that the handling of critical ties is
underspecified.

• We need to refine our definition of A* to
describe how ties are handled.

Consistent Performance

• How is it possible to get different nodes
when running the same algorithm
twice?

• Make the selection of nodes from the
open list determined solely by either the
structure of the search tree or by its
traversal.

• Then will get consistent performance.

Monotonic Improvements

• Why don’t we currently have monotonic
improvements?

• To understand this we have to look at
how current open list access
mechanisms lead to this problem.

Common Open List Access
Mechanisms

• Stack
• Queue
• Both of these leads to non-monotonic

improvements.
• We will now look at why.

Search Tree Expansion
Aways expanded

Never expanded

Sometimes
expanded

Stack Access Mechanism

Stack:
[N4,N6,N7]
[N6,N7]
[N8,N7]

Stack Access Mechanism

Stack:
[N4,N7,N3]
[N7,N3]
[N3]
[N6]
[N8]

Wasn’t expanded
last timeImproved heuristic

value

Access Mechanism Problem

• Saw example of using a stack access
mechanism, where an improved
heuristic led to a loss of efficiency.

• We can do the same sort of thing for
queue access mechanisms.

• Why do these access mechanisms
have this type of problem?

Access Mechanism Problem
cont’d

• The problem is that the order elements are
accessed is dependent upon the search tree
traversal.

• Improving the accuracy of the heuristic can
change order of search tree traversal
changing the order that nodes are selected
from the critical f-open list.

• This means that critical tie nodes that weren’t
expanded before the improvement, now get
expanded after the improvement.

Traversal Order Independence

• We want to make the access
mechanism independent of the traversal
order but still dependent on the search
tree structure.

• What feature(s) of the search tree
structure could we use that are
independent of traversal order?

Node Addressing Schemes

• If we can associate a unique address
with each search node that is
independent of traversal order then we
could use that address to order the
nodes in the critical f-open list.

• There are at least two such addressing
schemes.

Node Addressing Schemes
cont’d

• If the children are always generated in a
particular order, then the list of children
numbers from the root to the node
would be such an addressing scheme.

• Another such scheme is to label each
node with the list of operators applied to
each ancestor to get from the root to
that node.

A#: A* Refinement

• We will refine A* by specifying that the
open list mechanism uses one of these
addressing schemes.

• Here’s what A# looks like:

A# Algorithm
Mark s open and calculate f(s).
While there are open nodes Do
 Select open node n with smallest f value

 resolve ties first in favor of goal nodes
 and secondly in favor of nodes with lower

addresses,
 If goal(n) then terminate with success
 Mark n closed
 For all successors, j, of n Do

 calc f(j)
 if j not in closed or f(j) is lower
 mark j open.

Separating Orderings
• We can separate the initial access order the Hof tree

roots appear in the f-open list, when the Hof forest is
first selected, from the order the nodes in the Hof
trees are processed.

• For example, after we do the initial ordering of the f-
open list, we can process the Hof-trees either via a
stack, a queue, etc.

Put s into open and calculate f(s).
While there are Hof forests Do

If there is a goal node in the f-open list
then exist with that goal node.
Select the Hof forest with the smallest f-value
Order the f-open list according to addressing scheme
While there are still nodes in the f-open list Do

Remove the first node, n, in the f-open list
Put n into closed
For all successors, j, of n Do
 calc f(j)

 if j not in closed or f(j) is lower
 Put j into open according to maintenance
scheme.

!

A#
MainScheme

AddressScheme

Where are we now?

• A# gives us monotonic improvement.
• However, we still lack heuristic

equivalence and optimal efficiency.
• We can gain these by placing more

restrictions on the heuristics used.

New Restriction on h

• As a matter of fact we are going to
make A* optimally efficient and gain
heuristic equivalence by making it less
accurate!!!!!

The Problem with Hof Trees
Revisited

• The problem with Hof trees is that they
can hide goal nodes from A* so that
when A* starts to explore a Hof forest, it
doesn’t know which Hof tree (if any) in
that forest contains a goal node.

• However, if we could guarantee that all
goal nodes were roots of their Hof-tree
then A* could always pick them first.

When Aren’t Goal Nodes
Roots of Their Hof Trees?

• We will start off by looking at a specific
situation where goal nodes cannot be
roots of their Hof trees.

• Then we will generalise this.

Goal Discriminating Heuristics

• Most heuristics can distinguish between
goal nodes and non-goal nodes.

• In other words, for all non-goal nodes n,
h(n) > 0

“Standard” Problems &
Heuristics

• Lets call problems which have search
spaces where all edges have a cost of
one, “standard” problems.

• Lets call heuristics which only give
integer valued estimates, “standard”
heuristics.

Standard Goal Discriminating
Heuristics

• Lets call heuristics which are both
standard and goal discriminating,
“standard goal discriminating”
heuristics.

• For any standard goal discriminating
heuristic for a standard problem, the h
value of a node that leads to a goal
node must be 1!

Critical Hof Tree

• A Hof tree containing an optimal goal is
a critical Hof tree.

• Given a standard goal discriminating
heuristic for a standard problem, no
optimal goal node will ever be the root
of any critical Hof tree (except if that
optimal goal node is the root of the
problem’s search tree).

The Problem

1

G

F = n

F = n

The optimal goal is not the root of its
own Hof tree.

Possible Cures

• To make G the root of its own Hof tree,
we could either try to make f(G) > n or
make f(G’s predecessor) < n.

• The former is a bad idea, why?
• We will now look at the latter approach.

The Cure - Part I

• Given a standard problem, and a
standard heuristic, we need the
heuristic to be non-goal discriminating if
we want the optimal goal to be the root
of its own Hof tree.

The Cure - Part I cont’d

0

G

F = n - 1

F = n

The optimal goal is now the root of its
own Hof tree. However, is this enough?

An example of the problem
with our first cure

0

G

2

3 F = n

F = n - 1

F = n

F = n

We still don’t see the goal
node until we start
exploring the n-Hof tree.

3 F = n - 1

The Generalised Cure - Part II
• We need to keep the heuristic

monotonic so that we don’t have these
disconnected parts of the Hof forest,
which hide the optimal goal node.

• We do this be continuing our process of
lowering our estimate to the ancestors,
n, of optimal goal node as long as h(n)
= h*(n) and we haven’t yet encountered
an ancestor where this wasn’t true.

The Generalised Cure - Part II
cont’d

0

G

1

2 F = n - 1

F = n - 1

F = n - 1

F = n

3 F = n - 1

Now, nothing hides
the optimal goal node
when A* starts exploring
the n-Hof forest and it can
be chosen first.

A Generalised Solution:
Monotonic Non-Goal

Discriminating Heuristics
• Start at the goal node and work backwards

building a table of nodes and their lowered
values. Stop along a path whenever you
encounter a node where h(n) =/= h*(n).

• After the table is built, when h is called for a
node, first check the table if it’s there then
return its recorded value else calculate the
value as usual.

Where we are now

• It seems obvious (but not yet proven)
that A* is optimally efficient when it uses
admissible monotonic non-goal-
discriminating (AMNGD) heuristics.

• It also seems obvious that we can
automatically convert admissible
monotonic goal-discriminating (AMGD)
heuristics into AMNGD heuristics.

Where we are now cont’d

• However, that does not mean that when
we convert an AMGD heuristic into its
corresponding AMNGD heuristic that A*
will never expand more nodes using the
latter than when using the former.

Where we are now cont’d

• There are a number of loose ends to tie
up:
– How big are these tables?
– How much does it cost to use these

tables?
– How much does it cost to build these

tables?
– How do the search spaces compare for

AMGD and their AMNGD counterparts?
• We have some tentative answers.

How big are these tables?

• Probably not very big
• Hof trees tend not be very deep.

How much does it cost to use
these tables?

• Probably a hash function will be used to
access the table, so the additional
overhead will probably not be very
much.

How much does it cost to build
these tables?

• The cost is probably linear with respect
to the size of the table (exponential with
respect to the length of goal ancestral
critical tie (GACT) chains).

How do the search spaces
compare for AMGD and their

AMNGD counterparts?
• The worst case is that the latter will expand
|longest GACT chain| - |shortest GACT chain|

more nodes than the former.
• Which is likely to be very small.
• On average, the latter will probably do much

better than the former.

An Aside

• We can actually make a better version
of A* if we know that we are only using
AMNGD heuristics, which will be much
faster on average than the standard A*.

• However, we then probably lose our
claim of optimal efficiency.

