INTRODUCTION Lecture 1

COMPSCI 702 Security for Smart-Devices

Muhammad Rizwan Asghar

March 06, 2017

TEACHING STAFF

- Course Coordinator
 - Rizwan Asghar
 - Office: Building 303S, Room 585
 - Address: 38 Princess Street, Auckland
 - Email: r.asghar@auckland.ac.nz
 - Homepage: <u>https://www.cs.auckland.ac.nz/~asghar/</u>
- Tutor
 - Shujie Cui
 - Office: Building 303S, Room 576
 - Address: 38 Princess Street, Auckland
 - Email: <u>scui379@aucklanduni.ac.nz</u>
 - Homepage: <u>https://www.cs.auckland.ac.nz/~scui379/</u>

ABOUT YOU

- Name
- Current degree
- Any experience related to this course
- Your expectations from this course

CLASS REPRESENTATIVE (CR)

- Who
 - Any volunteer
- Core responsibilities
 - An important link between students and the staff
 - A CR gives the department feedback on various aspects of the course
- Benefit
 - At the end of the semester, a CR can request a Class Rep certificate
- For further information, visit:
 - <u>http://www2.ausa.auckland.ac.nz/representation/class-reps/</u>
 - <u>http://www3.ausa.auckland.ac.nz/representation/class-reps/class-rep-guide/</u>

WHEN AND WHERE: LECTURES (WEEK 1 TO 12)

Day	Time	Location
Monday	17:00 – 18:00	OCH2-104G54 (Old Choral Hall, Room G54)
Tuesday	12:00 – 13:00	303-G02 (Science Centre, Room G02)
Wednesday	17:00 – 18:00	105-032 (Clock Tower, Room 032)

WHEN AND WHERE: TUTORIALS (WEEK 7 TO 12)

Day	Time	Location
Monday	14:00 – 15:00	105-012 (Clock Tower, Room 012)
Tuesday	14:00 – 15:00	206-203 (Arts 1, Room 203)
Wednesday	14:00 – 15:00	421E-619 (Architecture - East, Room 619)

- The main objective of the tutorials is to conduct some of the seminars
- The attendance of tutorials is optional

COURSE STRUCTURE

- First half [Week 1 to 6]
 - Introduction to course/project
 - Android security architecture
 - iOS security architecture
- Second half [Week 7 to 12]
 - Individual seminars
 - Project presentations and demos
 - Guest lecture (optional) to be confirmed!
 - Course revision and exam info

EXPECTED FROM STUDENTS

- Attend lectures and presentations
- Active class participation
- Present a research article
- Work in a team on a group project
 - Development Phase: Develop obfuscated code
 - Challenge Phase: De-obfuscate (i.e., reverse engineer) code developed by other groups
 - Group size 5
 - Project report (6 to 10 pages)
 - Project presentation

Rights and responsibilities

- Academic integrity: http://www.auckland.ac.nz/uoa/home/about/teaching-learning/honesty
- Inclusiveness: <u>https://www.auckland.ac.nz/en/about/eo-equity-office/zero-tolerance-for-discrimination.html</u>

DEADLINES

- Article selection for presentation
 - Thursday, March 9, 2017
 - By email to me CC course tutor
- Group formation
 - Friday, March 10, 2017
 - By email to me CC course tutor and your group members
- Code and app submission
 - Tuesday, May 2, 2017
 - Use Basecamp
- Project report
 - Tuesday, May 16, 2017
 - Use Basecamp

SUPPORT DURING THIS COURSE

- Discussion for selecting an article for presentation
 - Thursday, March 9, 2017
- Interim feedback on development phase
 - From Monday, April 17 to Friday, April 28, 2017
- Interim feedback on challenge phase
 - From Monday, May 8 to Friday, May 12, 2017

FUTURE POSSIBLITIES

- Extending report as a research article
- Thesis/dissertation

COURSE OBJECTIVES

- Learning mobile security fundamentals
- Understanding mobile security technologies and common defense strategies
- Learning current research approaches in this area
- Demonstrating critical understanding of research and novel ideas

LEARNING OUTCOMES

- Give basic advice on securing smart devices
- Demonstrate critical and appreciative comprehension of technical literature on mobile security
- Demonstrate technical skills to increase security of smart devices
- Prepare and deliver an oral presentation on an advanced topic in mobile security

- 15% presentation
- 25% project
- 60% exam

INDIVIDUAL PRESENTATION

- List of recent research articles
 - <u>https://www.cs.auckland.ac.nz/courses/compsci702s1c/seminar/</u>
- Selected from top-notch research venues
- Compiled considering relevancy, background and interest
- A different research article that is not covered in
 - COMPSCI 725
 - COMPSCI 726

INDIVIDUAL PRESENTATION (2)

Grading

- 5% introduction (motivation, background and problem)
- 5% description (idea, details and results)
- 5% criticism (summary, issues and improvements)
- Duration
 - 3 presentations per lecture or tutorial
 - Every presenter will get 20 minutes
 - 15 minutes for presentation
 - 5 minutes for QA
- Feedback
 - Lecturer and tutor
 - Students

GROUP PROJECT

- Develop a technique/tool that should make it difficult to reverse engineer Android apps
- Develop an app that should employ your proposed technique
 - Use java for development of your app
 - Any app with reasonable logic (be innovative!)
 - E.g., input marks (90) and output is grade (A)
 - Lines of code: 400 to 1000
- Challenge phase will begin after the app submission
 - Reverse engineer Android apps developed by other groups

STRUCTURE OF REPORT

- Summary (1 page)
- Introduction (1 page)
 - Context (1 paragraph)
 - Problem (1 paragraph)
 - State-of-the-art (1 paragraph)
 - Solution (1 paragraph)
 - Novelty (1-2 sentences)
- Related work (1-2 pages)
 - Highlight how your idea is different from existing research approaches (cite 4-5 research articles)
 - Justify how your technique is different from existing tools
- Proposed idea (1-2 pages)
 - Your technique
 - Details

STRUCTURE OF REPORT (2)

- Evaluation (1-2 pages)
 - Strength of your obfuscation
 - Your app vs its obfuscated version
 - Performance overhead
 - Execution time of your app vs its obfuscated version
 - Storage overhead
 - Size of your app vs its obfuscated version
 - Status of reverse engineering
 - Explain how you reverse engineered the apps developed and obfuscated by other groups
- Discussion (1 page)
 - Limitations
 - Possible extensions
 - Debugging and updates

PROJECT REPORT

- Page limit: 6-10
- For your report (in **PDF** only), use the following format
 - Times New Roman
 - Font 12
 - Single column
 - Single line spacing
 - 1 inch margin
- For more information, visit

https://www.cs.auckland.ac.nz/courses/compsci702s1c/assignments/

- Lectures
- Lecture resources
- Presentations
 - Including presented research articles

- Closed book
- 8-10 questions
- 2 hours

SOME RESOURCES

- Android Security Internals: An In-Depth Guide to Android's Security Architecture
 Elenkov, Nikolay
 First Edition
 No Starch Press 2014
 ISBN:1593275811 9781593275815
- iOS Hacker's Handbook Miller, Charlie, Dion Blazakis, Dino DaiZovi, Stefan Esser, Vincenzo Iozzo, and Ralf-Philip Weinmann John Wiley & Sons, 2012

LECTURE UPLOAD POLICY

Presentation slides will be uploaded after the lecture

READING: HOW TO READ A RESEARCH ARTICLE

 How to Read an Engineering Research Paper William G. Griswold CSE, UC San Diego <u>http://cseweb.ucsd.edu/~wgg/CSE210/howtoread.html</u>

- How to Read a Paper S. Keshav University of Waterloo <u>http://ccr.sigcomm.org/online/files/p83-keshavA.pdf</u>
- How to Read a Technical Paper Jason Eisner (2009) <u>http://www.cs.jhu.edu/~jason/advice/how-to-read-a-paper.html</u>

READING: HOW TO PRESENT A RESEARCH ARTICLE

 How To Make an Oral Presentation of Your Research Center for Undergraduate Excellence University of Virginia <u>http://www.virginia.edu/cue/presentationtips.html</u>

 Notes on Presenting a Paper Matthew O. Jackson <u>http://web.stanford.edu/~jacksonm/present.pdf</u>

READING: HOW TO WRITE A REPORT

- How to Write a Research Paper Charles King <u>http://faculty.georgetown.edu/kingch/How_to_Write_a_Research_</u> <u>Paper.htm</u>
- How to Write a Great Research Paper Jon Turner
 Computer Science & Engineering
 Washington University
 http://www.arl.wustl.edu/~pcrowley/cse/591/writingResearchPapers.pdf
- Tips for Writing Technical Papers Jennifer Widom January 2006 <u>http://cs.stanford.edu/people/widom/paper-writing.html</u>

CANVAS AND COURSE WEBSITE

- Canvas for announcements
- Course website for lectures and seminars
 - <u>https://www.cs.auckland.ac.nz/courses/compsci702s1c/</u>

Questions?

Thanks for your attention!