
 1

New Command Line Interfaces
Nilanthi Seneviratne

Department of Software Engineering

University of Auckland

lsen008@ec.auckland.ac.nz

ABSTRACT

Most interfaces currently use graphical metaphors to show

their functionality. However encapsulating an action within

an icon is difficult. In most cases software developers will

insert tooltips to help the user understand the actions. In this

case a command line interface can be very effective

because it can give a concise explanation of an action to the

user via text. However it is generally considered that

command lines have a very steep learning curve because

users need to learn a set amount of commands in order to

operate the interface effectively. This paper will be

discussing the benefits of using the command line, issues

related to the command line and how new command line

interfaces attempt to reduce these issues.

The cognitive load on the user can be addressed via a

command line interface which would reduce the number of

commands the user needs to know or explicitly let the user

know which commands are available at a given time. Also

the command line should not require the user to learn all

commands or one which would degrade gracefully to return

information directly relevant to the command entered. Such

command line interfaces exist today in search engines such

as Google, Yahoo, and Live.com.

Author Keywords

command line interfaces, visual, search engines, menu

based command line.

INTODUCTION

Command line interface (CLI) requires the user to interact

with the computer via text whereas the graphical user

interface (GUI) allows the user to interact with the

computer using windows, icons, menus and a pointing

device.

The CLI is a powerful interface which allows the user to

create shortcut commands via piping or using flags. For

example in a UNIX shell a user can search for a certain

pattern of characters (word) in different ASCII text files by

performing the “grep” command. If the user needs to know

how many instances this same pattern occurs in all of the

files he or she could send (pipe) the output to the command

which counts words (wc). However in the GUI the user

would have to open all the text files and perform an in-file

search for the word on each of the files. It would also

certainly be impossible to count the number of times the

word would be occurring in total. Yet, this interface is

considered to be less usable by HCI experts (Thompson et

al., 2007). This paper will be discussing as to why this may

be and also how new interfaces try to redeem this image of

the CLI.

BENEFITS OF COMMAND LINE INTERFACES

There are many benefits gained by using command lines

interfaces (CLI). Mainly time taken to complete a task can

be reduced by creating complex commands by stringing

simple commands together (Thompson et al., 2007)

(Westerman, 1997). This gives the user fine grained control

when using the computer (Thompson et al., 2007). It also

gives developers a less confusing way to describe actions.

Making sense of commands

The main advantage of using a CLI is that the user can

build powerful commands by ordering more simple

commands together (Bland et al., 2007) or by activating

flags. For example in a UNIX shell a user can create a

hierarchy of directories by typing “mkdir –p

/test/folder/structure”. If the user were to create this same

folder structure in a GUI the he or she would have to create

each folder one at a time. This sort of flexibility allows the

user to create custom commands (or scripts) to automate

processing of data (Bland et al., 2007) (Thompson et al.,

2007) and retain fine grained control over the computer.

Developers can possibly reduce the cognitive load exerted

on users by using meaningful commands to portray actions

available to the user. This is because graphical user

interfaces (GUI) use metaphors in the form of icons to show

functionality of software. However this would work well if

we are to portray non-abstract concepts such as physical

objects. If we are to explain abstract concepts, words can be

used more effectively than icons (Raskin, 2008). CLI uses

words to describe actions the computer can take. Thus it

can be better equipped to give concise explanation of

abstract actions such as “Save”, “Import” etc. than icons. A

study conducted by Durham and Emurian (1998) also state

that novice users consider CLI less confusing than menu

driven interfaces.

mailto:lsen008@ec.auckland.ac.nz

ISSUES RELATED TO COMMAND LINES

The main reason that the command line interface (CLI) is

regarded as user unfriendly is because it requires the user to

recall all commands prior to the use of the interface

(Raskin, 2008). Due to this there is a high error rate as well

as a higher learning curve when using the CLI (Bland et al.,

2007) (Durham and Emurian, 1998). There are other issues

such as the difficulty to distinguish patterns and

ineffectiveness of displaying how a system works

(Thompson et al., 2007) (Morgan et al., 1991).

Command Related Issues

All command line interfaces do not display all their

commands to the user. Rather it requires the user to recall

commands in order to interact with the interface. This can

be intimidating to a user as well as time consuming,

especially when they do not know which command to use.

Thus it is expected that expert computer users would use

the command line more often than a novice computer user.

Westerman (1997) conducted a study comparing the

cognitive load imposed on the user by graphical user

interface (GUI) and CLI in relation to the expertise and the

cognitive ability of the user. This study found expert users

with high associative memory tend to use the command line

more than novice users. This finding is also supported by

Durham and Emurian (1998). Due to this the novice user

cannot take advantage of the powerful command processing

of the CLI and finish their task in less time.

Failure to remember commands is further accentuated by

having less memorable command names (Raskin, 2008).

For example in order to unzip a tar file the user should type

“tar –xfvz path/to/tarfile”. Here the user has to remember

two aspects of the command: the actual command name and

all flags associated with the command. If the user types just

the command and give the tar file path the command would

not unzip the file, rather it requires the user to type the

appropriate flags to unzip a tar file (in this case it is xfvz).

The CLI also requires the user to type in the commands in a

strict syntax (Westerman, 1997). If the user is unable to

remember the syntax or does not know the syntax they

would need to spend time in finding the correct syntax

(Thompson et al, 2007). For example if the user needs to

find more information on the “tar” command he or she

could type “help tar” but this syntax is not supported via the

command line (see Figure 1). Thus it generates a generic

error message. This process itself would delay the user from

completing the intended task. If however the user was

using a GUI then the command for unzipping a file can be

selected from a drop down menu. It was also noted by

Morgan et al. (Morgan et al., 1991) that “Help” command is

typed more often in the CLI rather than the GUI.

Figure 1: The user needs to type three times to get the right

syntax for help

Mental Mapping of the System and Pattern Recognition

Morgan et al. (1991) conducted a study which aimed to

compare and contrast the cognitive load imposed by the

graphical user interface (GUI) and the command line

interface (CLI). Their study found that the number of

syntax and semantic errors generated when using the CLI

was almost even. However when using the GUI the syntax

errors were greater than the semantic errors (see Figure 2).

From this they concluded that when using the GUI, the

interface asserts a certain mental map of how the system

works. For example in a GUI the contents of a folder is

displayed to the user, whereas in a CLI the user has to

query for the contents of the folder. This reduces the

cognitive load on the user, thus the number of semantic

errors were reduced.

Figure 2: Syntax errors and semantic errors when using a CLI

(a) and GUI (b) (Morgan et al., 1991)

Thompson et al. (2007) also conducted a survey comparing

the GUI with the CLI in a network intrusion detection

environment. In order to detect an intrusion in to the

network, the security engineer would match the data

presented by the network with patterns of intrusion attacks.

If there is a match between the data and the data pattern

then the engineer would be able respond to that attack. Here

they found that CLIs were not able to display information

on intrusion patterns. Their test subjects commented that if

the values are updated frequently it is hard to keep track of

them and thus harder to detect patterns. Thus the study

proposes that there should be better pattern matching

commands in the CLI. Although day-to-day users of

computers would not be involved in intrusion detection, it is

important to note that specialized users of CLI should be

able to use the interface with ease.

 3

COMMAND LINE INTERFACES FOR EVERYONE

Most new command line interfaces try to lessen the

cognitive load on the user by having memorable command

names or allowing them to visualize the commands.

Another option would be to provide a menu of the

commands rather than expecting the user to remember all

the commands. Auto-complete, context sensitive help,

providing the user with possible commands while typing

and allowing the user to rename confusing commands can

also help decrease the cognitive load on the user.

There are several CLIs which implement these solutions.

Search engines, linguistic command lines, menu based

command lines, command lines for routers and visual

command lines are some examples of such interfaces.

Visual Command Line Interface

Glaser et al. (1995) has developed a visual command line

interface (CLI) named P-sh, aimed at Mac OS users. It

allows the user to write scripts as well as perform

commands using one interface. This interface supplies the

user with a programming interface which they can modify,

create and test scripts without changing applications. This

shell is developed using Prograph to resemble a UNIX shell

with the functionality of AppleScript. This interface allows

the user to add commands using visual metaphors (e.g.

boxes for methods, lines for showing data flow etc.) to

create complex scripts and/or complex commands which

can be executable by the CLI.

Menu Based Command Line Interfaces

Bland et al. (2007) has developed a menu based CLI which

merges the menus of GUI with the command line interface.

This interface was specifically developed for Open Source

Cluster Application Resources (OSCAR) toolkit. One of the

main motivations for this project was to allow the

automation of installing and testing OSCAR. Another

reason for implementing a CLI was to allow advanced users

and/or developers to have more fine grained control over

the installation and maintenance process.

Answer Engines not Search Engines

In the opinion of Norman (2007) search engines have been

transformed into answer engines via a relaxed form of the

command line interface (CLI). According to Norman

people are typing commands rather than keywords into the

search engines. Google allows users to type “define:”

command with a keyword and it will only gather web pages

from popular online dictionaries list them in the order of

relevance Norman also suggests that this search line

interaction can further be strengthened by allowing the user

to tag files and mail with keywords. For example rather

than having a file structure to store emails Gmail allows the

user to tag their emails, and search these emails via tags.

This means that different emails can be collected together

by common tags.

The Linguistic Command Line

Currently there are only two linguistic command line

implementations available (Humanized‟s Enso and

Blacktree‟s QuickSilver). The aim of Enso (Raskin, 2008)

is to provide global functionality independent of programs

which it is operated on. For example a user can select some

text type “spell-check” on Enso to perform a spell-check.

This spell check is independent of any program which is

currently open. It uses more „natural‟ language syntax so

the user does not have to remember strange command

names. Natural language is not fully supported by this

command line thus it depends on suggesting commands to

the user and auto completing the commands.

JUNOS and CAD Command Line Interface

JUNOS (Gredler and Goralski, 2005) is a command line

interface developed especially for routers. It was developed

in 1986 by Cisco Systems Ltd. It implements an ASCII

based interface which writes information about the

operation of the router into human readable text files. It

uses simple commands which are similar to UNIX

commands.

The computer assisted design (CAD) command line

interface was used in an evaluation of user interfaces in a

CAD environment conducted by Roy (1992). It was the

preliminary interface used for modeling objects using the

computer.

Easing the Burden on the User

All command line interfaces described above aim to lessen

the cognitive load on the user. However they implement

different methodologies to achieve this.

Usually if the user needs to perform a command she or he

would type the command into the command line and press

“Enter”. If they wanted to script several commands together

then they will open a text editor and write the commands

and save the file. In order to execute this script they will

have to either double click on this file or invoke it via the

command line. Using P-sh the user is able to write

sequences of commands as well as execute individual

commands within one application. This reduces the

cognitive load on the user because they would only have to

learn one set of symbols (because the application is a visual

representation of the command line), for all command line

and scripting tasks. This interface however still requires the

user to know which commands perform which action and

the syntax of the commands.

In contrast answer engines do not require the user to know

the syntax of the commands. They also tend to implement a

more „natural‟ language to describe commands. This is

mainly because most if not all users of answer engines, do

not use the command line and/or would not understand

complex and confusing command names. Another

advantage answer engines have over P-sh or any other

command line interface is that it is able to degrade

gracefully into a search engine if the user mistypes the

command or does not use the correct syntax. They also may

implement a spellchecker so that if the command is

mistyped then it would give the closest matching command

as an alternative (e.g. Google‟s „Did you mean…”

functionality). This reduces the cognitive load on the user

because they are not required to know any of the commands

or the syntax of the commands.

The linguistic command line (Enso) aims to reduce the

cognitive load by employing auto completion of commands

and suggesting possible commands while the user types into

the interface. It is similar to search engines because it

provides support for „natural‟ language syntax although not

as much as the search engine. In quasi-modal mode the user

is required to hold down the activation key throughout

typing of the command. The command is only executed

once the user releases the activation key. This may make

the application cumbersome to use (especially since the

activation key is defaulted to “Caps Lock” key) however

the application provides a „sticky‟ mode where the user is

required to only press the activation key once and the

command is executed once the user presses enter.

The computer assisted design (CAD) command line reduces

the cognitive load on the user in a similar way to Enso and

search engines, by supporting limited „natural‟ language

syntax. However it also allows the user to rename command

names to suit their own. This functionality can be helpful

because the user can change any confusing or long

command name into simple and short commands.

In menu based command lines the user is directed as to

which commands are available to them at all times. This

means that not all commands are available at all times

especially if the command line follows a state-machine

approach. Although this reduces the complexity of using

the command line it doesn‟t allow for flexible interaction

(in terms of allowing the user to do whatever they wish at

anytime) with the command line.

JUNOS is has similar attributes to a UNIX type command

line interface. Thus it is privy to some short comings of the

UNIX command line. It has similar commands (which can

sometimes be hard to remember) but because of this any

user who has used the UNIX shell can operate the interface

easily. It also uses short cut keys of EMACS (a text editor

heavily used by the UNIX community) to navigate the

cursor. This again would be useful for users who have

experience in using EMACS. Thus for the most time

JUNOS relies on the users being familiar with an UNIX

environment.

However it does provide some functions as to reduce the

cognitive load on users who are not familiar with the UNIX

environment. This includes contextual help and auto

complete. The auto complete function is similar to auto

complete functions provided by most command line

interfaces. This means it requires the user to type in the start

of the command and press “Tab” key. If the command is

correct it will complete it, however if there are several

commands starting with the same characters it will list all of

the commands. This auto complete does not provide the

arguments needed for the command. It is required by the

user to remember which arguments are needed for each

command. Context sensitive help conversely presents only

relevant commands depending on other arguments

provided.

 The command line parser also accepts commands that are

half typed. This however is done only when the parser

determines that the command is unambiguous. For example

instead of typing “show isis database” the user can type “sh

is d”. This reduces the amount of commands the user needs

to know and also auto complete and context sensitive help

allows the user to not know all the commands used in the

interface.

Although the above command lines have reduced the

cognitive load on the user, it seems that from studies

conducted (Durham and Emurian, 1998) (Westerman,

1997) (Morgan et al., 1991), novice computer users prefer

the GUI. This can be because it is easier for the user to look

at the GUI and find a command for their task, especially

when they do not know how to approach a task. However in

a CLI the user is not given any clues as to how to approach

the task. For example the user needs to guess what

command they think, they would need to complete their

task. It seems that CLI performs better if the user has some

idea of how to approach their task.

CONCLUSION

The command line interface can reduce the time taken by

allowing the user to create powerful commands to analyze

data and operate the computer. It also offers a concise way

of explaining functionality of software to the user.

However current implementations of command line

interface (CLI) use commands that are hard to use, and

have a rigid syntax for entering the commands. Some do

not intuitively display any information to the user on how

the system has been constructed.

In order to improve the CLI, developers should consider

implementing memorable command names, limit the

number of commands available to the user or support at

least a limited form of „natural‟ language syntax. New

implementations of CLI should hint the user about possible

commands via auto complete or suggest matching

commands.

There are several CLIs which implement these functions.

These include the linguistic command line, P-sh, modern

search engines, menu based CLI, JUNOS and CAD CLI.

However it seems that these command lines would be

helpful for normal users only if they have some idea of how

to approach their task.

FUTURE WORK

Although new command line interfaces (CLI) reduce the

cognitive load, there has been little work done on

generating a clear mental map of the system. For example if

the user changes the directory which they currently in the

interface could automatically list the files in the new

directory. Also there can be different colours used to denote

file and sub folders. Displaying patterns of information is

 5

handled poorly in CLI. Fast changing values are not

highlighted and displaying of data is not intuitive (i.e.

Listing information one after another in one column. This

may not be usable if the user has to scroll up and down the

interface to compare results or two values.).

REFERENCES

Bland, W., Naughton, T., Vallee, G. & Scott, S. L.

(2007) Design and Implementation of a Menu Based

OSCAR Command Line Interface. Paper presented at High

Performance Computing Systems and Applications.

Retrieved March, 22, 2008 from

http://ieeexplore.ieee.org.ezproxy.auckland.ac.nz/iel5/4215

545/4215546/04215574.pdf?tp=&arnumber=4215574&isnu

mber=4215546

Durham, A. G. & Emurian, H. H. (1998). Learning and

Retention with a Menu and a Command Line Interface.

Computers in Human Behavior, 14(4), 591-620. Retrieved

April, 19, 2008 from

http://www.sciencedirect.com.ezproxy.auckland.ac.nz/scien

ce?_ob=MImg&_imagekey=B6VDC-3VF9DYS-5-

H&_cdi=5979&_user=140507&_orig=search&_coverDate

=12%2F01%2F1998&_sk=999859995&view=c&wchp=dG

LbVlz-

zSkWA&md5=e02d26e36827318bc96013ad1e201a4d&ie=

/sdarticle.pdf

Glaser, H. & Smedley T. J. (1995). PSH-The Next

Generation of Command Line Interfaces. Paper presented at

11th International IEEE Symposium on Visual Languages.

Retrieved March, 24, 2008 from

http://portal.acm.org.ezproxy.auckland.ac.nz/ft_gateway.cf

m?id=834288&type=external&coll=GUIDE&dl=GUIDE&

CFID=22225474&CFTOKEN=68917359

Gredler, H. & Goralski W. (2004). The Complete IS-IS

Routing Protocol. Kent, United Kingdom. SpringerLink.

Retrieved April, 19, 2008 from

http://www.springerlink.com.ezproxy.auckland.ac.nz/conte

nt/w6516p5247hk6747/fulltext.pdf

Morgan, K., Morris R. L. & Gibbs, S. (1991). When

does a Mouse become a Rat? or… Comparing Performance

and Preferences in Direct Manipulation and Command Line

Environment. The Computer Journal, 34(3), 265-271.

Retrieved April, 19, 2008 from

http://comjnl.oxfordjournals.org.ezproxy.auckland.ac.nz/cgi

/content/abstract/34/3/265

Norman, D. (2007). The Next UI Breakthrough:

Command Lines. Interactions, 14(3), 44-45. Retrieved

March, 22, 2008, from

http://portal.acm.org.ezproxy.auckland.ac.nz/ft_gateway.cf

m?id=1242449&type=pdf&coll=ACM&dl=ACM&CFID=2

2221489&CFTOKEN=19136043

Raskin, A. (2008). The Linguistic Command Line.

Interactions, 15(1), 19-22. Retrieved March, 21, 2008, from

http://portal.acm.org.ezproxy.auckland.ac.nz/ft_gateway.cf

m?id=1330535&type=pdf&coll=ACM&dl=ACM&CFID=2

2221489&CFTOKEN=19136043

Roy, G. G. (1992). An Evaluation of Command line and

Menu Interfaces in a CAD Environment. International

Journal of Computer Integrated Manufacturing, 5(2), 94-

106. Retrieved April, 23, 2008 from

http://www.informaworld.com.ezproxy.auckland.ac.nz/smp

p/ftinterface~content=a777708821~fulltext=713240930

Thompson, R. S., Rantanen, E. M., Yurcik, W. &

Bailey, B. P. (2007). Command Line or Pretty Lines?

Comparing Textual and Visual Interfaces for Intrusion

Detection. Paper presented at Conference on Human

Factors in Computing Systems. Retrieved April, 23, 2008

from

http://delivery.acm.org.ezproxy.auckland.ac.nz/10.1145/12

50000/1240807/p1205-

thompson.pdf?key1=1240807&key2=7341298021&coll=A

CM&dl=ACM&CFID=65029996&CFTOKEN=43372283

Westerman, S. J. (1997). Individual Differences in the

Use of Command Line and Menu Computer Interfaces.

International Journal of Human-Computer Interaction,

9(2), 183 - 198. Retrieved April, 19, 2008 from

http://web.ebscohost.com.ezproxy.auckland.ac.nz/ehost/pdf

?vid=2&hid=104&sid=a4cbb44e-967d-430b-b965-

597e774a4240%40sessionmgr108

