Refer ence M anual

Volumel
Basic Programming Guide

Version 6.10
August 5th 1998

CLIPS Reference Manual

CLIPSBasic Programming Guide
Version 6.10 August 5th 1998

CONTENTS
Preface XV
ACKNOWIEAGEMENES . ..o e XiX
SeCtion 1 - INtrodUCHIONo e 1
SECtION 2 - CLIPS OVEINVIBW. . . ettt ettt e e e et 3
2.1 Interacting With CLIPS e e 3
2.1.1TopLevel COMMANGS...... .ot e aens 3
2.1.2 Automated Command Entry and LOAdiNg..........ovvreeiiiiiei i eienaanans 4
2.1.3 Integration with Other LangUages.ouuvuiiiiii i 5
2.2 ReferenCe Manual SYNEaXc.oueeueieite et e e eaeeens 5
2.3 Basic Programming ElementSo 6
PG T T = 1Y/ o= 6
pZC A U o1 o P 9
2.3.3 CONSITUCES.ttt et e 10
2.4 Dala ADSIACION. ... e e 10
O o P 10
2401 Ordered FaClS.oveee e 11
2.4.1.2NON-0rdered FaClSvuiiiiii e 12
24.0.31INIHAl FACES ..o e 13
p B @ o] = £ P 13
2420 INItTAl ODJECES. . vt 14
2.4.3 Global Variables. 14
2.5 Knowledge REPreSENtaliON.ouie e eae 15
2.5.1 Heuristic Knowledge —RUIES. ..ot 15
2.5.2 Procedural KNOWIEAQE.oeiii e 16
2.5. 2. L DEffUNCLIONS. ... e 16
2.5.2.2 GENENC FUNCLIONS. ee e 16
2.5.2.3 OhJeCt MESSAGE-PaSSING ... uv ettt et 16
2524 DefMOUIES. e e 17
2.6 CLIPS Object-Oriented LanQUa0E.ouvereereeee et ete e e ateiaeeeeeaenaeeenenaans 17
2.6.1 COOL Deviations from aPure OOP Paradigm.coooieiiiiiiiiiiiiiieeen, 17
2.6.2 Primary OOP FEaUIES.ttt e et ees 18
2.6.3 Instance-set Queries and Distributed ACiONS.ooeiiiiiiiiiii e, 18
Section 3 - Deftemplate CONSIIUCE.o et 19
B L IOt DEfAUIt VAIUBS ... e 20
3.2 Slot Default Constraints for Pattern-MatChingovovviii i 20

CLIPS Basic Programming Guide i

CLIPS Reference Manual

3.3 Slot Value Constraint AttribDULES ... e 21
34 Implied DeftemMPIates. e 21
Section 4 - DeffactS CONSIIUCEo v e et 23
Section 5- Defrule CONSIIUCE.ot e et 25
B.ADENING RUIES. ... e e aas 25
5.2Basic Cycle Of RUIE EXECULIONuieii it ae e 26
5.3 Conflict ReSOIULION SHral@gi€S. .. . vi ettt eaeaas 27
5.3. L DN SHralOgY ... vt 27
5.3.2 Breadth SIrategy ..o 27
5.3.3 SIMPlICITY SHAOQY ... v 27
5.3.4 COmMPLEXItY SIralOOY . .ouveneieeiee et e 28
.3 S LEX SOy . ..t 28
5.3 MEA SIaOgY ..ot 29
5.3.7 RANUOM SIFELEOY .. v vttt aa 29
B LHS SYNEAX vttt 30
5.4.1 Pattern Conditional Elemento 30
5411 Literal CoNStraiNtSueueee ettt e e e e aaenes 31
5.4.1.2 Wildcards Single- and Multifield. ... 33
5.4.1.3 Variables Single- and Multifield............c.ooieiiii 35
5.4.1.4 ConNECtiVE CONSIIAINTS.t 37

5.4.1.5 Predicate CONSITaNTS.vueei et e ee e 40

5.4.1.6 Return Value CoNStraiNtS.cviieieiieeie e e 42

5.4.1.7 Pattern-Matching with Object Patterns............ccoovvviiiiii i 43
5.4.1.8 PatterN-AddreSSES. . ..o veei et 45

5.4.2 Test Conditional Element..........c.coiiieiiiiii e e e 46
5.4.30r Conditional Element........ ..o 47
5.4.4 And Conditional Element...........cooiieiiiiiiii e 48
5.4.5Not Conditional Elemento 49
5.4.6 Exists Conditional Elementccoviriiiiiiii i 50
5.4.7 Forall Conditional Element........ ..o 52
5.4.8 Logical Conditional Element............c.oieiiiiiii e 54
5.4.9 Automatic Addition and Reordering of LHSCES...........cocoviiiiiiiiiiiiinnn. 57
5.4.9.1 Rules Without Any LHSPattern CES.........cccovviiiiiiiici e 57
5.4.9.2 Test and Not CEsastheFirst CEof an And CE...........ccooiiiiiiiiiiinnn. 58
5.4.9.3Test CESFOIOWINGNOt CES.....cviveiiiiieiee e e 58
5.4.9.4 Or CESFOIOWING NOL CES.......oiviniiiiiieie e e e 59
5.4.9.5 Notes About Pattern Addition and Reorderingcoooovviiiiiiinnnnnn. 59

5.4.10 Declaring RUIE Properties.oeiiii i 59
5.4.10.1 The Salience RUIE Propertyooveeiiiii e 60
5.4.10.2 The Auto-FOCUS RUIE Propertyovvieiiiii e 60
Section 6 - Defglobal CONSLIUCEot e e 63

ii Table of Contents

CLIPS Reference Manual

Section 7 - Deffunction CONSIIUCEo e i 65
SeCtioN 8- GENENIC FUNCLIONSot e et et i 67
8.1 NoteontheUseof the Term Method............c.ooieiiiiiiii e 67
8.2 Performance Penalty of Generic FUNCLIONS.ccviiiiiii e 68
8.3 Order Dependence of Generic Function Definitions...........ccoovviiiiiiiiii i 68
8.4 Defining aNew GeneriC FUNCHION ...t ees 68
8.4.1 GeneriC FUNCLION HEAAEIS. ... e e 69
B.4.2 MEthOO INAICES. .. vt e e e e 69
8.4.3 Method Parameter RESIIICHIONS.uvi it e e eaae s 70
8.4.4 Method Wildcard Parameterc.coviiiiii i e 71
8.5 GeNENiC DISPaICI ... e 73
8.5.1 Applicability of Methods SUMMANY....... ..ot 73
8.5.2 MEthOd PreCaUENCE.c.vviii e e 74
8.5.3 Shadowed MEthOUS. ..o e e 76
8.5.4 Method EXECULION EITOIS. .. .viiitii ittt e e e eaae s 77
8.5.5 Generic FUNCLION REIUNN ValUE. ... e 77
Section 9 - CLIPS Object Oriented Language (COOL)......ovviiiiiiii e 79
0.1 BaCKgroUNdo 79
9.2 Predefined System Classes. vt e et 79
0.3 DEfCIASS CONSIIUCE ...ttt ettt e ettt e e et e et ee e e aae e e aaaeens 80
9.3. 1 MUItiple INNENTANCE. et 81
9.3.1.1 Multiple INheritanCe RUIES ... 82

S I O SR o 1= o 1= £ 84
9.3.2.1 Abstract and Concrete ClassesS.ovvueiii i 84

9.3.2.2 Reactive and NON-ReaCtive ClaSSES. ... v e 84

0.3 3 Ol S ittt e 84

LS G TG 20 0 o = o 1Y/ = 85
9.3.32Default VAUEFACEL ... 85

0.3.3. 3 HOragE FaCEL 86
0.3.3.4 ACCESS FaCEL. ..o 87

9.3.3.5 Inheritance Propagation FacCetl.............cooviiiiiiiiii e 88

0.3.3.8 SOUICE FaCE ... it e 89

9.3.3.7 Pattern-Match Reactivity Facet...........c.cviiiiiiiii e 90
9.3.3.8Visihility Facet...... ... 91
0.3.3.9 Create-ACCESSON FaCEL.ottt e e, 91
9.3.3.10 Overide-Message FaCet.ovvie e 92

0.3.3. 11 CONSLraiNt FACELSeiirit it e e 93

9.3.4 Message-handler DOCUMENEELION.ouineiiii i eaen 94
9.4 Defmessage-handler CONSLIUCTuieeiee e e aeaas 94
9.4.1 Message-handler Parameters.o.oouiiiiiii i 96
9.4.1.1 AcCtive INStanCe Parameterooviiii i e 97

CLIPS Basic Programming Guide iii

CLIPS Reference Manual

9.4.2 Message-handler ACHIONS.c.ieii e 97
O.4.3 DBEIMONS. . . . ettt e 99
9.4.4 Predefined System Message-handlers.........c.oovviiiii i 100
9.4.4.1 Instance INItaliZatiON.veiie e 100
0.4.4.2 INStANCE DEIBLION. ... vt 100
0.4.4.31INStANCE DISPIAY. ... e 101
9.4.4.4 Directly Modifying an INStancCe...........cooveiiiiiiiiiii e, 101
9.4.4.5 Modifying an Instance USING MESSAgES.uvviiieie i eeaeenennn 102
9.4.4.6 Directly Duplicating an INStanCe...........ccooviiieiiiiii i, 102
9.4.4.7 Duplicating an Instance USINg MESSA0ESvviiiniie e aeenenn 103

0.5 MESSAgE DISPAICN ... 103
9.5.1 Applicability of Message-handlers..........cooviiiii i 104
9.5.2 Message-handler PreCedenCeovviriii i 104
9.5.3 Shadowed Message-handlers....... ..o 105
0.5.4 MeSsage EXECULION EXTOrS.u et e eaenaenens 105
9.5.5Message REIUMN VaAlUB......ove e 106
9.6 ManipUlating INSEANCES. v ettt e e et e e e e e e e 106
0.6.1 Creating INSLANCESttt ettt aens 106
9.6.1.1 DefiNStanCeS CONSLIUCE.e.v et 108
9.6.2 Reinitializing EXisting INStANCESouviiii i 109
0.6.3REAMING SIOLS.ot 111
0.6.4 SEtING SlOtSttt 111
0.6.5 DElBtNG INSLANCESttt eeaaeneas 111
9.6.6 Delayed Pattern-Matching When Manipulating Instances.c.ocvevennens 112
9.6.7 MOdIfyiNg INSLANCES.ttt e eaeneenens 113
9.6.7.1 Directly Modifying an Instance with Delayed Pattern-Matching.............. 113
9.6.7.2 Directly Modifying an Instance with Immediate Pattern-Matching........... 113

9.6.7.3 Modifying an Instance using Messages with Delayed Pattern-Matching114
9.6.7.4 Modifying an Instance using Messages with Immediate Pattern-Matching..114

0.6.8 DUPlICAiNG INSLANCES ettt aens 115
9.6.8.1 Directly Duplicating an Instance with Delayed Pattern-Matching............ 115
9.6.8.2 Directly Duplicating an Instance with Immediate Pattern-Matching......... 116

9.6.8.3 Duplicating an Instance using Messages with Delayed Pattern-Matching...116
9.6.8.4 Duplicating an Instance using Messages with Immediate Pattern-Matching 117

9.7 Instance-set Queries and Distributed ACtIONS.........c.ooiii i 117
0.7.1 Instance-Set DEfiNItION.......vie e 119
9.7.2 Instance-set DEtermMiNatioN...........uveiuiiiie e 120
O0.7.3QUENY DEfINITION.t 121
9.7.4 Distributed Action DefiNitioN...........ouviiiii i 122
9.7.5 Scopein Instance-set QUEry FUNCHIONS.........oiuiieiiiiiii e 122
9.7.6 Errors during Instance-set Query FUNCLIONS.c.ooviiiiiiiii e, 123
9.7.7 Halting and Returning Values from Query Functions..............c.cooviiiiiennnns 123
9.7.8 Instance-set QUENY FUNCLIONS.........iiiie ittt eeaaeneas 123

Table of Contents

CLIPS Reference Manual

9.7.8.1 Testing if Any Instance-set SatisfiesaQUErY........ccoevvvviiiiiiiiiiiieinennn. 123
9.7.8.2 Determining the First Instance-set SatisfyingaQuery.............ccoovvveneee. 124
9.7.8.3 Determining All Instance-sets SatisfyingaQuery...........cocevvvivvinnnn.n. 124
9.7.8.4 Executing an Action for the First Instance-set Satisfying aQuery............ 124
9.7.8.5 Executing an Action for All Instance-sets Satisfying a Query................. 125
9.7.8.6 Executing a Delayed Action for All Instance-sets Satisfying a Query

126
Section 10 - Defmodule CoNStrUCEo e 127
10.1 DEfiNING MOUUIES.e et e et e e eeneas 127
10.2 Specifying a Construct’ SMOAUIE. ... 128
10.3 SPECITYING MOAUIESo e e e e e 128
10.4 Importing and EXPorting CONSLIUCESvueieiiiiee e aeas 129
10.4.1 EXPOrting CONSIIUCES ... v vt et eee et e e et e e e e et e e ee e e e e aenaenees 130
10.4.2 IMPOrting CONSIIUCES v ettt nees 130
10.5 Importing and Exporting Facts and INStanCeS.coeveiiiiiiicii e 131
10.5.1 Specifying INStanCe-NaMES.uieie e 132
10.6 Modules and RUIE EXECULION.c.vieie it eaas 132
Section 11 - Constraint AttribULES. e 135
00 T 1Y/ 0= N 1 o1 = 135
11.2 Allowed Constant AttribDULES........ ..o 136
11.3 RANgE ALTDULE . ..o e 137
11.4 Cardinality AttriDULE. 137
11.5 Deriving a Default Value From ConstraintS..........o.vvvieiiiii i vieieieeenaenens 138
11.6 Constraint Violation EXamPleSo.oiuiiiii e 138
Section 12 - ACtioNS AN FUNCLIONS.t 141
12,1 PrediCate FUNCHIONS. ... et aeas 141
12.1.1 Testing FOr NUMDEIS ... e 141
12.1.2 Testing FOr FIOAES.c.veee e 141
N G R = 1o e 11 = = £ 141
12.1.4 Testing For Strings Or Symbols..........ooii i 142
12.1.5 TeStNG FOr SHNGS. ... e vttt e e e e e e naenees 142
12.1.6 Testing FOr SymbBOIS. ..o 142
12.1.7 Testing For EVEN NUMDErS ..o, 142
12.1.8 Testing FOr Odd NUMDEN'So 142
12.1.9 Testing For Multifield Values. ..o 143
12.1.10 Testing For External-AdadreSSeS.ovuieii e 143
12.1.11 Comparing for EQUality..........oooiirii e 143
12.1.12 Comparing for Inequality...........coouieiii e 143
12.1.13 Comparing Numbersfor EQuality..........ccooeiiiiiiiiiii e 144
12.1.14 Comparing Numbersfor Inequalitycooiieiiiiiii e 144
12.1.15 Greater Than ComMPariSON.......ouue et ettt et et e r e eeaenaenens 145

CLIPS Basic Programming Guide v

CLIPS Reference Manual

vi

12.1.16 Greater Than or Equal COmMPariSON.........coueueireieieeie e eenaenennn 145
12.2.27 LesS Than COmMP@IISON.ue ettt ee e e e et e e e e nees 146
12.1.18 Less Than or Equal ComPariSON.ouvueereieieeie i eenaee e aaenaens 146
12.1.19 B00IEAN AN ... 146
I 2 =TT = o | P 147
0 2 R =Yoo = T\ Lo S 147
12.2 MUILIFIEId FUNCHIONS. ... e 147
12.2.1 Creating MUItifield ValUES. ... 147
12.2.2 Specifyingan Element..........ccooiiiii i 148
1223 FNnding an Elemento 148
12.2.4 Comparing MUltifield ValUESc.oeiiiii e 148
12.2.5 Deletion of Fieldsin Multifield Values. ... 149
12.2.6 Creating Multifield Values from Strings.ccoeviiiiiiiiiiiici e, 149
12.2.7 Creating Strings from Multifield Values............c.oooi i 150
12.2.8 Extracting a Sub-sequence from aMultifield Value...................cooeeeeena. 150
12.2.9 Replacing Fields withinaMultifield Value..............ccoooiiic e, 151
12.2.10 Inserting Fields withinaMultifield Value...............coooiiiiiic e, 151
12.2.11 Getting the First Field from aMultifield Value................coooioiii. 152
12.2.12 Getting All but the First Field from aMultifield Value............................ 152
12.2.13 Determining the Number of FieldsinaMultifield Value.......................... 152
12.2.14 Deleting Specific Valueswithin aMultifield Value......................ooenl. 152
12.2.15 Replacing Specific Values within aMultifield Value....................oeee. 153
12.3 SHHNG FUNCHIONS. .. .ot e e et e e eaenaeneas 153
12.3.1 StrNG CONCALENGLIONttt et e e e nees 153
12.3.2 Symbol CONCAIENALIONt e nees 154
12.3.3TaKiNG @ SNG APAIT. ... 154
12.3.4 Searching @ StriNg. ... 154
12.3.5 Evaluating a Function Within aString..........coovieiiiiiii e 155
12.3.6 Evaluating a Construct within aString..........ccooviiiiiii i, 155
12.3.7 Converting a String t0 UPPEICaASE. uueeeiteieieee e e ene 156
12.3.8 Converting a String tO LOWEICASEvviieiieee e e e aae e 156
12.3.9 Comparing TWO SENGS.uueeeei ettt et et e ae e nens 156
12.3.10 Determining the Length of @aString........ccoovveiiiiiiiii e, 157
12.3.11 Checking the Syntax of a Construct or Function Call within a String............ 157
124 The CLIPS /O SYStaM. ..o i aas 158
I R oo [o= I NN = 0 = 158
12.4.2 CommON /O FUNCHIONSeueiei et 159
L2420 OB, .. ettt 159
124,22 C 0SB ..ttt 159
e B o 110 | 160
12424 REA0. i 161
124,25 REAAINE ...t 161
e 1= | 162

Table of Contents

CLIPS Reference Manual

= =0 1P 164
1242 8 REIMOVE.t 164
125 Math FUNCHIONS.ot e e e e et e e e e e e e aenaeneas 165
12.5.1 Standard Math FUNCLIONS........ouie e 165
125 1.1 AATITION . .oee e 165
T N2 o) = o £ o o 166
12.5. 1.3 MUIIPHCAIION. ... e e e e eens 166
TN I 1 L7 oo TP 166
125,05 INtEgEr DIVISION. ...\ttt e 167
12.5.2.6 Maximum NUMENCValueooiiiiiii e 167
12.5.2.7 Minimum NUMEriC Value.........oeiiiii e 168
125.1.8 ABSOIULE VAU ... 168
12.5.2.9CoNVErt TOFIOEEvveeeie e e 168
12.5.1.10 ConVert TO INEOES e e ee s 169
12.5.2 Extended Math FUNCLIONS.o.iieie e e 169
12.5.2.1 Trigonometric FUNCHIONSueeiii i 170
12.5.2.2 Convert From Degreesto GradS........o.vuviiiiiiei i eeeeene 170
12.5.2.3 Convert From Degreesto Radians...........ccoovviiiiiiiiiiii e 171
12.5.2.4 Convert From GradSto Degrees.oovvuvii i eeeae e 171
12.5.2.5 Convert From RadianSto Degrees. ..o iviiiiiiii e 171
12526 Returnthe Vaue of P......ccoovieiii e 172
12.5.2.7 SQUANE ROOLot 172
12,5, 2.8 POWEN ...ttt 172
12.5.2. 9 EXPONENEIAL.ot 173
12.5.2. 00 LOgarithm.o e 173
12.5.2.11 LogarithmM BaSe 10.......oiuieieiiie e 173
125212 ROUNG. .. .ottt ettt e e e 174
125213 MOUUIUS. ... v et e et e e 174
12.6 Procedural FUNCLIONS.ut ettt e e e e e e e aenaenens 174
12.6.1 Binding Variables. 174
12.6.21f..then... elSE FUNCLION ... e 176
12,8, 3 VWil e 176
02 o] o 0] o | 177
A GRS = (0o | PP 178
12.8.8 PrOgNS ... et 178
12.6.7 REIUIM. . .o e e e et 179
12,88 BreaK. ..o ettt 179
12,69 SO, Lttt 180
12.7 MisCEllan@OUS FUNCLIONS.ttt et et ettt e e aenaeneas 181
A N R 7= 1 5 o DT 181
i €T 01 o PP 181
A B = (o = o N TP 182
A T o P 182

CLIPS Basic Programming Guide vii

CLIPS Reference Manual

viii

12,75 S . 183
0 T 1810 = 183
12.7.7 Number of Fields or CharactersinaData Object.............ccccovviiiiiiiiinann.n. 183
12.7.8 Determining the Restrictionsfor aFunction ..., 184
12.7.9 Sorting aList of Single Field Values.ccooiiiiiiiii e, 184
12.8 Deftemplate FUNCLIONSot aeas 185
12.8.1 Getting the List of Deftemplates..........oovviiriiii e, 185
12.8.2 Determining the Module in which a Deftemplateis Defined 185
129 FaCt FUNCHIONS. ...ttt et ettt eaaas 185
12.9.1 Creating NEW FaCES. ... e 185
12.9.2 Removing Factsfromthe Fact-list...........ccooeiiiii e 186
12.9.3 Modifying Template FactS........ooveiei e 187
12.9.4 Duplicating Template FactS........c.ooviiiii e 187
12.9.5 ASSEItING @ SITNG ... e ettt 188
12.9.6 Getting the Fact-Index of aFact-address...........coovvviiiiiiiii e, 189
12.9.7 Determining If @aFaCt EXISIS.oviieii e 189
12.9.8 Determining the Deftemplate (Relation) Name Associated with aFact........... 189
12.9.9 Determining the Slot Names Associated withaFact............c.coooviiiiinnenn. 190
12.9.10 Retrieving the Slot Valueof aFact............cccooviiiiiiiiiic e 190
12.9.11 Retrieving the FaCt-List. ..o 191
12.10 DEffaCtS FUNCHIONS . .. vttt et e e 191
12.10.1 Getting the List Of DeffactSovoeiiiii e 191
12.10.2 Determining the Module in which a Deffactsis Defined 192
1211 DEfrul@ FUNCHIONS ...ttt e e aeas 192
12.11.1 Gettingthe List Of DEfTUIESovine e, 192
12.11.2 Determining the Module in which aDefruleisDefined 192
12,12 AQeNa FUNCLIONSt et et e e e e eaenaanens 192
12.12.1 Getting the CUrrent FOCUS.......o.uei e 193
12.12.2 Getting the FOCUS SEACK. vv i e 193
12.12.3 Removing the Current Focus from the Focus Stack ..., 193
12.13 Defglobal FUNCLIONS. e e e e eaaeneas 194
12.13.1 Getting the List of Defglobals..........oooiiiii e 194
12.13.2 Determining the Module in which a Defglobal is Defined......................... 194
1224 DeffuncCtion FUNCLIONS.ottt e e 195
12.14.1 Getting the List of DeffunClions............oovvviiiiiii e, 195
12.14.2 Determining the Module in which a Deffunction is Defined...................... 195
12.15 Generic FUNCLION FUNCLIONS.vi e 195
12.15.1 Getting the List Of DefgeneriCs.ouvviiiiiiiii e 195
12.15.2 Determining the Module in which a Generic Function is Defined................. 196
12.15.3 Getting the List of Defmethods. ..o 196
12.15.4 Type DEterMINGiONvee et e aaenees 196
12.15.5 Existence of Shadowed Methods.............cccooiiiiii e 197
12.15.6 Calling Shadowed Methods. ..o, 197

Table of Contents

CLIPS Reference Manual

12.15.7 Calling Shadowed Methods with Overrides ..o, 198
12.15.8 Calling a Specific Method.o 198
12.15.9 Getting the Restrictions of Defmethods............c.cooviiiii i 199
12.16 CLIPS Object-Oriented Language (COOL) FUNCLIONS.cvvviieiiiiiiiiiaanens 200
12.16.1 ClaSS FUNCHIONSttt et ettt et et eaaes 200
12.16.1.1 Getting the List Of DefClasses.oovveiiiiiiiiii e 200
12.16.1.2 Determining the Module in which a Defclassis Defined 201
12.16.1.3 Determining if @ClasSEXIStSovvviiiiiiii e 201
12.16.1.4 Superclass Determinalion...........ccvuvvriieeie e eene 201
12.16.1.5 SUBCIasS DEtermMiNationoueiuiiei i 201
12.16.1.6 SIOt EXISIENCE ... vttt 201
12.16.1.7 Testing whether aSlotisWritable..............oooiiiiiii 202
12.16.1.8 Testing whether aSlot is Initidizable.................ccoooiinne, 202
12.16.1.9 Testing whether aSlot iSPUbliC ... 202
12.16.1.10 Testing whether a Slot can be Accessed Directly..............ccooevneeee. 202
12.16.1.11 Message-handler EXiStENCe.......ouvieiei i 202
12.16.1.12 Determining if a Class can have Direct Instances................c.ovueeee. 203
12.16.1.13 Determining if a Class can Satisfy Object Patterns......................... 203
12.16.1.14 Getting the List of SuperclassesforaClass...........ccoevvvviviiiinnnnnnn. 203
12.16.1.15 Getting the List of Subclassesfor aClass...........coovvviiiiiiiiennnnn. 203
12.16.1.16 Getting the List of Slotsfor aClass..........cccvvvviiiiii e 204
12.16.1.17 Getting the List of Message-Handlersfor aClass................ccoeeeee. 204
12.16.1.18 Getting the List of FacetsforaSlot............cvvvviiiiiiiiee 205
12.16.1.19 Getting the List of Source Classesfor aSlot..........ccoviviiiiiiininnnne. 205
12.16.1.20 Getting the Primitive TypesforaSlot...........ccoooiiiiiiiiiiiiinnn, 206
12.16.1.21 Getting the Cardinality for aSlot.........coooiiiiiiiii e 206
12.16.1.22 Getting the Allowed ValuesforaSlot...........ccoovviiiiiii i 207
12.16.1.23 Getting the Numeric RangeforaSlot...............oooviiiiiiiinnne, 207
12.16.1.24 Getting the Default ValueforaSlot...........cooeiiiiiiiieen 208
12.16.2 Message-handler FUNCLIONSooieiiei e 208
12.16.2.1 Existence of Shadowed Handlers. ..o 208
12.16.2.2 Calling Shadowed Handlers............cooiiiiiiiiiii e 209
12.16.2.3 Calling Shadowed Handlers with Different Arguments..................... 209
12.16.3 DefiNStanCeS FUNCLIONSuii et ee 210
12.16.3.1 Getting the List of DefinstanCes.........c.ccovviviiii i 210
12.16.3.2 Determining the Module in which a Definstances is Defined 210
12.16.4 Instance Manipulation Functionsand ACtions..............cccviiiiiiieieneennnn. 210
12.16.4. 1 Initializing @n INSEANCEvei e 210
12.16.4.2 DEleting @an INStaNCe.ovie e e 211
12.16.4.3 Deleting the Active Instance fromaHandler ...t 211
12.16.4.4 Determining the Classof an Objectccovvviiiiiiii e 211
12.16.4.5 Determining the Name of an Instance.............c.oovviiiiiiiiiiiinnne. 212
12.16.4.6 Determining the Addressof an Instance..............cccvveiiiiiiiennnn. 212

CLIPS Basic Programming Guide iX

CLIPS Reference Manual

12.16.4.7 Converting a Symbol to an Instance-Name................ccooeviviiinennnnn. 212
12.16.4.8 Converting an Instance-Nameto aSymbol.............c.ccoviiiiiiiiiinnne. 213
12.16.4.9 Predicate FUNCLIONS.t 213
12.16.4.9.1 Testing for an INStanCeo.veiiiiiii e 213
12.16.4.9.2 Testing for an Instance-Address.oovveiiiiiiiiiii e 213
12.16.4.9.3 Testing for an Instance-Nameccoeiiiiiiiiiiiiii e 213
12.16.4.9.4 Testing for the Existencean Instancec.cceeevviviiinnnns 214
12.16.4.10 Reading a SOt ValUE.......c.einiii e 214
12.16.4.11 Setting aSIot ValUe......c.ovine i 214
12.16.4.12 Multifield SIot FUNCLIONS. ..o 214
12.16.4.12.1 Replacing FieldS.........oovieiii 215
12.16.4.12.2 InSerting Felds. 215
12.16.4.12.3 Deleting Felds.c.oviiiii e 216

12.17 Defmodule FUNCHIONS. e eas 216
12.17.1 Getting the List of DefMOdUIES.ovviiri e 216
12.17.2 Setting the Current Module ..o 216
12.17.3 Getting the Current Module. ..o e 217
12.18 SEqUENCE EXPANSIONttt ettt 217
12.18.1 Sequence Expansion and RUIES.coviiiii i, 218
12.18.2 Multifield EXpansion FUNCHION ..o 219
12.18.3 Setting The Sequence Operator Recognition Behavior................c.ccoeeeee.e. 219
12.18.4 Getting The Sequence Operator Recognition Behaviorc.ccveevne.n. 220
12.18.5 Sequence Operator CaVeaLovueeiei it aeeneeaas 220
SECtioN 13 - COMMANGS . ..ottt ettt et e e e e e e e 221
13.1 ENvironment COMMANGS.uuuunetitiee et ettt et e e aeeaas 221
13.1.1 Loading ConstructS From A File........oeiii e 221
13.1.2 Loading Constructs From A File without Progress Information.................... 221
13.1.3 Saving All ConstructS TOA File. ... e 221
13.1.4 Loading aBinary IMage........c.ovuieie i e 222
13.1.5Saving aBinary IMageoouiiii i 222
13.1.6 Clearing CLIPS.t 223
30 A]] o O 1 = P 223
1318 RESEING CLIPS. ... ot 223
13.1.9 Executing Commands From aFile............coooiiiiiiii 223
13.1.10 Executing Commands From a File Without Replacing Standard Input.......... 224
13.1.11 Determining CLIPS Compilation OptioNS.........ccovieiiiiiiiiiiiiiiieieenenn. 224
13.1.12 Calling the Operating SySteM........cviiiii e e 224
13.1.13 Setting The Auto-Float Dividend Behavior...........c.ovieiiiiiiiiiiiiiieen, 225
13.1.14 Getting The Auto-Float Dividend Behavior............ccoeviiiiiiiiiiiieienen, 225
13.1.15 Setting the Dynamic Constraint Checking Behaviorccooviiinnenn. 225
13.1.16 Getting the Dynamic Constraint Checking Behavior..................cccoeivne.e. 226
13.1.17 Setting the Static Constraint Checking Behavior.............ccooviiiiiiinnnenn. 226

X Table of Contents

CLIPS Reference Manual

13.1.18 Getting the Static Constraint Checking Behavior...............ccooeiiiiiienn.n. 226
13.2.19 FiNding SymbOlS. 226
13.2 Debugging ComMMEANGS.ueeetee et e e e e naaneas 227
13.2.1 Generating TraCe FIlES ... e 227
13.2.2 CloSING TraCe FilES .. v e 227
13.2.3 Enabling WatCh ItemsS. ... 227
13.2.4 Disabling WatCh ItemS........c.oi i e 229
13.2.5 Viewing the Current State of WatCh [tems............cooiiiiiiiiiiii e 229
13.3 Deftemplate CoMMANASovie et enaeneas 230
13.3.1 Displaying the Text of aDeftemplate..........ccoooieiiiiiiiiie e 230
13.3.2 Displaying the List of Deftemplates...........oovveiiiiiiiii e, 230
13.3.3 Deleting aDeftemplate.ooiniiii 230
13.4 FaCt COMMEANGS.ttt ettt ettt et e ae e e naas 231
13.4.1 Displaying the FaCt-List........ccoiiiii e 231
13.4.2 Loading Facts From aFile.........cooiir i 231
13.4.3Saving The Fact-LISt TOA File. ... 232
13.4.4 Setting the Duplication Behavior of Facts...........ccovvviiiiiiiici e, 232
13.4.5 Getting the Duplication Behavior of Factsccoooviiiiiiiiiiee, 232
13.5 DeffactsS COMMBNGS.ot e eaas 233
13.5.1 Displaying the Text of aDeffactS.........ccooviiiiiiii e 233
13.5.2 Displaying the List of Deffacts..........ccoeviiiiiiiiii e 233
13.5.3 Deleting aDeffacts.......oviniiiii e 233
13.6 Defrule COMMANGS.t eaas 234
13.6.1 Displayingthe Text of aRUIE.........cccciiiiiiii e 234
13.6.2 Displaying the List Of RUIES.c.oeiiiii e, 234
13.6.3 Deleting aDefrUle.. 234
13.6.4 Displaying Matchesfor aRuUle............cooiiiiii e, 234
13.6.5 Setting aBreakpoint for aRuUle ... 236
13.6.6 Removing aBreakpoint for aRUleccooiiiiii e 237
13.6.7 Displaying Rule BreakpointsS.ooeiuiiiiiiiie e 237
13.6.8 Refreshing aRUIE.........oii e 237
13.6.9 Setting the Incremental Reset BENaVIOr.........c.oviiiiiiiii i 237
13.6.10 Getting the Incremental Reset Behavior..........c.covviviiiiiiici e, 238
13.6.11 Determining the Logical Dependencies of a Pattern Entity........................ 238
13.6.12 Determining the Logical Dependents of a Pattern Entity 238
13.7 AQeNda COMIMANGS.ttt e et e e e aeas 238
13.7.1 Displaying the AQeNda.oviiiii e 239
13.7.2 RUNNING CLIPS. e 239
13.7.3 Focusing on aGroup of RUIES.ccoiiiiii e, 239
13.7.4 StoppiNg RUIE EXECULION.uei e ee 240
13.7.5 Setting The Current Conflict Resolution Strategyc.covvviiiieieinennannnn. 240
13.7.6 Getting The Current Conflict Resolution Strategycvoviviiiiiiiiinnnenn. 240
13.7.7 Listing the Module Namesonthe Focus Stackcccovviiiiiiiii i, 240

CLIPS Basic Programming Guide Xi

CLIPS Reference Manual

Xii

13.7.8 Removing all Module Names from the Focus Stackcccovvvieinnn.n. 240
13.7.9 Setting the Salience Evaluation Behavior.............ccovviiiiiiiiiiii e, 241
13.7.10 Getting the Salience Evaluation Behavior............ccooviiiiiiiiiii e, 241
13.7.11 Refreshing the Salience Value of Rulesonthe Agenda................c.oooenee. 241
13.8 Defglobal CommandsS..........ouieie i 241
13.8.1 Displaying the Text of aDefglobalc.cooiiiiiiiii e 241
13.8.2 Displaying the List of Defglobals...........coviiiiii e 242
13.8.3 DeletingaDefglobal....... ..o 242
13.8.4 Displaying the Values of Global Variables.............c.ccoeiiiiiiiiiiiie, 242
13.8.5 Setting the Reset Behavior of Global Variables ..., 243
13.8.6 Getting the Reset Behavior of Global Variables. ..o, 243
13.9 Deffunction COMMANGS.oitieie et e e eeaeas 243
13.9.1 Displaying the Text of aDeffunctioncccooviiiiiiiiii e, 243
13.9.2 Displaying the List of Deffunctions............ccooiiiiii e 243
13.9.3 Deleting aDeffunCtioNcooiiiii e 243
13.10 Generic FUNCLiON COMMENGS.uitiieie et e e aens 244
13.10.1 Displaying the Text of a Generic Function Headerccoevvinnenn. 244
13.10.2 Displaying the Text of a Generic Function Methodcccooeiiinnenn. 244
13.10.3 Displaying the List of Generic FUNCLIONScovvvieiiiiiiiiiiei e, 244
13.10.4 Displaying the List of Methods for a Generic Function............................ 244
13.10.5 Deleting aGeneriCc FUNCHIONceiiiii e e eae e 245
13.10.6 Deleting a Generic Function Method ..o, 245
13.10.7 Previewing aGeneric Function Call ..o 245
13.11 CLIPS Object-Oriented Language (COOL) Commands.ccvvveiieininnnnnnnens 246
13.12.1 ClassS COMMANGSviueeee ettt et et eans 246
13.11.1.1 Displaying the Text of aDefclass..........cvviiiiiiiiiiee 246
13.11.1.2 Displaying the List of Defclasses.........ccovvviiiiiiiiiiicc e 246
13.11.1.3 Deleting aDefClass.coviiiiii e 246
131114 EXamining @ ClasS........ouuirieiie et 247
13.11.1.5 Examining the Class Hierarchy ... 249
13.11.2 Message-handler Commands..........ccooeiiiiiii e 250
13.11.2.1 Displaying the Text of aDefmessage-handlercoiieit. 250
13.11.2.2 Displaying the List of Defmessage-handlers.............c.ccoeiviiiininnnn. 250
13.11.2.3 Deleting aDefmessage-handler ... 251
13.11.2.4 Previewing @aMeESSA0E.uveee ettt e ee e e e 251
13.11.3 DefinstanceS COMMANGSoouieieie e nen 252
13.11.3.1 Displaying the Text of aDefinstances.............ccccovvviiiiiiiiiiennnn, 252
13.11.3.2 Displaying the List of DefinStanCes..........coovvviiiiiiiiiiiiieiieeee 252
13.11.3.3 Deleting a DefiNStanCeS.o.vveeie e 252
13.11.4 INStanCeS COMMBNGS.ttt et e e e e nees 252
13.11.4.1 Listing the INStaNCES. ... e e 253
13.11.4.2 Printing an Instance’ s SlotsfromaHandler....................ocoiinee. 253
13.11.4.3 Saving InstancestoaText File.........cc.oviiiiiiii e 253

Table of Contents

CLIPS Reference Manual

13.11.4.4 Saving Instancesto aBinary File...........ccoviiiiii i 254
13.11.4.5 Loading InstancesfromaText File...........ccoooiiiiiiiiiicin 254
13.11.4.6 Loading Instances from a Text File without Message Passing 254
13.11.4.7 Loading Instancesfrom aBinary File..............ooooiiiine, 255

13.12 Defmodule COMMENASt eaas 255
13.12.1 Displaying the Text of aDefmodule.............ccooiiiiiiiiiiiiee, 255
13.12.2 Displaying the List of Defmodules............cccvveiiiiiiiiiic e, 255
13.13 Memory Management COMMANGS.eueiuiieieee e eeenaenens 255
13.13.1 Determining the Amount of Memory Used by CLIPS.................coeevnea. 255
13.13.2 Determining the Number of Memory Requests Made by CLIPS................. 256
13.13.3 Releasing Memory Used by CLIPS..........ccoiiiiiiiic e, 256
13.13.4 CONSEIVING MEMOIY ...t e e e 256
13.14 ON-Line HEl D Sy Stom. ...t e 256
13.14.1Using the CLIPS Help FaCilityccoiiiiiiii e 257
13.14.2 Findingthe HElp File. ... e, 257
13.15 External Text Manipulation.o.eiuieie i aeas 258
13.15.1 External Text File FOrmMatc.ouiieieiiiii e 258
13.15.2 External Text Manipulation FUNCLIONSccoiiiiiiiii e 260
13152, 1 FOICN. ...t 260
13.15.2.2 PHINE-TEGION ... vttt et ee s 260

S T 0220 B 101 P 262

13.26 Profiling CommaNGS.oiuii e 262
13.16.1 Setting the Profiling Report Thresholdccovvviiiiii e 262
13.16.2 Getting the Profiling Report Threshold............cooiiiiiiiiiii e 262
13.16.3 Resetting Profiling Information..............cooviii i e 263
13.16.4 Displaying Profiling Information.coooiiiii i 263
13.16.5 Profiling Constructs and User FUNCLIONS...............ocviiiiiiiice 263
Appendix A - Support INformation ... 267
A.1Questionsand INfOrmMationooviiiii i e e 267
N O I = Y I E S Y 267
PN B o oW 00 o1 = 1[0 o PP 268
A.4 CLIPS Source Code and EXeCUtables.ccouiieiiiiiiii e 268
Appendix B - Update REEase NOLES.ii i 269
B L VErSION 6.00 ..t 269
B2 VaISION B.05 .. .ttt 270
B B VI SION B.04 ... 272
B4 VErSION B.03 ...t 273
B O VEISION B.02 ... 275
BB VEISION B.0L ...ttt 276
Appendix C - Differences Between Versions5.1and 6.0.............ccoviiiiiiinena... 279

CLIPS Basic Programming Guide xiii

CLIPS Reference Manual

APPENAIX D - GlOSSAIY . ..ottt e e 287
Appendix E - Integrated Editorot 297
F.1 SPECial CNarallerS .. .o vttt et e e e e 297
F.2 Control ComMmMEaNSt 298
F.3 Extended (Control-X) COmMMEaNAS........o.vieineiiiiie e vaanaenens 299
F.4 Meta Commands (Activated by <esc> or <Ctrl-[>)c.coiiiiiiiii 300
Appendix F - Performance Considerations.ouvreiieiei it ieienennnns 301
G.1 Ordering of Patternsonthe LHS ... e 301
G.2 Deffunctions versus Generic FUNCHIONS.ouvuiiie e 302
G.3 Ordering of Method Parameter RESIHCHONSoovieiiiiiiieiieee e 303
G.4 Instance-Addresses Versus INStanCe-NamMES.ouvuieiiiiiie e 303
G.5 Reading Instance SIOtS DITeCtlyovoeiii 303
AppendiXx G - CLIPSWarning MeSSageS.o v ettt it i e eieieieneaens 305
AppendiX H - CLIPSEIrOr MESSAgESo v ittt ettt a e 307
AppPendix | - CLIPS BNF e 345
Appendix J - Reserved FUNCLION NamMES.o 353
Appendix K - Bibliography of CLIPSPublications................ccoiiiiiiiiiiinnn... 359
X e e 367

Xiv Table of Contents

CLIPS Reference Manual

Preface

TheHistory of CLIPS

The origins of the C Language Integrated Production System (CLIPS) date back to 1984 at
NASA’s Johnson Space Center. At this time, the Artificial Intelligence Section (now the
Software Technology Branch) had developed over a dozen prototype expert systems applications
using state-of-the-art hardware and software. However, despite extensive demonstrations of the
potential of expert systems, few of these applications were put into regular use. This failure to
provide expert systems technology within NASA’s operational computing constraints could
largely be traced to the use of LISP as the base language for nearly all expert system software
tools at that time. In particular, three problems hindered the use of LISP based expert system
tools within NASA: the low availability of LISP on a wide variety of conventional computers,
the high cost of state-of-the-art LISP tools and hardware, and the poor integration of LISP with
other languages (making embedded applications difficult).

The Artificial Intelligence Section felt that the use of a conventional language, such as C, would
eliminate most of these problems, and initially looked to the expert system tool vendors to
provide an expert system tool written using a conventional language. Although a number of tool
vendors started converting their tools to run in C, the cost of each tool was still very high, most
were restricted to a small variety of computers, and the projected availability times were
discouraging. To meet al of its needs in a timely and cost effective manner, it became evident
that the Artificial Intelligence Section would have to develop its own C based expert system tool.

The prototype version of CLIPS was developed in the spring of 1985 in a little over two months.
Particular attention was given to making the tool compatible with expert systems under
development at that time by the Artificial Intelligence Section. Thus, the syntax of CLIPS was
made to very closely resemble the syntax of a subset of the ART expert system tool developed
by Inference Corporation. Although originally modelled from ART, CLIPS was developed
entirely without assistance from Inference or access to the ART source code.

The original intent for CLIPS was to gain useful insight and knowledge about the construction of
expert system tools and to lay the groundwork for the construction of a replacement tool for the
commercia tools currently being used. Version 1.0 demonstrated the feasibility of the project
concept. After additional development, it became apparent that CLIPS would be a low cost
expert system tool ideal for the purposes of training. Another year of development and internal
use went into CLIPS improving its portability, performance, functionality, and supporting
documentation. Version 3.0 of CLIPS was made available to groups outside of NASA in the
summer of 1986.

Further enhancements transformed CLIPS from a training tool into a tool useful for the
development and delivery of expert systems as well. Versions 4.0 and 4.1 of CLIPS, released

CLIPS Basic Programming Guide XV

CLIPS Reference Manual

respectively in the summer and fall of 1987, featured greatly improved performance, external
language integration, and delivery capabilities. Version 4.2 of CLIPS, released in the summer of
1988, was a complete rewrite of CLIPS for code modularity. Also included with this release
were an architecture manual providing a detailed description of the CLIPS software architecture
and a utility program for aiding in the verification and validation of rule-based programs.
Version 4.3 of CLIPS, released in the summer of 1989, added still more functionality.

Originaly, the primary representation methodology in CLIPS was a forward chaining rule lan-
guage based on the Rete algorithm (hence the Production System part of the CLIPS acronym).
Version 5.0 of CLIPS, released in the spring of 1991, introduced two new programming
paradigms. procedural programming (as found in languages such as C and Ada) and
object-oriented programming (as found in languages such as the Common Lisp Object System
and Smalltalk). The object-oriented programming language provided within CLIPS is called the
CLIPS Object-Oriented Language (COOL). Version 5.1 of CLIPS, released in the fall of 1991,
was primarily a software maintenance upgrade required to support the newly developed and/or
enhanced X Window, MS-DOS, and Macintosh interfaces. Version 6.0 of CLIPS, released in
1993, provided support for the development of modular programs and tight integration between
the object-oriented and rule-based programming capabilities of CLIPS.

Because of its portability, extensibility, capabilities, and low-cost, CLIPS has received
widespread acceptance throughout the government, industry, and academia. The development of
CLIPS has helped to improve the ability to deliver expert system technology throughout the
public and private sectors for a wide range of applications and diverse computing environments.
CLIPS is being used by numerous users throughout the public and private community including:
all NASA sites and branches of the military, numerous federal bureaus, government contractors,
universities, and many private companies.

CLIPSis now maintained as public domain software by the main program authors who no longer
work for NASA. See appendix A of the Basic Programming Guide for information on obtaining
CLIPS and support.

CLIPSVersion 6.1

Version 6.1 of CLIPS contains two major enhancements. First, the CLIPS source code is now
C++ compatible. It can now be compiled using either an ANSI C or C++ compiler. Second,
severa new commands provide the ability to profile the time spent in constructs and user-defined
functions. For a detailed listing of differences between versions 5.1 and 6.0 of CLIPS and
differences between the 6.x releases, refer to appendices B and C of the Basic Programming
Guide and appendices C and D of the Advanced Programming Guide.

XVi Preface

CLIPS Reference Manual
CLIPS Documentation

Two documents are provided with CLIPS.

» The CLIPS Reference Manual which is split into the following parts:

* Volume | - The Basic Programming Guide, which provides the definitive description of
CLIPS syntax and examples of usage.

* Volume Il - The Advanced Programming Guide, which provides detailed discussions of
the more sophisticated features in CLIPS and is intended for people with extensive
programming experience who are using CLIPS for advanced applications.

* Volume IIl - The Interfaces Guide, which provides information on machine-specific
interfaces.

* The CLIPS User’'s Guide which provides an introduction to CLIPS rule-based and

object-oriented programming and is intended for people with little or no expert system
experience.

CLIPS Basic Programming Guide XVii

CLIPS Reference Manual

Acknowledgements

As with any large project, CLIPS is the result of the efforts of numerous people. The primary
contributors have been: Robert Savely, previous branch chief of the STB and now chief scientist
of advanced software technology at JSC, who conceived the project and provided overal
direction and support; Chris Culbert, current branch chief of the STB, who managed the project,
wrote the original CLIPS Reference Manual, and designed the original version of CRSV; Gary
Riley, who designed and developed the rule-based portion of CLIPS, co-authored the CLIPS
Reference Manual and CLIPS Architecture Manual, and developed the Macintosh interface for
CLIPS; Brian Donnell, who designed and developed the CLIPS Object Oriented Language
(COOL), co-authored the CLIPS Reference Manual and CLIPS Architecture Manual, and
developed the previous MS-DOS interfaces for CLIPS; Bebe Ly, who was responsible for
maintenance and enhancements to CRSV and is now responsible for developing the X Window
interface for CLIPS; Chris Ortiz, who developed the Windows 95 interface for CLIPS; Dr.
Joseph Giarratano of the University of Houston-Clear Lake, who wrote the CLIPS User’s Guide;
and Frank Lopez, who designed and developed CLIPS version 1.0 and wrote the CLIPS 1.0
User's Guide.

Many other individuals contributed to the design, development, review, and general support of
CLIPS, including: Jack Aldridge, Carla Armstrong, Paul Baffes, Ann Baker, Stephen
Baudendistel, Les Berke, Tom Blinn, Marlon Boarnet, Dan Bochsler, Bob Brown, Barry
Cameron, Tim Cleghorn, Maor Paul Condit, Major Steve Cross, Andy Cunningham, Dan
Danley, Mark Engelberg, Kirt Fields, Ken Freeman, Kevin Greiner, Ervin Grice, Sharon Hecht,
Patti Herrick, Mark Hoffman, Grace Hua, Gordon Johnson, Phillip Johnston, Sam Juliano, Ed
Lineberry, Bowen Loftin, Linda Martin, Daniel McCoy, Terry McGregor, Becky McGuire, Scott
Meadows, C. J. Melebeck, Paul Mitchell, Steve Mueller, Bill Paseman, Cynthia Rathjen, Eric
Raymond, Reza Razavipour, Marsha Renals, Monica Rua, Tim Saito, Michael Sullivan, Gregg
Swietek, Eric Taylor, James Villarreal, Lui Wang, Bob Way, Jim Wescott, Charlie Wheeler, and
Wes White.

CLIPS Basic Programming Guide XiX

CLIPS Reference Manual

Section 1 - Introduction

Thismanual is the Basic Programming Guide for CLIPS. It isintended for usersinterested in the
syntax of CLIPS. No previous expert system background is required, athough a general
understanding of computer languages is assumed. Section 2 of this manual provides an overview
of the CLIPS language and basic terminology. Sections 3 through 11 provide additional details
regarding the CLIPS programming language on topics such as rules and the CLIPS Object
Oriented Programming Language (COOL). The types of actions and functions provided by
CLIPS are defined in section 12. Finally, commands typically used from the CLIPS interactive
interface are described in section 13.

The Basic Programming Guide documents just the basic CLIPS syntax. More advanced
capabilities, such as user-defined functions, embedded applications, etc., are documented more
fully in the Advanced Programming Guide. The Advanced Programming Guide is intended for
users who have a complete knowledge of the CLIPS syntax and a programming background. It is
not necessary to read the Advanced Programming Guideto learn how to use CLIPS. CLIPS can
be learned and simple expert systems can be built with the information provided in this manual.

CLIPS Basic Programming Guide 1

CLIPS Reference Manual

Section 2 - CLIPS Overview

This section gives a general overview of CLIPS and of the basic concepts used throughout this
manual.

21INTERACTING WITH CLIPS

CLIPS expert systems may be executed in three ways: interactively using a simple, text-oriented,
command prompt interface; interactively using a window/menu/mouse interface on certain ma-
chines; or as embedded expert systems in which the user provides a main program and controls
execution of the expert system. Embedded applications are discussed in the Advanced
Programming Guide. In addition, a series of commands can be automatically read directly from a
filewhen CLIPSisfirst started or as the result of the batch command.

The generic CLIPS interface is a simple, interactive, text-oriented, command prompt interface
for high portability. The standard usage is to create or edit a knowledge base using any standard
text editor, save the knowledge base as one or more text files, exit the editor and execute CLIPS,
then load the knowledge base into CLIPS. The interface provides commands for viewing the
current state of the system, tracing execution, adding or removing information, and clearing
CLIPS.

A more sophisticated window interface is available for the Macintosh, Windows 3.1, and X
Window environments. All interface commands described in this section are available in the
window interfaces. These interfaces are described in more detail in the Interfaces Guide.

2.1.1 Top Level Commands

The primary method for interacting with CLIPS in a non-embedded environment is through the
CLIPS command prompt (or top level). When the “CLIPS>" prompt is printed, a command
may be entered for evaluation. Commands may be function calls, constructs, global variables, or
constants. If afunction call is entered (see section 2.3.2), that function is evaluated and its return
value is printed. Function calls in CLIPS use a prefix notation—the operands to a function
always appear after the function name. Entering a construct definition (see section 2.3.3) at the
CLIPS prompt creates a new construct of the appropriate type. Entering a global variable (see
section 2.4.3) causes the value of the globa variable to be printed. Entering a constant (see
section 2.3.1) at the top level causes the constant to be printed (which is not very useful). For
example,

CLIPS (V6.0 05/12/93)
CLIPS> (+ 3 4)
7
CLIPS> (defglobal ?*x* = 3)
CLIPS> ?2*x*

CLIPS Basic Programming Guide 3

CLIPS Reference Manual

3

CLIPS> red
red

CLIPS>

The previous example first called the addition function adding the numbers 3 and 4 to yield the
result 7. A global variable ?*x* was then defined and given the value 3. The variable ?*x* was
then entered at the prompt and its value of 3 was returned. Finally the constant symbol red was
entered and was returned (since a constant evaluates to itself).

2.1.2 Automated Command Entry and L oading

Some operating systems allow additional arguments to be specified to a program when it begins
execution. When the CLIPS executable is started under such an operating system, CLIPS can be
made to automatically execute a series of commands read directly from a file or to load
constructs from a file. The command-line syntax for starting CLIPS and automatically reading
commands or loading constructs from afileis asfollows:

ntax
clips <option>*

<option> ::= -f <Ffilename> |
-f2 <Ffilename> |
-1 <filename>

For the -f option, <filename> is a file that contains CLIPS commands. If the exit command is
included in the file, CLIPS will halt and the user is returned to the operating system after
executing the commands in the file. If an exit command is not in the file, CLIPS will enter in its
interactive state after executing the commands in the file. Commands in the file should be
entered exactly as they would be interactively (i.e. opening and closing parentheses must be
included and a carriage return must be at the end of the command). The -f command line option
is equivalent to interactively entering a batch command as the first command to the CLIPS
prompt.

The -f2 option is similar to the -f option, but is equivalent to interactively entering a batch*
command. The commands stored in <filename> are immediately executed, but the commands
and their return values are not displayed as they would be for abatch command.

For the -l option, <filename> should be a file containing CLIPS constructs. This file will be

loaded into the environment. The -1 command line option is equivalent to interactively entering a
load command.

4 Section 2 - CLIPS Overview

CLIPS Reference Manual

2.1.3 Integration with Other Languages

When using an expert system, two kinds of integration are important. embedding CLIPS in other
systems, and calling external functions from CLIPS. CLIPS was designed to allow both kinds of
integration.

Using CLIPS as an embedded application allows the easy integration of CLIPS with existing
systems. Thisis useful in cases where the expert system is a small part of a larger task or needs
to share data with other functions. In these situations, CLIPS can be called as a subroutine and
information may be passed to and from CLIPS. Embedded applications are discussed in the
Advanced Programming Guide.

It also may be useful to call external functions while executing a CLIPS construct or from the
top-level of the interactive interface. CLIPS variables or literal values may be passed to an
external function, and functions may return values to CLIPS. The easy addition of external
functions alows CLIPS to be extended or customized in amost any way. The Advanced
Programming Guide describes how to integrate CLIPS with functions or systems written in C as
well asin other languages.

2.2 REFERENCE MANUAL SYNTAX

The terminology used throughout this manual to describe the CLIPS syntax is fairly common to
computer reference manuals. Plain words or characters, particularly parentheses, are to be typed
exactly as they appear. Bolded words or characters, however, represent a verbal description of
what is to be entered. Sequences of words enclosed in single-angle brackets (called terms or
non-terminal symbols), such as <string>, represent a single entity of the named class of items to
be supplied by the user. A non-termina symbol followed by a*, represents zero or more entities
of the named class of items which must be supplied by the user. A non-terminal symbol followed
by a +, represents one or more entities of the named class of items which must be supplied by the
user. A * or + by itself is to be typed as it appears. Vertical and horizontal ellipsis (three dots
arranged respectively vertically and horizontally) are aso used between non-terminal symbols to
indicate the occurrence of one or more entities. A term enclosed within square brackets, such as
[<comment>], is optional (i.e. it may or may not be included). Vertical bars indicate a choice
between multiple terms. White spaces (tabs, spaces, carriage returns) are used by CLIPS only as
delimiters between terms and are ignored otherwise (unless inside double quotes). The ::=
symbol is used to indicate how a non-terminal symbol can be replaced. For example, the
following syntax description indicates that a <lexeme> can be replaced with either a <symbol>
or a<string>.

<lexeme> ::= <symbol> | <string>

A complete BNF listing for CLIPS constructs along with some commonly used replacements for
non-terminal symbols are listed in appendix I.

CLIPS Basic Programming Guide 5

CLIPS Reference Manual

2.3 BASIC PROGRAMMING ELEMENTS

CLIPS provides three basic elements for writing programs. primitive data types, functions for
manipulating data, and constructs for adding to a knowledge base.

2.3.1 Data Types

CLIPS provides eight primitive data types for representing information. These types are float,
integer, symbol, string, external-address, fact-address, instance-name and instance-addr ess,
Numeric information can be represented using floats and integers. Symbolic information can be
represented using symbols and strings.

A number consists only of digits (0-9), adecimal point (.), asign (+ or -), and, optionally, an (e)
for exponential notation with its corresponding sign. A number is either stored as a float or an
integer. Any number consisting of an optional sign followed by only digits is stored as an
integer (represented internally by CLIPS as a C long integer). All other numbers are stored as
floats (represented internally by CLIPS as a C double-precision float). The number of significant
digits will depend on the machine implementation. Roundoff errors also may occur, again
depending on the machine implementation. As with any computer language, care should be taken
when comparing floating-point values to each other or comparing integers to floating-point
values. Some examples of integers are

237 15 +12 -32

Some examples of floats are

237e3 15.09 +12.0 -32.3e-7

Specificaly, integers use the following format:
<integer> ::= [+ | -] <digit>+
<digit> ::= 0] 1] 2]3]4]516]7181]29

Floating point numbers use the following format:

<float> ::= <integer> <exponent> |

<integer> . [exponent]

. <unsigned integer> [exponent]

<integer> . <unsigned integer> [exponent]
<unsigned-integer> :I:= <digit>+

<exponent> ::= e | E <integer>

6 Section 2 - CLIPS Overview

CLIPS Reference Manual

A sequence of characters which does not exactly follow the format of a number is treated as a
symbol (see the next paragraph).

A symbol in CLIPS is any sequence of characters that starts with any printable ASCII character
and is followed by zero or more printable ASCII characters. When a delimiter is found, the
symbol is ended. The following characters act as delimiters: any non-printable ASCII character
(including spaces, tabs, carriage returns, and line feeds), a double quote, opening and closing
parentheses “(” and “)”, an ampersand “&”, avertica bar “|”, aless than “<”, and atilde “~".
semicolon “;” starts a CLIPS comment (see section 2.3.3) and also acts as a delimiter. Delimiters
may not be included in symbols with the exception of the “<* character which may be the first
character in a symbol. In addition, a symbol may not begin with either the “?’ character or the
“$?" sequence of characters (although a symbol may contain these characters). These characters
are reserved for variables (which are discussed later in this section). CLIPS is case sensitive (i.e.
uppercase letters will match only uppercase letters). Note that numbers are a special case of
symbols (i.e. they satisfy the definition of a symbol, but they are treated as a different data type).
Some simple examples of symbols are

foo Hello B76-HI bad_value

127A 456-93-039 @+=-% 2each

A string is a set of characters that starts with a double quote (*) and is followed by zero or more
printable characters. A string ends with double quotes. Double quotes may be embedded within a
string by placing a backslash (\) in front of the character. A backslash may be embedded by
placing two consecutive backslash charactersin the string. Some examples are

"foo" "a and b" "1 number” "a\""quote"

Note that the string “abcd” is not the same as the symbol abcd. They both contain the same
characters, but are of different types. The same holds true for the instance name [abcd].

An external-addressis the address of an external data structure returned by a function (written
in alanguage such as C or Ada) that has been integrated with CLIPS. This data type can only be
created by calling a function (i.e. it is not possible to specify an external-address by typing the
value). In the basic version of CLIPS (which has no user defined external functions), it is not
possible to create this data type. Externa-addresses are discussed in further detail in the
Advanced Programming Guide. Within CLIPS, the printed representation of an external-address
is

<Pointer-XXXXXX>

where XXX XXX isthe external-address.

CLIPS Basic Programming Guide 7

CLIPS Reference Manual

A fact isalist of atomic values that are either referenced positionally (ordered facts) or by name
(non-ordered or template facts). Facts are referred to by index or address; section 2.4.1 gives
more details. The printed format of afact-addressis:

<Fact-XXX>
where XXX isthe fact-index.

An instanceis an object that is an instantiation or specific example of a class. Objectsin CLIPS
are defined to be floats, integers, symbols, strings, multifield values, external-addresses,
fact-addresses or instances of a user-defined class. A user-defined class is created using the
defclass construct. An instance of a user-defined class is created with the make-instance
function, and such an instance can be referred to uniquely by address. Within the scope of a
module (see section 10.5.1), an instance can also be uniquely referred to by name. All of these
definitions will be covered in more detail in Sections 2.4.2, 2.5.2.3, 2.6 and 9. An instance-name
is formed by enclosing a symbol within left and right brackets. Thus, pure symbols may not be
surrounded by brackets. If the CLIPS Object Oriented Language (COOL) is not included in a
particular CLIPS configuration, then brackets may be wrapped around symbols. Some examples
of instance-names are:

[pump-17] [fool [+++] [123-890]

Note that the brackets are not part of the name of the instance; they merely indicate that the
enclosed symbol is an instance-name. An instance-address can only be obtained by binding the
return value of a function called instance-address or by binding a variable to an instance
matching an object pattern on the LHS of a rule (i.e., it is not possible to specify an
instance-address by typing the value). A reference to an instance of a user-defined class can
either be by name or address; instance-addresses should only be used when speed is critical.
Within CLIPS, the printed representation of an instance-addressis

<Instance-XXX>
where XXX is the name of the instance.

In CLIPS, aplaceholder that has a value (one of the primitive data types) is referred to as afield.
The primitive data types are referred to as single-field values. A constant is a non-varying
single field value directly expressed as a series of characters (which means that
external-addresses, fact-addresses and instance-addresses cannot be expressed as constants
because they can only be obtained through function calls and variable bindings). A multifield
value is a sequence of zero or more single field values. When displayed by CLIPS, multifield
values are enclosed in parentheses. Collectively, single and multifield values are referred to as
values. Some examples of multifield values are

() (1 bar foo) O (x 3.0 "red" 567)

8 Section 2 - CLIPS Overview

CLIPS Reference Manual

Note that the multifield value (@) is not the same as the single field value a. Multifield values are
created either by calling functions which return multifield values, by using wildcard arguments
in a deffunction, object message-handler, or method, or by binding variables during the
pattern-matching process for rules. In CLIPS, a variable is a symbolic location that is used to
store values. Variables are used by many of the CLIPS constructs (such as defrule, deffunction,
defmethod, and defmessage-handler) and their usage is explained in the sections describing each
of these constructs.

2.3.2 Functions

A function in CLIPS s a piece of executable code identified by a specific name which returns a
useful value or performs a useful side effect (such as displaying information). Throughout the
CLIPS documentation, the word function is generally used to refer only to functions which
return a value (whereas commands and actions are used to refer to functions which have a side
effect but generally do not return avalue).

There are severa types of functions. User defined functions and system defined functions are
pieces of code that have been written in an external language (such as C, FORTRAN, or Ada)
and linked with the CLIPS environment. System defined functions are those functions that have
been defined internally by the CLIPS environment. User defined functions are functions that
have been defined externally of the CLIPS environment. A complete list of system defined
functions can be found in appendix J.

The deffunction construct alows users to define new functions directly in the CLIPS
environment using CLIPS syntax. Functions defined in this manner appear and act like other
functions, however, instead of being directly executed (as code written in an external language
would be) they are interpreted by the CLIPS environment. Deffunctions are also discussed in
section 2.5.2.1 in the context of procedural knowledge representation.

Generic functions can be defined using the defgeneric and defmethod constructs. Generic
functions allow different pieces of code to be executed depending upon the arguments passed to
the generic function. Thus, a single function name can be overloaded with more than one piece
of code. Generic functions are also discussed in section 2.5.2.2 in the context of procedura
knowledge representation.

Function calls in CLIPS use a prefix notation — the arguments to a function always appear after
the function name. Function calls begin with a left parenthesis, followed by the name of the
function, then the arguments to the function follow (each argument separated by one or more
spaces). Arguments to a function can be primitive data types, variables, or another function call.
The function call is then closed with a right parenthesis. Some examples of function calls using
the addition (+) and multiplication (*) functions are shown following.

CLIPS Basic Programming Guide 9

CLIPS Reference Manual

(+ 3 45)

(* 5 6.0 2)

(+ 3 (89 4

(*8 (+3(*234) 9 (3 4)

While a function refers to a piece of executable code identified by a specific name, an
expression refers to a function which has its arguments specified (which may or may not be
functions calls as well). Thus the previous examples are expressions which make calls to the *
and + functions.

2.3.3 Constructs

Several defining constructs appear in CLIPS. defmodule, defrule, deffacts, deftemplate,
defglobal, deffunction, defclass, definstances, defmessage-handler, defgeneric, and
defmethod. All constructs in CLIPS are surrounded by parentheses. The construct opens with a
left parenthesis and closes with a right parenthesis. Defining a construct differs from calling a
function primarily in effect. Typically a function call leaves the CLIPS environment unchanged
(with some notable exceptions such as resetting or clearing the environment or opening a file).
Defining a construct, however, is explicitly intended to alter the CLIPS environment by adding
to the CLIPS knowledge base. Unlike function calls, constructs never have areturn value.

As with any programming language, it is highly beneficial to comment CLIPS code. All
constructs (with the exception of defglobal) allow a comment directly following the construct
name. Comments also can be placed within CLIPS code by using a semicolon (;). Everything
from the semicolon until the next return character will be ignored by CLIPS. If the semicolon is
the first character in the line, the entire line will be treated as a comment. Examples of
commented code will be provided throughout the reference manual. Semicolon commented text
is not saved by CLIPS when loading constructs (however, the optional comment string within a
construct is saved).

24 DATA ABSTRACTION

There are three primary formats for representing information in CLIPS: facts, objects and global
variables.

2.4.1 Facts

Facts are one of the basic high-level forms for representing information in a CLIPS system. Each
fact represents a piece of information which has been placed in the current list of facts, called the
fact-list. Facts are the fundamental unit of data used by rules (see section 2.5.1).

Facts may be added to the fact-list (using the assert command), removed from the fact-list (using
the retract command), modified (using the modify command), or duplicated (using the

10 Section 2 - CLIPS Overview

CLIPS Reference Manual

duplicate command) through explicit user interaction or as a CLIPS program executes. The
number of facts in the fact-list and the amount of information that can be stored in a fact is
limited only by the amount of memory in the computer. If afact is asserted into the fact-list that
exactly matches an aready existing fact, the new assertion will be ignored (however, this
behavior can be changed, see sections 13.4.4 and 13.4.5).

Some commands, such as the retract, modify, and duplicate commands, require a fact to be
specified. A fact can be specified either by fact-index or fact-address. Whenever a fact is added
(or modified) it is given a unique integer index called a fact-index. Fact-indices start at zero and
are incremented by one for each new or changed fact. Whenever a reset or clear command is
given, the fact-indices restart at zero. A fact may also be specified through the use of a
fact-address. A fact-address can be obtained by capturing the return value of commands which
return fact addresses (such as assert, modify, and duplicate) or by binding a variable to the fact
address of a fact which matches a pattern on the LHS of arule (see section 5.4.1.8 for details).

A fact identifier is a shorthand notation for displaying a fact. It consists of the character “f”,
followed by a dash, followed by the fact-index of the fact. For example, f-10 refers to the fact
with fact-index 10.

A fact isstored in one of two formats: ordered or non-ordered.

2.4.1.1 Ordered Facts

Ordered facts consist of a symbol followed by a sequence of zero or more fields separated by
spaces and delimited by an opening parenthesis on the left and a closing parenthesis on the right.
The first field of an ordered fact specifies a “relation” that applied to the remaining fields in the
ordered fact. For example, (father-of jack bill) states that bill isthe father of jack.

Some examples of ordered facts are shown following.

(the pump is on)
(altitude is 10000 feet)
(grocery-list bread milk eggs)

Fields in a non-ordered fact may be of any of the primitive data types (with the exception of the
first field which must be a symbol), and no restriction is placed on the ordering of fields. The
following symbols are reserved and should not be used as the first field in any fact (ordered or
non-ordered): test, and, or, not, declare, logical, object, exists, and forall. These words are
reserved only when used as a deftemplate name (whether explicitly defined or implied). These
symbols may be used as slot names, however, thisis not recommended.

CLIPS Basic Programming Guide 11

CLIPS Reference Manual

2.4.1.2 Non-ordered Facts

Ordered facts encode information positionally. To access that information, a user must know not
only what data is stored in a fact but which field contains the data. Non-ordered (or
deftemplate) facts provide the user with the ability to abstract the structure of a fact by assign-
ing names to each field in the fact. The deftemplate construct (see section 3) is used to create a
template which can then be used to access fields by name. The deftemplate construct is
analogous to arecord or structure definition in programming languages such as Pascal and C.

The deftemplate construct allows the name of a template to be defined aong with zero or more
definitions of named fields or dots. Unlike ordered facts, the dots of a deftemplate fact may be
constrained by type, value, and numeric range. In addition, default values can be specified for a
dot. A dlot consists of an opening parenthesis followed by the name of the slot, zero or more
fields, and a closing parenthesis. Note that slots may not be used in an ordered fact and that
positional fields may not be used in a deftemplate fact.

Deftemplate facts are distinguished from ordered facts by the first field within the fact. The first
field of al facts must be a symbol, however, if that symbol corresponds to the name of a
deftemplate, then the fact is a deftemplate fact. The first field of a deftemplate fact is followed by
alist of zero or more dlots. As with ordered facts, deftemplate facts are enclosed by an opening
parenthesis on the left and a closing parenthesis on the right.

Some examples of deftemplate facts are shown following.

(client (name "Joe Brown') (id X9345A))

(point-mass (x-velocity 100) (y-velocity -200))

(class (teacher "Martha Jones™) (#-students 30) (Room "37A™))
(grocery-list (#-of-items 3) (items bread milk eggs))

Note that the order of slotsin a deftemplate fact is not important. For example the following facts
are all identical:

(class (teacher "Martha Jones™) (#-students 30) (Room "37A™))

(class (#-students 30) (teacher "Martha Jones™"™) (Room "37A™))
(class (Room "37A"™) (#-students 30) (teacher "Martha Jones™))

In contrast, note that the following ordered fact are not identical.
(class "Martha Jones'™ 30 "37A™)

(class 30 "Martha Jones"™ "37A™)
(class "37A" 30 "Martha Jones™)

The immediate advantages of clarity and slot order independence for deftemplate facts should be
readily apparent.

In addition to being asserted and retracted, deftemplate facts can also be modified and duplicated
(using the modify and duplicate commands). Modifying a fact changes a set of specified slots

12 Section 2 - CLIPS Overview

CLIPS Reference Manual

within that fact. Duplicating a fact creates a new fact identical to the original fact and then
changes a set of specified dots within the new fact. The benefit of using the modify and
duplicate commands is that slots which don’t change, don’t have to be specified.

2.4.1.3 | nitial Facts

The deffacts construct allows a set of a priori or initial knowledge to be specified as a collection
of facts. When the CLIPS environment is reset (using the reset command) every fact specified
within a deffacts construct in the CLIPS knowledge base is added to the fact-list.

2.4.2 Objects

An object in CLIPS is defined to be a symbol, a string, a floating-point or integer number, a
multifield value, an external-address or an instance of a user-defined class. Section 2.3.1 explains
how to reference instances of user-defined classes. Objects are described in two basic parts.
properties and behavior. A class is a template for common properties and behavior of objects
which are instances of that class. Some examples of objects and their classes are:

Object (Printed Representation) Class
Rolls-Royce SYMBOL
"Rolls-Royce" STRING
8.0 FLOAT
8 INTEGER
(8.0 Ralls-Royce 8 [Rolls-Royce]) MULTIFIELD
<Pointer- 0OOCF61AB> EXTERNAL-ADDRESS
[Rolls-Royce] CAR (auser-defined class)

Objects in CLIPS are split into two important categories. primitive types and instances of
user-defined classes. These two types of objects differ in the way they are referenced, created
and deleted as well as how their properties are specified.

Primitive type objects are referenced ssimply by giving their value, and they are created and
deleted implicitly by CLIPS as they are needed. Primitive type objects have no names or dots,
and their classes are predefined by CLIPS. The behavior of primitive type objects is like that of
instances of user-defined classes, however, in that you can define message-handlers and attach
them to the primitive type classes. It is anticipated that primitive types will not be used often in
an object-oriented programming (OOP) context; the main reason classes are provided for them is
for use in generic functions. Generic functions use the classes of their arguments to determine
which methods to execute; sections 2.3.2, 2.5.2.2 and 8 give more detail.

An instance of a user-defined class is referenced by name or address, and they are created and
deleted explicitly via messages and special functions. The properties of an instance of a

CLIPS Basic Programming Guide 13

CLIPS Reference Manual

user-defined class are expressed by a set of dots, which the object obtains from its class. As
previously defined, slots are named single field or multifield values. For example, the object
Rolls-Royce is an instance of the class CAR. One of the dlotsin class CAR might be “price”, and
the Rolls-Royce object’s value for this slot might be $75,000.00. The behavior of an object is
specified in terms of procedural code called message-handlers, which are attached to the object’s
class. Message-handlers and manipulation of objects are described in Section 2.5.2.3. All
instances of a user-defined class have the same set of dots, but each instance may have different
values for those slots. However, two instances which have the same set of dlots do not
necessarily belong to the same class, since two different classes can have identical sets of dots.

The primary difference between object slots and template (or non-ordered) facts is the notion of
inheritance. Inheritance allows the properties and behavior of a class to be described in terms of
other classes. COOL supports multiple inheritance: a class may directly inherit slots and
message-handlers from more than one class. Since inheritance is only useful for slots and
message-handlers, it is often not meaningful to inherit from one of the primitive type classes,
such as MULTIFIELD or NUMBER. This is because these classes cannot have slots and usually
do not have message-handlers.

Further discussion on these topics can be found in Section 2.6, and a comprehensive description
of the CLIPS Object-Oriented Language (COOL) can be found in Section 9.

2.4.2.1 Initial Objects

The definstances construct allows a set of a priori or initial knowledge to be specified as a
collection of instances of user-defined classes. When the CLIPS environment is reset (using the
reset command) every instance specified within a definstances construct in the CLIPS
knowledge base is added to the instance-list.

2.4.3 Global Variables

The defglobal construct allows variables to be defined which are global in scope throughout the
CLIPS environment. That is, a global variable can be accessed anywhere in the CLIPS
environment and retains its value independent of other constructs. In contrast, some constructs
(such as defrule and deffunction) allow local variables to be defined within the definition of the
construct. These local variables can be referred to within the construct, but have no meaning
outside the construct. A CLIPS global variable is similar to global variables found in procedural
programming languages such as LISP, C and Ada. Unlike C and Ada, however, CLIPS global
variables are weakly typed (they are not restricted to holding a value of a single datatype).

14 Section 2 - CLIPS Overview

CLIPS Reference Manual

2.5 KNOWLEDGE REPRESENTATION

CLIPS provides heuristic and procedural paradigms for representing knowledge. These two
paradigms are discussed in this section. Object-oriented programming (which combines aspects
of both data abstraction and procedural knowledge) is discussed in section 2.6.

2.5.1 Heuristic Knowledge — Rules

One of the primary methods of representing knowledge in CLIPS is a rule. Rules are used to
represent heuristics, or “rules of thumb”, which specify a set of actions to be performed for a
given situation. The developer of an expert system defines a set of rules which collectively work
together to solve a problem. A rule is composed of an antecedent and a consequent. The
antecedent of arule is also referred to as the if portion or the left-hand side (LHS) of the rule.
The consequent of arule is also referred to as the then portion or the right-hand side (RHS) of
therule.

The antecedent of aruleisaset of conditions (or conditional elements) which must be satisfied
for the rule to be applicable. In CLIPS, the conditions of a rule are satisfied based on the
existence or non-existence of specified facts in the fact-list or specified instances of user-defined
classes in the instance-list. One type of condition which can be specified is a pattern. Patterns
consist of a set of restrictions which are used to determine which facts or objects satisfy the
condition specified by the pattern. The process of matching facts and objects to patternsis called
pattern-matching. CLIPS provides a mechanism, caled the inference engine, which
automatically matches patterns against the current state of the fact-list and instance-list and
determines which rules are applicable.

The consequent of arule is the set of actions to be executed when the rule is applicable. The
actions of applicable rules are executed when the CLIPS inference engine is instructed to begin
execution of applicable rules. If more than one rule is applicable, the inference engine uses a
conflict resolution strategy to select which rule should have its actions executed. The actions of
the selected rule are executed (which may affect the list of applicable rules) and then the
inference engine selects another rule and executes its actions. This process continues until no
applicable rules remain.

In many ways, rules can be thought of as IF-THEN statements found in procedural programming
languages such as C and Ada. However, the conditions of an IF-THEN statement in a procedural
language are only evaluated when the program flow of control is directly at the IF-THEN
statement. In contrast, rules act like WHENEVER-THEN statements. The inference engine
always keeps track of rules which have their conditions satisfied and thus rules can immediately
be executed when they are applicable. In this sense, rules are similar to exception handlers found
in languages such as Ada.

CLIPS Basic Programming Guide 15

CLIPS Reference Manual

2.5.2 Procedural Knowledge

CLIPS aso supports a procedural paradigm for representing knowledge like that of more
conventional languages, such as Pascal and C. Deffunctions and generic functions allow the user
to define new executable elements to CLIPS that perform a useful side-effect or return a useful
value. These new functions can be caled just like the built-in functions of CLIPS.
Message-handlers allow the user to define the behavior of objects by specifying their response to
messages. Deffunctions, generic functions and message-handlers are all procedural pieces of
code specified by the user that CLIPS executes interpretively at the appropriate times.
Defmodules alow a knowledge base to be partitioned.

2.5.2.1 Deffunctions

Deffunctions allow you to define new functions in CLIPS directly. In previous versions of
CLIPS, the only way to have user-defined functions was to write them in some externd
language, such as C or Ada, and then recompile and relink CLIPS with the new functions. The
body of a deffunction is a series of expressions similar to the RHS of arule that are executed in
order by CLIPS when the deffunction is called. The return value of a deffunction is the value of
the last expression evaluated within the deffunction. Calling a deffunction is identical to calling
any other function in CLIPS. Deffunctions are covered comprehensively in Section 7.

2.5.2.2 Generic Functions

Generic functions are similar to deffunctions in that they can be used to define new procedural
code directly in CLIPS, and they can be called like any other function. However, generic
functions are much more powerful because they can be overloaded. A generic function will do
different things depending on the types (or classes) and number of its arguments. Generic
functions are comprised of multiple components called methods, where each method handles
different cases of arguments for the generic function. For example, you might overload the “+”
operator to do string concatenation when it is passed strings as arguments. However, the “+”
operator will still perform arithmetic addition when passed numbers. There are two methods in
this example: an explicit one for strings defined by the user and an implicit one which is the
standard CLIPS arithmetic addition operator. The return value of a generic function is the
evauation of the last expression in the method executed. Generic functions are covered
comprehensively in Section 8.

2.5.2.3 Object M essage-Passing

Objects are described in two basic parts: properties and behavior. Object properties are specified
in terms of slots obtained from the object’s class; dots are discussed in more detail in Section
2.4.2. Object behavior is specified in terms of procedural code called message-handlers which
are attached to the object’s class. Objects are manipulated via message-passing. For example, to

16 Section 2 - CLIPS Overview

CLIPS Reference Manual

cause the Rolls-Royce object, which is an instance of the class CAR, to start its engine, the user
must call the send function to send the message “start-engine” to the Rolls-Royce. How the
Rolls-Royce responds to this message will be dictated by the execution of the message-handlers
for “start-engine” attached to the CAR class and any of its superclasses. The result of a message
issimilar to afunction call in CLIPS: a useful return value or side-effect.

Further discussion on message-handlers can be found in Section 2.6, and a comprehensive
description of the CLIPS Object-Oriented Language (COOL) can be found in Section 9.

2.5.2.4 Defmodules

Defmodules allow a knowledge based to be partitioned. Every construct defined must be placed
in a module. The programmer can explicitly control which constructs in a module are visible to
other modules and which constructs from other modules are visible to a module. The visibility of
facts and instances between modules can be controlled in a similar manner. Modules can aso be
used to control the flow of execution of rules. Defmodules are covered comprehensively in
Section 10.

2.6 CLIPSOBJECT-ORIENTED LANGUAGE

This section gives a brief overview of the programming el ements of the CLIPS Object-Oriented
Language (COOL). COOL includes elements of data abstraction and knowledge representation.
This section gives an overview of COOL as a whole, incorporating the elements of both
concepts. Object references are discussed in Section 2.3.1, and the structure of objects is
discussed in Sections 2.4.2 and 2.5.2.3. The comprehensive details of COOL are given in Section
0.

2.6.1 COOL Deviations from a Pure OOP Paradigm

In a pure OOP language, all programming elements are objects which can only be manipulated
viamessages. In CLIPS, the definition of an object is much more constrained: floating-point and
integer numbers, symbols, strings, multifield values, external-addresses, fact-addresses and
instances of user-defined classes. All objects may be manipulated with messages, except
instances of user-defined classes, which must be. For example, in a pure OOP system, to add two
numbers together, you would send the message “add” to the first number object with the second
number object as an argument. In CLIPS, you may simply call the “+” function with the two
numbers as arguments, or you can define message-handlers for the NUMBER class which allow
youtodoitin the purely OOP fashion.

All programming elements which are not objects must be manipulated in a non-OOP utilizing
function tailored for those programming elements. For example, to print a rule, you call the
function ppdefrule; you do not send amessage “print” to arule, sinceit is not an object.

CLIPS Basic Programming Guide 17

CLIPS Reference Manual

2.6.2 Primary OOP Features

There are five primary characteristics that an OOP system must possess. abstraction,
encapsulation, inheritance, polymorphism and dynamic binding An abstraction is a higher
level, more intuitive representation for a complex concept. Encapsulation is the process whereby
the implementation details of an object are masked by a well-defined external interface. Classes
may be described in terms of other classes by use of inheritance. Polymorphism is the ability of
different objects to respond to the same message in a specialized manner. Dynamic binding is the
ability to defer the selection of which specific message-handlers will be caled for a message
until run-time.

The definitions of new classes allows the abstraction of new data types in COOL. The slots and
message-handlers of these classes describe the properties and behavior of a new group of objects.

COOL supports encapsulation by requiring message-passing for the manipulation of instances of
user-defined classes. An instance cannot respond to a message for which it does not have a
defined message-handler.

COOL allows the user to specify some or al of the properties and behavior of a class in terms of
one or more unrelated superclasses. This process is called multiple inheritance. COOL uses the
existing hierarchy of classes to establish a linear ordering called the class precedence list for a
new class. Objects which are instances of this new class can inherit properties (slots) and
behavior (message-handlers) from each of the classes in the class precedence list. The word
precedence implies that properties and behavior of a class first in the list override conflicting
definitions of aclasslater in thelist.

One COOL object can respond to a message in a completely different way than another object;
this is polymorphism. This is accomplished by attaching message-handlers with differing actions
but which have the same name to the classes of these two objects respectively.

Dynamic binding is supported in that an object reference (see section 2.3.1) in a send function
call is not bound until run-time. For example, an instance-name or variable might refer to one
object at the time amessage is sent and another at alater time.

2.6.3 Instance-set Queriesand Distributed Actions

In addition to the ability of rules to directly pattern-match on objects, COOL provides a useful
guery system for determining, grouping and performing actions on sets of instances of
user-defined classes that meet user-defined criteria. The query system allows you to associate
instances that are either related or not. You can simply use the query system to determine if a
particular association set exists, you can save the set for future reference, or you can iterate an
action over the set. An example of the use of the query system might be to find the set of all pairs
of boys and girls that have the same age.

18 Section 2 - CLIPS Overview

CLIPS Reference Manual

Section 3 - Deftemplate Construct

Ordered facts encode information positionally. To access that information, a user must know not
only what data is stored in a fact but which field contains the data. Non-ordered (or deftemplate)
facts provide the user with the ability to abstract the structure of a fact by assigning names to
each field found within the fact. The deftemplate construct is used to create a template which
can then be used by non-ordered facts to access fields of the fact by name. The deftemplate
construct is analogous to a record or structure definition in programming languages such as
Pascal and C.

The syntax of the deftemplate construct is:

Syntax

(deftemplate <deftemplate-name> [<comment>]
<slot-definition>%*)

<slot-definition> ::= <single-slot-definition> |
<multislot-definition>

<single-slot-definition>
::= (slot <slot-name>
<template-attribute>%*)

<multislot-definition>
::= (multislot <slot-name>
<template-attribute>¥*)

<template-attribute> ::= <default-attribute> |
<constraint-attribute>

<default-attribute>
::= (default ?DERIVE | ?NONE | <expression>%*) |
(default-dynamic <expression>¥*)

Redefining a deftemplate will result in the previous definition being discarded. A deftemplate
can not be redefined while it is being used (for example, by a fact or pattern in a rule). A
deftemplate can have any number of single or multifeld slots. CLIPS always enforces the single
and multifield definitions of the deftemplate. For example, it is an error to store (or match)
multiple valuesin asingle-field dot.

Example
(deftemplate object
(slot name)
(slot location)
(slot on-top-of)
(slot weight)
(multislot contents))

CLIPS Basic Programming Guide 19

CLIPS Reference Manual

3.1SLOT DEFAULT VALUES

The <default-attribute> specifies the value to be used for unspecified slots of a template fact
when an assert action is performed. One of two types of default selections can be chosen: default
or dynamic-default.

The default attribute specifies a static default value. The specified expressions are evaluated
once when the deftemplate is defined and the result is stored with the deftemplate. The result is
assigned to the appropriate slot when a new template fact is asserted. If the keyword ?2DERIVE is
used for the default value, then a default value is derived from the constraints for the ot (see
section 11.5 for more details). By default, the default attribute for aslot is (default ?ZDERIVE). If
the keyword ?NONE is used for the default value, then a value must explicitly be assigned for a
slot when an assert is performed. It is an error to assert a template fact without specifying the
values for the (default P7NONE) dlots.

The default-dynamic attribute is a dynamic default. The specified expressions are evaluated
every time atemplate facts is asserted, and the result is assigned to the appropriate slot.

A single-field ot may only have a single value for its default. Any number of values may be
specified as the default for a multifield slot (as long as the number of values satisfies the
cardinality attribute for the slot).

Example
CLIPS> (clear)
CLIPS>
(deftemplate foo
(slot w (default ?NONE))
(slot x (default ?DERIVE))
(slot y (default (gensym*)))
(slot z (default-dynamic (gensym*))))
CLIPS> (assert (foo))

[TMPLTRHS1] Slot w requires a value because of its (default ?NONE)

attribute.

CLIPS> (assert (foo (w 3)))

<Fact-0>

CLIPS> (assert (foo (w 4)))

<Fact-1>

CLIPS> (facts)

-0 (foo (w 3) (x nil) (y genl) (z gen2))
f-1 (foo (w 4) (x nil) (y genl) (z gen3l))
For a total of 2 facts.

CLIPS>

3.2SLOT DEFAULT CONSTRAINTSFOR PATTERN-MATCHING

Single-field dots that are not specified in a pattern on the LHS of a rule are defaulted to
single-field wildcards (?) and multifield slots are defaulted to multifield wildcards ($7?).

20 Section 3 - Deftemplate Construct

CLIPS Reference Manual

3.3SLOT VALUE CONSTRAINT ATTRIBUTES

The syntax and functionality of single and multifield constraint attributes are described in detail
in Section 11. Static and dynamic constraint checking for deftemplates is supported. Static
checking is performed when constructs or commands using deftemplates slots are being parsed
(and the specific deftemplate associated with the construct or command can be immediately
determined). Template patterns used on the LHS of a rule are aso checked to determine if
constraint conflicts exist among variables used in more that one slot. Errors for inappropriate
values are immediately signaled. References to fact-indexes made in commands such as modify
and duplicate are considered to be ambiguous and are never checked using static checking.
Static checking is enabled by default. This behavior can be changed using the
set-static-constraint-checking function. Dynamic checking is also supported. If dynamic
checking is enabled, then new deftemplate facts have their values checked when added to the
fact-list. This dynamic checking is disabled by default. This behavior can be changed using the
set-dynamic-constraint-checking function. If an violation occurs when dynamic checking is
being performed, then execution will be halted.

Example
(deftemplate object
(slot name
(type SYMBOL)
(default ?DERIVE))
(slot location
(type SYMBOL)
(default ?DERIVE))
(slot on-top-of
(type SYMBOL)
(default floor))
(slot weight
(allowed-values light heavy)
(default light))
(multislot contents
(type SYMBOL)
(default ?DERIVE)))

34IMPLIED DEFTEMPLATES

Asserting or referring to an ordered fact (such as in a LHS pattern) creates an “implied”
deftemplate with a single implied multifield slot. The implied multifield slot’s name is not
printed when the fact is printed. The implied deftemplate can be manipulated and examined
identically to any user defined deftemplate (although it has no pretty print form).

Example
CLIPS> (clear)
CLIPS> (assert (foo 1 2 3))
<Fact-0>
CLIPS> (defrule yak (bar 4 5 6) =>)
CLIPS> (list-deftemplates)
initial-fact

CLIPS Basic Programming Guide 21

CLIPS Reference Manual

22

foo

bar

For a total of 3 deftemplates.
CLIPS> (facts)

-0 (foo 1 2 3)
For a total of 1 fact.
CLIPS>

Section 3 - Deftemplate Construct

CLIPS Reference Manual

Section 4 - Deffacts Construct

With the deffacts construct, a list of facts can be defined which are automatically asserted
whenever the reset command is performed. Facts asserted through deffacts may be retracted or
pattern-matched like any other fact. The initial fact-list, including any defined deffacts, is always
reconstructed after areset command.

ntax
(deffacts <deffacts-name> [<comment>]
<RHS-pattern>%*)

Redefining a currently existing deffacts causes the previous deffacts with the same name to be
removed even if the new definition has errors in it. There may be multiple deffacts constructs
and any number of facts (either ordered or deftemplate) may be asserted into the initial fact-list
by each deffacts construct.

Dynamic expressions may be included in a fact by embedding the expression directly within the
fact. All such expressions are evaluated when CLIPS is reset.

Example
(deffacts startup "Refrigerator Status"
(refrigerator light on)
(refrigerator door open)
(refrigerator temp (get-temp)))

Upon startup and after a clear command, CLIPS automatically constructs the following
deftemplate and deffacts.

(deftemplate initial-fact)

(deffacts initial-fact
(initial-fact))

This deffacts provides a convenient method for starting the execution of a system — Rules that
are given no conditional element are automatically given a pattern which matches the
(initial-fact) fact. The initial-fact deffacts can be treated identically as any other deffacts defined
by the user.

CLIPS Basic Programming Guide 23

CLIPS Reference Manual

Section 5 - Defrule Construct

One of the primary methods of representing knowledge in CLIPS isarule. A rule isacollection
of conditions and the actions to be taken if the conditions are met. The developer of an expert
system defines the rules which describe how to solve a problem. Rules execute (or fire) based on
the existence or non-existence of facts or instances of user-defined classes. CLIPS provides the
mechanism (the inference engine) which attempts to match the rules to the current state of the
system (as represented by the fact-list and instance-list) and applies the actions.

Throughout this section, the term pattern entity will be used to refer to either a fact or an
instance of a user-defined class.

5.1 DEFINING RULES

Rules are defined using the defrule construct.

ntax
(defrule <rule-name> [<comment>]
[<declaration>] ; Rule Properties
<conditional-element>* ; Left-Hand Side (LHS)
=>
<action>%*) ; Right-Hand Side (RHS)

Redefining a currently existing defrule causes the previous defrule with the same name to be
removed even if the new definition has errorsin it. The LHS is made up of a series of conditional
elements (CEs) which typically consist of pattern conditional elements (or just ssmply patterns)
to be matched against pattern entities. An implicit and conditional element always surrounds all
the patterns on the LHS. The RHS contains alist of actions to be performed when the LHS of the
rule is satisfied. In addition, the LHS of a rule may also contain declarations about the rule’s
properties immediately following the rule’'s name and comment (see section 5.4.10 for more
details). The arrow (=>) separates the LHS from the RHS. There is no limit to the number of
conditional elements or actions arule may have (other than the limitation placed by actua avail-
able memory). Actions are performed sequentialy if, and only if, all conditional elements on the
LHS are satisfied.

If no conditional elements are on the LHS, the pattern CE (initial-fact) or (initial-object) is
automatically used. If no actions are on the RHS, the rule can be activated and fired but nothing
will happen.

As rules are defined, they are incrementally reset. This means that CEs in newly defined rules

can be satisfied by pattern entities at the time the rule is defined, in addition to pattern entities
created after the rule is defined (see sections 13.1.8, 13.6.9, and 13.6.10 for more details).

CLIPS Basic Programming Guide 25

CLIPS Reference Manual

Example

(defrule example-rule "This is an example of a simple rule”
(refrigerator light on)
(refrigerator door open)
=>
(assert (refrigerator food spoiled)))

5.2BASIC CYCLE OF RULE EXECUTION

Once a knowledge base (in the form of rules) is built and the fact-list and instance-list is
prepared, CLIPS is ready to execute rules. In a conventional language, the starting point, the
stopping point, and the sequence of operations are defined explicitly by the programmer. With
CLIPS, the program flow does not need to be defined quite so explicitly. The knowledge (rules)
and the data (facts and instances) are separated, and the inference engine provided by CLIPS is
used to apply the knowledge to the data. The basic execution cycleis asfollows:

a)

b)

d)

26

If the rule firing limit has been reached or there is no current focus, then execution is halted.
Otherwise, the top rule on the agenda of the module which is the current focus is selected
for execution. If there are no rules on that agenda, then the current focus is removed from
the focus stack and the current focus becomes the next module on the focus stack. If the
focus stack is empty, then execution is halted, otherwise step a is executed again. See
sections 5.4.10.2, 10.6, 12.2, and 13.7 for information on the focus stack and the current
focus.

The right-hand side (RHS) actions of the selected rule are executed. The use of the return
function on the RHS of a rule may remove the current focus from the focus stack (see
sections 10.6 and 12.6.7). The number of rules fired is incremented for use with the rule
firing limit.

As aresult of step b, rules may be activated or deactivated. Activated rules (those rules
whose conditions are currently satisfied) are placed on the agenda of the module in which
they are defined. The placement on the agenda is determined by the salience of the rule and
the current conflict resolution strategy (see sections 5.3, 5.4.10, 13.7.5, and 13.7.6).
Deactivated rules are removed from the agenda. If the activations item is being watched (see
section 13.2), then an informational message will be displayed each time a rule is activated
or deactivated.

If dynamic salience is being used, the salience values for al rules on the agenda are

reevaluated (see sections 5.4.10, 13.7.9, and 13.7.10). Repest the cycle beginning with step
a

Section 5 - Defrule Construct

CLIPS Reference Manual

5.3 CONFLICT RESOLUTION STRATEGIES

The agenda is the list of all rules which have their conditions satisfied (and have not yet been
executed). Each module has its own agenda. The agenda acts similar to a stack (the top rule on
the agenda is the first one to be executed). When arule is newly activated, its placement on the
agendais based (in order) on the following factors:

a) Newly activated rules are placed above al rules of lower salience and below all rules of
higher salience.

b) Among rules of equal salience, the current conflict resolution strategy is used to determine
the placement among the other rules of equal salience.

c) If aruleisactivated (along with several other rules) by the same assertion or retraction of a
fact, and steps a and b are unable to specify an ordering, then the rule is arbitrarily (not
randomly) ordered in relation to the other rules with which it was activated. Note, in this
respect, the order in which rules are defined has an arbitrary effect on conflict resolution
(which is highly dependent upon the current underlying implementation of rules). Do not
depend upon this arbitrary ordering for the proper execution of your rules.

CLIPS provides seven conflict resolution strategies: depth, breadth, ssmplicity, complexity, lex,
mea, and random. The default strategy is depth. The current strategy can be set by using the
set-strategy command (which will reorder the agenda based upon the new strategy).

5.3.1 Depth Strategy

Newly activated rules are placed above all rules of the same salience. For example, given that
fact-a activates rule-1 and rule-2 and fact-b activates rule-3 and rule-4, then if fact-a is asserted
before fact-b, rule-3 and rule-4 will be above rule-1 and rule-2 on the agenda. However, the
position of rule-1 relative to rule-2 and rule-3 relative to rule-4 will be arbitrary.

5.3.2 Breadth Strategy

Newly activated rules are placed below all rules of the same salience. For example, given that
fact-a activates rule-1 and rule-2 and fact-b activates rule-3 and rule-4, then if fact-a is asserted
before fact-b, rule-1 and rule-2 will be above rule-3 and rule-4 on the agenda. However, the
position of rule-1 relative to rule-2 and rule-3 relative to rule-4 will be arbitrary.

5.3.3 Simplicity Strategy

Among rules of the same salience, newly activated rules are placed above all activations of rules
with equal or higher specificity. The specificity of a rule is determined by the number of

CLIPS Basic Programming Guide 27

CLIPS Reference Manual

comparisons that must be performed on the LHS of the rule. Each comparison to a constant or
previously bound variable adds one to the specificity. Each function call made on the LHS of a
rule as part of the :, =, or test conditional element adds one to the specificity. The boolean
functions and, or, and not do not add to the specificity of a rule, but their arguments do.
Function calls made within a function call do not add to the specificity of a rule. For example,
the following rule

(defrule example
(item ?x ?y ?X)
(test (and (numberp ?x) (> ?x (+ 10 ?y)) (< ?x 100)))
:>)

has a specificity of 5. The comparison to the constant item, the comparison of ?Xx to its previous
binding, and the calls to the numberp, <, and > functions each add one to the specificity for a
total of 5. The calls to the and and + functions do not add to the specificity of therule.

5.3.4 Complexity Strategy

Among rules of the same salience, newly activated rules are placed above all activations of rules
with equal or lower specificity.

5.3.5LEX Strategy

Among rules of the same salience, newly activated rules are placed using the OPS5 strategy of
the same name. First the recency of the pattern entities that activated the rule is used to determine
where to place the activation. Every fact and instance is marked internally with a “time tag” to
indicate its relative recency with respect to every other fact and instance in the system. The
pattern entities associated with each rule activation are sorted in descending order for
determining placement. An activation with a more recent pattern entities is placed before
activations with less recent pattern entities. To determine the placement order of two activations,
compare the sorted time tags of the two activations one by one starting with the largest time tags.
The comparison should continue until one activation’s time tag is greater than the other
activation’s corresponding time tag. The activation with the greater time tag is placed before the
other activation on the agenda.

If one activation has more pattern entities than the other activation and the compared time tags
are al identical, then the activation with more time tags is placed before the other activation on
the agenda. If two activations have the exact same recency, the activation with the higher
specificity is placed above the activation with the lower specificity. Unlike OPS5, the not
conditional elements in CLIPS have pseudo time tags which are used by the LEX conflict
resolution strategy. The time tag of a not CE is always less than the time tag of a pattern entity,
but greater than the time tag of a not CE that was instantiated after the not CE in question.

28 Section 5 - Defrule Construct

CLIPS Reference Manual

As an example, the following six activations have been listed in their LEX ordering (where the
comma at the end of the activation indicates the presence of a not CE). Note that afact’stimetag
is not necessarily the same as it’s index (since instances are also assigned time tags), but if one
fact's index is greater than another facts's index, then it's time tag is also greater. For this
example, assume that the time tags and indices are the same.

rule-6:
rule-5:
rule-1:
rule-2:
rule-4:
rule-3:

Shown following are the same activations with the fact indices sorted as they would be by the
LEX strategy for comparison.

rule-6: f
rule-5: f
rule-1: f
rule-2: f-
rule-4: f
rule-3: F

5.3.6 MEA Strategy

Among rules of the same salience, newly activated rules are placed using the OPS5 strategy of
the same name. First the time tag of the pattern entity associated with the first pattern is used to
determine where to place the activation. An activation thats first pattern’s time tag is greater than
another activations first pattern’s time tag is placed before the other activation on the agenda. If
both activations have the same time tag associated with the first pattern, then the LEX strategy is
used to determine placement of the activation. Again, as with the CLIPS LEX strategy, negated
patterns have pseudo time tags.

As an example, the following six activations have been listed in their MEA ordering (where the
comma at the end of the activation indicates the presence of a negated pattern).

rule-2: f
rule-3: f
rule-6: f
rule-5: f-
rule-1: Ff
rule-4: Ff

5.3.7 Random Strategy

Each activation is assigned a random number which is used to determine its placement among
activations of equal salience. This random number is preserved when the strategy is changed so

CLIPS Basic Programming Guide 29

CLIPS Reference Manual

that the same ordering is reproduced when the random strategy is selected again (among
activations that were on the agenda when the strategy was originally changed).

54LHSSYNTAX

This section describes the syntax used on the LHS of arule. The LHS of a CLIPS rule is made
up of aseries of conditional elements (CEs) that must be satisfied for the rule to be placed on the
agenda. There are eight types of conditional elements:. pattern CEs, test CEs, and CEs, or CEs,
not CEs, exists CEs, forall CEs, and logical CEs. The pattern CE is the most basic and
commonly used conditional element. Pattern CEs contain constraints which are used to
determine if any pattern entities (facts or instances) satisfy the pattern. The test CE is used to
evaluate expressions as part of the pattern-matching process. The and CE is used to specify that
an entire group of CEs must al be satisfied. The or CE is used to specify that only one of a
group of CEs must be satisfied. The not CE is used to specify that a CE must not be satisfied.
The exists CE is used to test for the occurence of at least one partial match for a set of CEs. The
forall CE is used to test that a set of CEs is satisfied for every partial match of a specified CE.
Finally, the logical CE allows assertions of facts and the creation of instances on the RHS of a
rule to be logically dependent upon pattern entities matching patterns on the LHS of arule (truth
maintenance).

ntax

<conditional-element> ::= <pattern-CE> |
<assigned-pattern-CE> |
<not-CE> |
<and-CE> |
<or-CE> |
<logical-CE> |
<test-CE> |
<exists-CE> |
<forall-CE>

5.4.1 Pattern Conditional Element

Pattern conditional elements consist of a collection of field constraints, wildcards, and
variables which are used to constrain the set of facts or instances which match the pattern CE. A
pattern CE is satisfied by each and every pattern entity that satisfies its constraints. Field
constraints are a set of constraints that are used to test asingle field or slot of a pattern entity. A
field constraint may consist of only a single literal constraint, however, it may also consist of
several constraints connected together. In addition to literal constraints, CLIPS provides three
other types of constraints. connective constraints, predicate constraints, and return value
constraints. Wildcards are used within pattern CEs to indicate that a single field or group of
fields can be matched by anything. Variables are used to store the value of afield so that it can
be used later on the LHS of a rule in other conditional elements or on the RHS of arule as an
argument to an action.

30 Section 5 - Defrule Construct

CLIPS Reference Manual

The first field of any pattern must be a symbol and can not use any other constraints. This first
field isused by CLIPS to determine if the pattern applies to an ordered fact, atemplate fact, or an
instance. The symbol object is reserved to indicate an object pattern. Any other symbol used
must correspond to a deftemplate name (or an implied deftemplate will be created). Slot names
must also be symbols and cannot contain any other constraints.

For object and deftemplate patterns, a single field slot can only contain one field constraint and
that field constraint must only be able to match a single field (no multifield wildcards or
variables). A multifield slot can contain any number of field constraints.

The examples and syntax shown in the following sections will be for ordered and deftemplate
fact patterns. Section 5.4.1.7 will discuss differences between deftemplate patterns and object
patterns. The following constructs are used by the examples.

(deffacts data-facts

(data 1.0 blue "red")
(data 1 blue)

(data 1 blue red)
(data 1 blue RED)
(data 1 blue red 6.9))

(deftemplate person
(slot name)
(slot age)
(multislot friends))

(deffacts people
(person (name Joe) (age 20))
(person (name Bob) (age 20))
(person (name Joe) (age 34))
(person (name Sue) (age 34))
(person (name Sue) (age 20)))

5.4.1.1 Literal Constraints

The most basic constraint which can be used in a pattern CE is one which precisely defines the
exact value that will match a field. This is called a literal constraint. A literal pattern CE
consists entirely of constants such as floats, integers, symbols, strings, and instance names. It
does not contain any variables or wildcards. All constraints in a literal pattern must be matched
exactly by all fields of a pattern entity.

ntax
An ordered pattern conditional element containing only literals has the following basic syntax:

(<constant-1> ... <constant-n>)

A deftemplate pattern conditional element containing only literals has the following basic syntax:

CLIPS Basic Programming Guide 31

CLIPS Reference Manual

(<deftemplate-name> (<slot-name-1> <constant-1>)

(<slot-name-n> <constant-n>))

Example 1
This example utilizes the data-facts deffacts shown in section 5.4.1.

CLIPS> (clear)

CLIPS> (defrule find-data (data 1 blue red) =>)
CLIPS> (reset)

CLIPS> (agenda)

0 find-data: f-3

For a total of 1 activation.

CLIPS> (Ffacts)

f-0 (initial-fact)
f-1 (data 1.0 blue "red")
-2 (data 1 blue)
-3 (data 1 blue red)
-4 (data 1 blue RED)
f-5 (data 1 blue red 6.9)
For a total of 6 facts.
CLIPS>

Example 2

This example utilizes the person deftemplate and people deffacts shown in section 5.4.1.

CLIPS> (clear)
CLIPS>
(defrule Find-Bob
(person (name Bob) (age 20))
:>)
CLIPS>
(defrule Find-Sue
(person (age 34) (name Sue))
:>)
CLIPS> (reset)
CLIPS> (agenda)
0 Find-Sue: f-4
0 Find-Bob: f-2
For a total of 2 activations.
CLIPS> (facts)
f-0 (initial-fact)
(person (name Joe) (age 20) (friends))
(person (name Bob) (age 20) (friends))
(person (name Joe) (age 34) (friends))
(person (name Sue) (age 34) (friends))
(person (name Sue) (age 20) (friends))
or a total of 6 facts.
CLIPS>

abhwbNPE

L
T
T
L
T
F

32 Section 5 - Defrule Construct

CLIPS Reference Manual

5.4.1.2 Wildcards Single- and Multifield

CLIPS has two wildcard symbols that may be used to match fields in a pattern. CLIPS interprets
these wildcard symbols as standing in place of some part of a pattern entity. The single-field
wildcard, denoted by a question mark character (?), matches any value stored in exactly one
field in the pattern entity. The multifield wildcard, denoted by a dollar sign followed by a
guestion mark ($?), matches any value in zero or more fields in a pattern entity. Single-field and
multifield wildcards may be combined in a single pattern in any combination. It isillegal to use a
multifield wildcard in a single field dot of a deftemplate or object pattern. By default, an
unspecified single-field dlot in a deftemplate/object pattern is matched against an implied
single-field wildcard. Similarly, an unspecified multifield slot in a deftemplate/object pattern is
matched against an implied multifield-wildcard.

ntax
An ordered pattern conditional element containing only literals and wildcards has the following
basic syntax:

(<constraint-1> ... <constraint-n>)
where
<constraint> ::= <constant> | ? | $?

A deftemplate pattern conditional element containing only literals and wildcards has the
following basic syntax:

(<deftemplate-name> (<slot-name-1> <constraint-1>)

(<slot-name-n> <constraint-n>))

Example 1
This example utilizes the data-facts deffacts shown in section 5.4.1.

CLIPS> (clear)

CLIPS>

(defrule find-data
(data ? blue red $?)
:>)

CLIPS> (reset)

CLIPS> (agenda)

0 find-data: f-5

0 find-data: f-3

For a total of 2 activations.

CLIPS> (Ffacts)

f-0 (initial-fact)
f-1 (data 1.0 blue "red")
-2 (data 1 blue)

CLIPS Basic Programming Guide 33

CLIPS Reference Manual

f-3 (data 1 blue red)

-4 (data 1 blue RED)

f-5 (data 1 blue red 6.9)
For a total of 6 facts.
CLIPS>

Example 2
This example utilizes the person deftemplate and people deffacts shown in section 5.4.1.

CLIPS> (clear)

CLIPS>

(defrule match-all-persons

(person)
:>)

CLIPS> (reset)

CLIPS> (agenda)

0 match-all-persons: f-

0 match-all-persons: f-
match-all-persons: f-
match-all-persons: f-
match-all-persons: f-

or a total of 5 activation

LIPS> (facts)

(initial-fact)

(person (name Joe) (age 20) (friends))

(person (name Bob) (age 20) (friends))

(person (name Joe) (age 34) (friends))

(person (name Sue) (age 34) (friends))

(person (name Sue) (age 20) (friends))

or a total of 6 facts.

CLIPS>

P NWSAOO

S.

abhwdNEFO

0
0
0
F
c
T
T
L
T
T
L
F

Multifield wildcard and literal constraints can be combined to yield some powerful
pattern-matching capabilities. A pattern to match al of the facts that have the symbol YELLOW
in any field (other than the first) could be written as

(data $? YELLOW $?)

Some examples of what this pattern would match are

(data YELLOW blue red green)
(data YELLOW red)

(data red YELLOW)

(data YELLOW)

(data YELLOW data YELLOW)

The last fact will match twice since YELLOW appears twice in the fact. The use of multifield
wildcards should be confined to cases of patterns in which the single-field wildcard cannot create
a pattern that satisfies the match required, since the multifield wildcard produces every possible
match combination that can be derived from a pattern entity. This derivation of matches requires
a significant amount of time to perform when compared to the time needed to perform a
single-field match.

34 Section 5 - Defrule Construct

CLIPS Reference Manual

5.4.1.3 Variables Single- and Multifield

Wildcard symbols replace portions of a pattern and accept any value. The value of the field being
replaced may be captured in a variable for comparison, display, or other manipulations. Thisis
done by directly following the wildcard symbol with a variable name.

ntax
Expanding on the syntax definition given in section 5.4.1.2 now gives:

<constraint> ::= <constant> | ? | $? |
<single-field-variable> |
<multifield-variable>

<single-field-variable> ::= ?<variable-symbol>

<multifield-variable> 1= $?<variable-symbol>

where <variable-symbol> is similar to a symbol, except that it must start with an al phabetic char-
acter. Double quotes are not allowed as part of a variable name; i.e. a string cannot be used for a
variable name. The rules for pattern-matching are similar to those for wildcard symbols. On its
first appearance, a variable acts just like awildcard in that it will bind to any value in the field(s).
However, later appearances of the variable require the field(s) to match the binding of the
variable. The binding will only be true within the scope of the rule in which it occurs. Each rule
has a private list of variable names with their associated values; thus, variables are local to arule.
Bound variables can be passed to external functions. The $ operator has specia significance on
the LHS as a pattern-matching operator to indicate that zero or more fields need to be matched.
In other places (such as the RHS of arule), the $ in front of a variable indicates that sequence
expansion should take place before calling the function. Thus, when passed as parameters in
function calls (either on the LHS or RHS of a rule), multifield variables should not be preceded
by the $ (unless sequence expansion is desired). All other uses of a multifield variable on the
LHS of arule, however, should usethe $. It isillegal to use a multifield variable in asingle field
slot of a deftemplate/object pattern.

Example 1
CLIPS> (clear)
CLIPS> (reset)
CLIPS> (assert (data 2 blue green)
(data 1 blue)
(data 1 blue red))

<Fact-3>

CLIPS> (Ffacts)

f-0 (initial-fact)

f-1 (data 2 blue green)
-2 (data 1 blue)

-3 (data 1 blue red)
For a total of 4 facts.
CLIPS>

(defrule find-data-1
(data ?x ?y ?z)
=>

CLIPS Basic Programming Guide 35

CLIPS Reference Manual

(printout t ?x " - " 2?2y " " ?z crilf))
CLIPS> (run)
1 : blue : red
2 - blue : green
CLIPS>

Example 2
CLIPS> (reset)

CLIPS> (assert (data 1 blue)
(data 1 blue red)
(data 1 blue red 6.9))

<Fact-3>

CLIPS> (facts)

f-0 (initial-fact)

f-1 (data 1 blue)

-2 (data 1 blue red)

f-3 (data 1 blue red 6.9)
For a total of 4 facts.
CLIPS>

(defrule find-data-1
(data ?x $?y ?z)
=>

(printout t "?x = " ?x crlf

2y = " ?y crlf
"?z = " ?z crlif
Moo " crlf))

CLIPS> (run)

?x =1

?y = (blue red)

?z = 6.9

?x =1

?y = (blue)

?z = red

?x = 1

2y = O

?z = blue

CLIPS>

Once the initial binding of a variable occurs, al references to that variable have to match the
value that the first binding matched. This applies to both single- and multifield variables. It also
applies across patterns.

Example 3

CLIPS> (clear)

CLIPS>

(deffacts data
(data red green)
(data purple blue)
(data purple green)
(data red blue green)
(data purple blue green)
(data purple blue brown))

CLIPS>

36 Section 5 - Defrule Construct

CLIPS Reference Manual

(defrule find-data-1
(data red ?x)
(data purple ?x)
:>)
CLIPS>
(defrule find-data-2
(data red $7x)
(data purple $?x)
:>)
CLIPS> (reset)
CLIPS> (facts)
f-0 (initial-fact)
1 (data red green)
2 (data purple blue)
(data purple green)
4 (data red blue green)
5 (data purple blue green)
6
r
1

3

(data purple blue brown)
a total of 7 facts.
PS> (agenda)
find-data-2: f-4,f-
find-data-1: f-1,f-
find-data-2: f-1,f-
For a total of 3 activatio
CLIPS>

OO OO T = = =h =h =h =h
~ o

5
3
3
n

S.

5.4.1.4 Connective Constraints

Three connective constraints are available for connecting individual constraints and variables to
each other. These are the & (and), | (or), and ~ (not) connective constraints. The & constraint is
satisfied if the two adjoining constraints are satisfied. The | constraint is satisfied if either of the
two adjoining constraints is satisfied. The ~ constraint is satisfied if the following constraint is
not satisfied. The connective constraints can be combined in amost any manner or number to
constrain the value of specific fields while pattern-matching. The ~ constraint has highest
precedence, followed by the & constraint, followed by the | constraint. Otherwise, evaluation of
multiple constraints can be considered to occur from left to right. There is one exception to the
precedence rules which applies to the binding occurrence of a variable. If the first constraint is a
variable followed by an & connective constraint, then the first constraint is treated as a separate
constraint which also must be satisified. Thus the constraint ?x&red|blue is treated like
& (red|blue) rather than (?x& red)|blue as the normal precedence rules would indicate.

Basic Syntax

Connective constraints have the following basic syntax:

<term-1>&<term-2> ... &<term-3>
<term-1>]<term-2> ... |<term-3>
~<term>

CLIPS Basic Programming Guide 37

CLIPS Reference Manual

where <term> could be a single-field variable, multifield variable, constant, or connected
constraint.

ntax
Expanding on the syntax definition given in section 5.4.1.3 now gives:

<constraint> ::= ? | $? | <connected-constraint>

<connected-constraint>
::= <single-constraint> |
<single-constraint> & <connected-constraint> |

<single-constraint> | <connected-constraint>
<single-constraint> ::= <term> | ~<term>
<term> ::= <constant> |

<single-field-variable> |
<multifield-variable>

The & constraint typically is used only in conjunction with other constraints or variable bindings.
Notice that connective constraints may be used together and/or with variable bindings. If the first
term of a connective constraint is the first occurrence of a variable name, then the field will be
constrained only by the remaining field constraints. The variable will be bound to the value of
the field. If the variable has been bound previoudly, it is considered an additional constraint
along with the remaining field constraints; i.e., the field must have the same value aready bound
to the variable and must satisfy the field constraints.

Example 1
CLIPS> (clear)
CLIPS> (deftemplate data-B (slot value))
CLIPS>
(deffacts AB
(data-A green)
(data-A blue)
(data-B (value red))
(data-B (value blue)))
CLIPS>
(defrule examplel-1
(data-A ~blue)
:>)
CLIPS>
(defrule examplel-2
(data-B (value ~red&~green))
:>)
CLIPS>
(defrule examplel-3
(data-B (value greenj]red))
:>)
CLIPS> (reset)
CLIPS> (facts)

-0 (initial-fact)
f-1 (data-A green)
f-2 (data-A blue)

38 Section 5 - Defrule Construct

CLIPS Reference Manual

f-3 (data-B (value red))
f-4 (data-B (value blue))
For a total of 5 facts.
CLIPS> (agenda)

0 examplel-2: f-4
0 examplel-3: f-3
0 examplel-1: f-1
For a total of 3 activations.
CLIPS>
Example 2

CLIPS> (clear)
CLIPS> (deftemplate data-B (slot value))
CLIPS>
(deffacts B
(data-B (value red))
(data-B (value blue)))
CLIPS>
(defrule example2-1
(data-B (value ?x&~redé&~green))
=>
(printout t "?x in example2-1 = " ?x crlif))
CLIPS>
(defrule example2-2
(data-B (value ?xé&green]red))
=>
(printout t "?x in example2-2 = " ?x crlif))
CLIPS> (reset)
CLIPS> (run)

?x in example2-1 = blue
?x In example2-2 = red
CLIPS>

Example 3

CLIPS> (clear)
CLIPS> (deftemplate data-B (slot value))
CLIPS>
(deffacts AB
(data-A green)
(data-A blue)
(data-B (value red))
(data-B (value blue)))
CLIPS>
(defrule example3-1
(data-A ?x&~green)
(data-B (value ?y&~?x))
:>)
CLIPS>
(defrule example3-2
(data-A ?x)
(data-B (value ?xé&green]blue))
:>)
CLIPS>
(defrule example3-3
(data-A ?x)
(data-B (value ?yé&blue|?x))
:>)
CLIPS> (reset)

CLIPS Basic Programming Guide 39

CLIPS Reference Manual

LIPS> (Ffacts)

0 (initial-fact)

1 (data-A green)

2 (data-A blue)

3 (data-B (value red))

4 (data-B (value blue))
r a total of 5 facts.

|

o]
LIPS> (agenda)

example3-3:

example3-3:

C
f
f
f
f
f
F
C
0 f-1
0 -2
0 example3-2: f-2,

-2

tiv

0 example3-1:
For a total of 4 ac
CLIPS>

5.4.1.5 Predicate Constraints

Sometimes it becomes necessary to constrain a field based upon the truth of a given boolean
expression. CLIPS allows the use of apredicate constraint to restrict afield in this manner. The
predicate constraint allows a predicate function (one returning the symbol FALSE for
unsatisfied and a non-FALSE value for satisfied) to be caled during the pattern-matching
process. If the predicate function returns a non-FALSE value, the constraint is satisfied. If the
predicate function returns the symbol FALSE, the constraint is not satisfied. A predicate
constraint is invoked by following a colon with an appropriate function call to a predicate
function. Typicaly, predicate constraints are used in conjunction with a connective constraint
and a variable binding (i.e. you have to bind the variable to be tested and then connect it to the
predicate constraint).

Basic Syntax

:<function-call>

ntax
Expanding on the syntax definition given in section 5.4.1.4 now gives:

<term> ::= <constant> |
<single-field-variable> |
<multifield-variable> |
:<function-call>

Multiple predicate constraints may be used to constrain asingle field. Several predicate functions
are provided by CLIPS (see section 12.2). Users also may develop their own predicate functions.

Example 1
CLIPS> (clear)
CLIPS>
(defrule example-1
(data ?x&:(numberp ?x))

:>)
CLIPS> (assert (data 1) (data 2) (data red))
<Fact-2>

40 Section 5 - Defrule Construct

CLIPS Reference Manual

CLIPS> (agenda)

0 example-1: f-1

0 example-1: f-0

For a total of 2 activations.
CLIPS>

Example 2

CLIPS> (clear)

CLIPS>

(defrule example-2
(data ?x&~:(symbolp ?x))
:>)

CLIPS> (assert (data 1) (data 2) (data red))

<Fact-2>

CLIPS> (agenda)

0 example-2: f-1

0 example-2: -0

For a total of 2 activations.

CLIPS>

Example 3
CLIPS> (clear)

CLIPS>
(defrule example-3
(data ?x&:(numberp ?x)&:(oddp ?x))
:>)
CLIPS> (assert (data 1) (data 2) (data red))
<Fact-2>
CLIPS> (agenda)
0 example-3: -0
For a total of 1 activation.
CLIPS>

Example 4
CLIPS> (clear)
CLIPS>
(defrule example-4
(data ?y)
(data ?x&:(> ?x ?y))
:>)
CLIPS> (assert (data 3) ; f-0
(data 5) ; f-1
(data 9)) ; f-2
<Fact-2>
CLIPS> (agenda)
0 example-4: f-0,f-
0 example-4: f-1,f-
0 example-4: f-0,f-
For a total of 3 acti
CLIPS>

2
2
1
i

vations.

Example 5
CLIPS> (clear)
CLIPS>
(defrule example-5
(data $?x&:(> (length$?x) 2))
:>)

CLIPS Basic Programming Guide 41

CLIPS Reference Manual

CLIPS> (assert (data 1) ; -0
(data 1 2) ; F-1
(data 1 2 3)) ; -2

<Fact-2>

CLIPS> (agenda)

0 example-5: -2

For a total of 1 activation.
CLIPS>

5.4.1.6 Return Value Constraints

It is possible to use the return value of an external function to constrain the value of afield. The
return value constraint (=) allows the user to call external functions from inside a pattern. (This
constraint is different from the comparison function which uses the same symbol. The difference
can be determined from context.) The return value must be one of the primitive data types. This
value is incorporated directly into the pattern at the position at which the function was called as
if it were aliteral constraint, and any matching patterns must match this value as though the rule
were typed with that value. Note that the function is evaluated each time the constraint is
checked (not just once).

Basic Syntax

=<function-call>

ntax
Expanding on the syntax definition given in section 5.4.1.5 now gives:

<term> ::= <constant> |
<single-field-variable> |
<multifield-variable> |
:<function-call> |
=<function-call>

Example 1
CLIPS> (clear)
CLIPS> (deftemplate data (slot x) (slot y))
CLIPS>
(defrule twice
(data (X ?x) (y =(* 2 ?x)))
:>)
CLIPS> (assert (data (x 2) (y 4)) ; f-0
(data (x 3) (y 9))) ; f-1
<Fact-1>

CLIPS> (agenda)

0 twice: f-0

For a total of 1 activation.
CLIPS>

Example 2
CLIPS> (clear)

CLIPS>
(defclass DATA (is-a USER)

42 Section 5 - Defrule Construct

CLIPS Reference Manual

(role concrete) (pattern-match reactive)
(slot x (create-accessor write)))
CLIPS>
(defrule return-value-example-2
(object (is-a DATA)
(x ?x1))
(object (is-a DATA)
(X ?x2&=(+ 5 ?x1)|=(- 12 ?x1)))

:>)
CLIPS> (make-instance of DATA (x 4))
[genl]
CLIPS> (make-instance of DATA (x 9))
[gen2]
CLIPS> (make-instance of DATA (x 3))
[gen3]
CLIPS> (agenda)
0 return-value-example-2: [gen3], [gen2]
0 return-value-example-2: [gen2],[gen3]
0 return-value-example-2: [genl],[gen2]
For a total of 3 activations.
CLIPS>

5.4.1.7 Pattern-Matching with Object Patterns

Instances of user-defined classes in COOL can be pattern-matched on the left-hand side of rules.
Patterns can only match objects for which the object’s most specific class is defined before the
pattern and which are in scope for the current module. Any classes which could have objects
which match the pattern cannot be deleted or changed until the pattern is deleted. Even if arule
is deleted by its RHS, the classes bound to its patterns cannot be changed until after the RHS
finishes executing.

When an instance is created or deleted, all patterns applicable to that object are updated.
However, when a dot is changed, only those patterns which explicitly match on that slot are
affected. Thus, one could use logical dependencies to hook to a change to a particular slot (rather
than a change to any slot, which is all that is possible with deftemplates).

Changes to non-reactive slots or instances of non-reactive classes (see sections 9.3.2.2 and
9.3.3.7) will have no effect on rules. Also Rete network activity will not be immediately apparent
after changes to sots are made if pattern-matching is being delayed through the use of the
make-instance, initialize-instance, modify-instance, message-modify-instance,
duplicate-instance, message-duplicate-instance or object-patter n-match-delay functions.

ntax
<object-pattern> ::= (object <attribute-constraint>%*)

<attribute-constraint> ::= (is-a <constraint>) |
(name <constraint>) |

(<slot-name> <constraint>*)

CLIPS Basic Programming Guide 43

CLIPS Reference Manual

The is-a constraint is used for specifying class constraints such as “Is this object a member of
class FOO?'. The is-a constraint also encompasses subclasses of the matching classes unless
specifically excluded by the pattern. The name constraint is used for specifying a specific
instance on which to pattern-match. The evaluation of the name constraint must be of primitive
type instance-name, not symbol. Multifield constraints (such as $?) cannot be used with the is-a
or name constraints. Other than these special cases, constraints used in object slots work
similarly to constraints used in deftemplate slots. As with deftemplate patterns, slot names for
object patterns must be symbols and can not contain any other constraints.

Example 1
The following rulesillustrate pattern-matching on an object's class.

(defrule class-match-1
(object)

:>)

(defrule class-match-2
(object (is-a F00))
:>)

(defrule class-match-3
(object (is-a FOO | BAR))
:>)

(defrule class-match-4
(object (is-a ?x))
(object (is-a ~?x))
:>)

Rule class-match-1 is satisified by all instances of any reactive class. Rule classmatch-2 is
satisfied by all instances of class FOO. Rule class-match-3 is satisfied by all instances of class
FOO or BAR. Rule classmatch-4 will be satisfied by any two instances of mutually exclusive
classes.

Example 2
The following rulesillustrate pattern-matching on various attributes of an object's dots.

(defrule slot-match-1
(object (width))
:>)

(defrule slot-match-2
(object (width ?))
:>)

(defrule slot-match-3
(object (width $?))
:>)

Rule dot-match-1 is satisfied by all instances of reactive classes that contain a reactive width slot
with a zero length multifield value. Rule dot-match-2 is satisfied by all instances of reactive

a4 Section 5 - Defrule Construct

CLIPS Reference Manual

classes that contain a reactive single or multifield width slot that is bound to a single value. Rule
dot-match-3 is satisfied by all instances of reactive classes that contain a reactive single or
multifield width dlot that is bound to any number of values. Note that a slot containing a zero
length multifield value would satisfy rules dot-match-1 and dot-match-3, but not rule
dot-match-2 (because the value's cardinality is zero).

Example 3
The following rulesillustrate pattern-matching on the slot values of an object.

(defrule value-match-1
(object (width 10)
:>)
(defrule value-match-2
(object (width ?x&:(> ?x 20)))
:>)
(defrule value-match-3

(object (width 2x) (height ?2x))
:>)

Rule value-match-1 is satisified by all instances of reactive classes that contain a reactive width
dot with value 10. Rule value-match-2 is satisfied by all instances of reactive classes that contain
a reactive width dot that has a value greater than 20. Rule value-match-3 is satisfied by all
instances of reactive classes that contain a reactive width and height slots with the same value.

5.4.1.8 Patter n-Addr esses

Certain RHS actions, such as retract and unmake-instance, operate on an entire pattern CE. To
signify which fact or instance they are to act upon, a variable can be bound to the fact-address
or instance-address of a pattern CE. Collectively, fact-addresses and instance-addresses bound
onthe LHS of arule are referred to as patter n-addr esses.

ntax
<assigned-pattern-CE> ::= ?<variable-symbol> <- <pattern-CE>

The left arrow, <-, is a required part of the syntax. A variable bound to a fact-address or
instance-address can be compared to other variables or passed to external functions. Variables
bound to a fact or instance-address may later be used to constrain fields within a pattern CE,
however, the reverseis not alowed. It isan error to bind avaribleto anot CE.

Examples
(defrule dummy
(data 1)
?fact <- (dummy pattern)
=>
(retract ?fact))

CLIPS Basic Programming Guide 45

CLIPS Reference Manual

(defrule compare-facts-1
?fl <- (color ~red)
?f2 <- (color ~green)
(test (neq ?f1 ?f2))
=>
(printout t "Rule fires from different facts" crif))

(defrule compare-facts-2
?fl <- (color ~red)
?f2 <- (color ~green&:(neq ?fl ?f2))
=>
(printout t "Rule fires from different facts" crif))

(defrule print-and-delete-all-objects
?ins <- (object)
=>
(send ?ins print)
(unmake-instance ?ins))

5.4.2 Test Conditional Element

Field constraints used within pattern CEs allow very descriptive constraints to be applied to
pattern-matching. Additional capability is provided with the test conditional element. The test
CE is satisfied if the function call within the test CE evaluates to a non-FALSE value and
unsatisfied if the function call evaluates to FALSE. As with predicate constraints, the user can
compare the variable bindings that already have occurred in any manner. Mathematical
comparisons on variables (e.g., is the difference between ?x and ?y greater than some value?)
and complex logical or equality comparisons can be done. External functions also can be called
which compare variables in any way that the user desires.

Any kind of external function may be embedded within a test conditional element (or within
field constraints). User-defined predicate functions must take arguments as defined in the
Advanced Programming Guide. Several predicate functions are provided by CLIPS (see section
12.1).

ntax
<test-CE> ::= (test <function-call>)

Since the symbol test is used to indicate this type of conditional element, rules may not use the
symbol test as the first field in a pattern CE. A test CE is evaluated when all proceeding CEs are
satisfied. This means that atest CE will be evaluated more than once if the proceeding CEs can
be satisfied by more than one group of pattern entities. In order to cause the reevaluation of atest
CE, a pattern entity matching a CE prior to the test CE must be changed. The use of test CES can
cause additional CEs to be added to the rule. In addition, test CEs may also be automatically
reordered by CLIPS. See section 5.4.9 for more detalils.

46 Section 5 - Defrule Construct

CLIPS Reference Manual

Example 1
This example checks to see if the difference between two numbers is greater than or equa to

three:

CLIPS> (clear)

CLIPS>
(defrule example-1
(data ?x)

(value ?y)
(test (>= (abs (- ?y ?x)) 3))
:>)
CLIPS> (assert (data 6) (value 9))
<Fact-1>
CLIPS> (agenda)
0 example-1: f-0,f-1
For a total of 1 activation.
CLIPS>

Example 2
This example checks to seeif there is a positive slope between two points on aline.

CLIPS> (clear)
CLIPS>
(deffunction positive-slope
(?x1 ?yl ?x2 ?y2)
(<0 (/ (- ?2y2 ?2yl) (- ?x2 ?x1))))
CLIPS>
(defrule example-2
(point ?a ?x1 ?yl)
(point ?b ?x2 ?y2)
(test (> ?b ?a))
(test (positive-slope ?x1 ?yl ?x2 ?y2))
:>)
CLIPS>
(assert (point 1 4.0 7.0) (point 2 5.0 9.0))
<Fact-1>
CLIPS> (agenda)
0 example-2: f-0,f-1
For a total of 1 activation.
CLIPS>

|| I mportant Note ||

Because the test CE can cause the addition of the initial-fact fact pattern or the initial-object
instance pattern to a rule, a reset command (which creates the initial-fact fact and the
initial-object instance) must be issued for the correct operation of the test CE under all
circumstances.

5.4.3 Or Conditional Element

The or conditional element allows any one of several conditional elements to activate arule. If
any of the conditional elements inside of the or CE is satisfied, then the or CE is satisfied. If all

CLIPS Basic Programming Guide 47

CLIPS Reference Manual

other LHS conditional elements are satisfied, the rule will be activated. Note that a rule will be
activated for each conditional element with an or CE that is satisfied (assuming the other
conditional elements of the rule are aso satisfied). Any number of conditional elements may
appear within an or CE. The or CE produces the identical effect of writing several rules with
similar LHS sand RHS's.

Syntax

<or-CE> ::= (or <conditional-element>+)

Again, if more than one of the conditional elements in the or CE can be met, the rule will fire
multiple times, once for each satisfied combination of conditions.

Example
(defrule system-fault

(error-status unknown)

(or (temp high)
(valve broken)
(pump (status off)))

=>

(printout t "The system has a fault." crlif))

Note that the above example is exactly equivalent to the following three (separate) rules:

(defrule system-fault
(error-status unknown)

(pump (status off))
=>
(printout t "The system has a fault.” crlif))

efrule system-fault
(defrul faul
(error-status unknown)
(valve broken)
=>
(printout t "The system has a fault.” crlif))

(defrule system-fault
(error-status unknown)
(temp high)
=>
(printout t "The system has a fault.” crlif))

5.4.4 And Conditional Element

CLIPS assumes that all rules have an implicit and conditional element surrounding the
conditional elements on the LHS. This means that all conditional elements on the LHS must be
satisfied before the rule can be activated. An explicit and conditional element is provided to
allow the mixing of and CEs and or CEs. This allows other types of conditional elements to be
grouped together within or and not CEs. The and CE is satisfied if all of the CEs inside of the
explicit and CE are satisfied. If all other LHS conditions are true, the rule will be activated. Any
number of conditional elements may be placed within an and CE.

48 Section 5 - Defrule Construct

CLIPS Reference Manual

ntax
<and-CE> ::= (and <conditional-element>+)

Example
(defrule system-flow
(error-status confirmed)
(or (and (temp high)
(valve closed))
(and (temp low)
(valve open)))
=>
(printout t "The system is having a flow problem.”™ crif))

An and CE that has a test or not CE asitsfirst CE has the pattern (initial-fact) or (initial-object)
added as the first CE. Note that the LHS of any rule is enclosed within an implied and CE. For
example, the following rule

(defrule nothing-to-schedule
(not (schedule ?))
=>
(printout t "Nothing to schedule.™ crif))

is converted to

(defrule nothing-to-schedule
(and (initial-fact)
(not (schedule ?)))
=>
(printout t "Nothing to schedule.”™ crif))

5.4.5 Not Conditional Element

Sometimes the lack of information is meaningful; i.e., one wishesto fire arule if a pattern entity
or other CE does not exist. Thenot conditional element provides this capability. The not CE is
satisfied only if the conditional element contained within it is not satisfied. As with other
conditional elements, any number of additional CEs may be on the LHS of the rule and field con-
straints may be used within the negated pattern.

Syntax

<not-CE> ::= (not <conditional-element>)

Only one CE may be negated at a time. Multiple patterns may be negated by using multiple not
CEs. Care must be taken when combining not CEs with or and and CEs; the results are not
always obvious! The same holds true for variable bindings within anot CE. Previously bound
variables may be used freely inside of a not CE. However, variables bound for the first time
within anot CE can be used only in that pattern.

CLIPS Basic Programming Guide 49

CLIPS Reference Manual

Examples
(defrule high-flow-rate
(temp high)
(valve open)
(not (error-status confirmed))
=>
(printout t "Recommend closing of valve due to high temp”
crif))

(defrule check-valve
(check-status ?valve)
(not (valve-broken ?valve))
=>
(printout t "Device " ?valve " is OK" crlif))
(defrule double-pattern
(data red)
(not (data red ?x ?x))
=>
(printout t "No patterns with red green green!" crif))

A not CE that contains asingle test CE is converted such that the test CE is contained within an
and CE and is preceded by the (initial-fact) or (initial-object) pattern. For example, the following
conditional element

(not (test (> ?time-1 ?time-2)))
is converted to

(not (and (initial-fact)
(test (> ?time-1 ?time-2))))

Note that it is much ssimpler just to convert the test CE to the following format:

(test (not (> ?time-1 ?time-2)))

l Important Note |

Because the not CE can cause the addition of the initial-fact fact pattern or the initial-object
instance pattern to a rule, a reset command (which creates the initial-fact fact and the
initial-object instance) must be issued for the correct operation of the not CE under al
circumstances.

5.4.6 Exists Conditional Element

The exists conditional element provides a mechanism for determining if a group of specified
CEsissatisfied by aleast one set of pattern entities.

ntax
<exists-CE> ::= (exists <conditional-element>+)

50 Section 5 - Defrule Construct

CLIPS Reference Manual

The exists CE is implemented by replacing the exists keyword with two nested not CEs. For
example, the following rule

(defrule example
(exists (a ?x) (b ?x))
:>)

is equivalent to the rule below

(defrule example
(not (not (and (a ?x) (b ?x))))
:>)

Because of the way the exists CE is implemented using not CESs, the restrictions which apply to
CEs found within not CEs (such as binding a pattern CE to a fact-address) also apply to the CEs
found within an exists CE.

Example
Given the following constructs,

CLIPS> (clear)
CLIPS>
(deftemplate hero
(multislot name)
(slot status (default unoccupied)))
CLIPS>
(deffacts goal-and-heroes
(goal save-the-day)
(hero (name Death Defying Man))
(hero (name Stupendous Man))
(hero (name Incredible Man)))
CLIPS>
(defrule save-the-day
(goal save-the-day)
(exists (hero (status unoccupied)))
=>
(printout t "The day is saved." crif))
CLIPS>

the following commands illustrate that even though there are three facts which can match the
second CE in the save-the-day rule, there is only one partial match generated.

CLIPS> (reset)

CLIPS> (agenda)

0 save-the-day: f-1,

For a total of 1 activation.

CLIPS> (facts)

f-0 (initial-fact)

f-1 (goal save-the-day)

-2 (hero (name Death Defying Man) (status unoccupied))
f-3 (hero (name Stupendous Man) (status unoccupied))
-4 (hero (name Incredible Man) (status unoccupied))

CLIPS Basic Programming Guide 51

CLIPS Reference Manual

For a total of 5 facts.
CLIPS> (matches save-the-day)
Matches for Pattern 1

f-1

Matches for Pattern 2

-0

Matches for Pattern 3

-2

f-3

-4

Partial matches for CEs 1 - 2
-1,

Activations

-1,

CLIPS>

|| I mportant Note ||

The exists CE is implemented using the not CE. Because the not CE can cause the addition of
the initial-fact fact pattern or the initial-object instance pattern to arule, a reset command (which
creates the initial-fact fact and the initial-object instance) must be issued for the correct operation
of the exists CE under all circumstances.

5.4.7 Forall Conditional Element

The forall conditional element provides a mechanism for determining if a group of specified
CEsissatisfied for every occurence of another specified CE.

ntax
<forall-CE> ::= (forall <conditional-element>
<conditional-element>+)

The forall CE is implemented by replacing the forall keyword with combinations of not and
and CEs. For example, the following rule

(defrule example
(forall (a ?x) (b ?x) (c ?x))
:>)

is equivalent to the rule below

(defrule example
(not (and (a ?x)
(not (and (b ?x) (c ?x)))))
:>)

Because of the way the forall CE isimplemented using not CEs, the restrictions which apply to
CE found within not CEs (such as binding a pattern CE to a fact-address) also apply to the CEs
found within an forall CE.

52 Section 5 - Defrule Construct

CLIPS Reference Manual

Example
The following rule determines if every student has passed in reading, writing, and arithmetic by

using theforall CE.

CLIPS> (clear)
CLIPS>
(defrule all-students-passed
(forall (student ?name)
(reading ?name)
(writing ?name)
(arithmetic ?name))
=>
(printout t "All students passed." crif))
CLIPS>

The following commands illustrate how the forall CE worksin the all-students-passed rule. Note
that initially the all-students-passed rule is satisfied because there are no students.

CLIPS> (reset)
CLIPS> (agenda)

0 all-students-passed: f-0,
For a total of 1 activation.
CLIPS>

After the (student Bob) fact is asserted, the rule is no longer satisfied since Bob has not passed
reading, writing, and arithmetic.

CLIPS> (assert (student Bob))
<Fact-1>

CLIPS> (agenda)

CLIPS>

The rule is still not satisfied after Bob has passed reading and writing, since he still has not
passed arithmetic.

CLIPS> (assert (reading Bob) (writing Bob))
<Fact-3>

CLIPS> (agenda)

CLIPS>

Once Bob has passed arithmetic, the al-students-passed rule is reactivated.

CLIPS> (assert (arithmetic Bob))
<Fact-4>

CLIPS> (agenda)

0 all-students-passed: f-0,
For a total of 1 activation.
CLIPS>

If a new student is asserted, then the rule is taken off the agenda, since John has not passed
reading, writing, and arithmetic.

CLIPS Basic Programming Guide 53

CLIPS Reference Manual

CLIPS> (assert (student John))
<Fact-5>

CLIPS> (agenda)

CLIPS>

Removing both student facts reactivates the rule again.

CLIPS> (retract 1 5)
CLIPS> (agenda)

0 all-students-passed: f-0,
For a total of 1 activation.
CLIPS>

I Important Note |

The forall CE is implemented using the not CE. Because the not CE can cause the addition of
the initial-fact fact pattern or the initial-object instance pattern to arule, a reset command (which
creates the initial-fact fact and the initial-object instance) must be issued for the correct operation
of theforall CE under all circumstances.

5.4.8 Logical Conditional Element

The logical conditional element provides a truth maintenance capability for pattern entities
(facts or instances) created by rules which use the logical CE. A pattern entity created on the
RHS (or as a result of actions performed from the RHS) can be made logically dependent upon
the pattern entities which matched the patterns enclosed with the logical CE on the LHS of the
rule. The pattern entities matching the LHS logical patterns provide logical support to the facts
and instance created by the RHS of the rule. A pattern entity can be logically supported by more
than one group of pattern entities from the same or different rules. If any one supporting pattern
entities is removed from a group of supporting pattern entities (and there are no other supporting
groups), then the pattern entity is removed.

If a pattern entity is created without logical support (e.g., from a deffacts, definstaces, as a
top-level command, or from a rule without any logical patterns), then the pattern entity has
unconditional support. Unconditionally supporting a pattern entity removes all logical support
(without causing the removal of the pattern entity). In addition, further logical support for an
unconditionally supported pattern entity is ignored. Removing a rule that generated logical
support for a pattern entity, removes the logical support generated by that rule (but does not
cause the removal of the pattern entity if no logical support remains).

Syntax

<logical-CE> ::= (logical <conditional-element>+)

The logical CE groups patterns together exactly as the explicit and CE does. It may be used in
conjunction with the and, or, and not CEs. However, only the first N patterns of a rule can have
thelogical CE applied to them. For example, the following ruleislegal

54 Section 5 - Defrule Construct

(defrule ok
(logical (a))
(logical (b))
()
=>

(assert (d)))

whereas the following rules are illegal

(defrule not-ok-1
(logical (a))
C))

(logical (c))
=>

(assert (d)))

(defrule not-ok-2
()
(logical (b))
(logical (c))
=>

(assert (d)))

(defrule not-ok-3
(or (a)
(logical (b)))
(logical (c))
=>

(assert (d)))

Example
Given the following rules,

CLIPS> (clear)
CLIPS>
(defrule rulel
(logical (a))
(logical (b))
©)
=>
(assert (g9) (h)))
CLIPS>
(defrule rule2
(logical (d))
(logical (e))
QD)
=>
(assert (g9) (h)))
CLIPS>

the following commands illustrate how logical dependencies work.

CLIPS> (watch facts)

CLIPS> (watch activations)

CLIPS Basic Programming Guide

CLIPS Reference Manual

55

CLIPS Reference Manual

CLIPS. (watch rules)

CLIPS> (assert (a) (b) (c) (d) (e) ()

==> f-0 (a)

==> f-1 (b)

==> -2 (©)

==> Activation O rulel: f-0,f-1,f-2

==> -3 @

==> f-4 (e)

==> f-5 (@D)

==> Activation O rule2: ¥-3,f-3,f-5

<Fact-5>

CLIPS> (run)

FIRE 1 rule2: f-3,f-4,f-5 ; 1st rule adds logical support
==> -6 @

==> f-7 (h)

FIRE 2 rulel: f-0,f-1,f-2 ; 2nd rule adds further support
CLIPS> (retract 1)

<== -0 () ; Removes 1st support for (g) and (h)
CLIPS> (assert (h)) ; (h) is unconditionally supported
FALSE

CLIPS> (retract 3)

<== f-3 ()] ; Removes 2nd support for (g)
<== f-6 @ ; (9) has no more support

CLIPS> (unwatch all)
CLIPS>

As mentioned in section 5.4.1.7, the logical CE can be used with an object pattern to create
pattern entities which are logically dependent on changes to specific slots in the matching
instance(s) rather than all slots. This cannot be accomplished with template facts because a
change to a template fact slot actually involves the retraction of the old template fact and the
assertion of anew one, whereas a change to an instance slot is done in place. The example below
illustrates this behavior:

56

CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(pattern-match reactive)
(slot foo (create-accessor write))
(slot bar (create-accessor write)))
CLIPS>
(deftemplate A
(slot foo0)
(slot bar))
CLIPS>
(defrule match-A-s
(logical (object (is-a A) (foo ?))
(A (foo ?)))
=>
(assert (new-fact)))
CLIPS> (make-instance a of A)

[al
CLIPS> (assert (A))
<Fact-0>

CLIPS> (watch facts)
CLIPS> (run)

Section 5 - Defrule Construct

CLIPS Reference Manual

==> f-1 (new-fact)
CLIPS> (send [a] put-bar 100)
100

CLIPS> (agenda)

CLIPS> (modify 0 (bar 100))

<== -0 (A (foo nil) (bar nil))
<== f-1 (new-fact)

==> f-2 (A (foo nil) (bar 100))
<Fact-2>

CLIPS> (agenda)

0 match-A-s: [a],f-2

For a total of 1 activation.

CLIPS> (run)

==> f-3 (new-fact)

CLIPS> (send [a] put-foo 100)

<== -3 (new-fact)

100

CLIPS> (agenda)

0 match-A-s: [a],f-2

For a total of 1 activation.

CLIPS> (unwatch facts)

CLIPS>

5.4.9 Automatic Addition and Reordering of LHS CEs

Under certain circumstances, CLIPS adds additional pattern CEs to rules (usually for the benefit
of the pattern-matching algorithm used by CLIPS). There are two default patterns used by
CLIPS: the initial-fact fact pattern and the initial-object instance pattern. The initial-fact pattern
is

(initial-fact)
and the initial-object patternis

(object (is-a INITIAL-OBJECT) (name [initial-object]))

5.4.9.1 Rules Without Any LHS Pattern CEs

The initial-fact pattern is added to any rule that has no patterns on its LHS (unless facts have
been disabled by configuring CLIPS in which case the initial-object pattern is added to the LHS
of therule). For example, the following rule

(defrule example-1

:>)
would be changed as follows.
(defrule example-1

(initial-fact)
:>)

CLIPS Basic Programming Guide 57

CLIPS Reference Manual

5.49.2 Test and Not CEsasthe First CE of an And CE

Test CEs and not CEs that are the first CE within an and CE have an initial-fact or an
initial-object pattern added immediately before them. Aninitial-fact pattern is added if the first
pattern CE preceding the CE in question is a fact pattern. An initial-object pattern is added if the
first pattern CE preceding the CE in question is an object pattern. If there are no preceding
pattern CEs, the type of pattern is determined by the succeeding pattern CEs using the same
methodology. If there are no pattern CEs in the rule at all, then an initial-fact pattern is placed
before the CE in question (unless facts have been disabled by configuring CLIPS in which case
the initial-object pattern is added before the CE). For example, the following rules

(defrule example-2
(test (> 80 (startup-value)))
:>)

(defrule example-3
(test (> 80 (startup-value)))
(object (is-a MACHINE))
:>)

(defrule example-4
(machine ?x)
(not (and (not (part ?x ?y))
(inventoried ?x)))

:>)
would be changed as follows.

(defrule example-2
(initial-fact)
(test (> 80 (startup-value)))
:>)

(defrule example-3
(object (is-a INITIAL-OBJECT) (name [initial-object]))
(test (> 80 (startup-value)))
(object (is-a MACHINE))
:>)

(defrule example-4
(machine ?x)
(not (and (initial-fact)
(not (part ?x ?y))
(inventoried ?x)))

:>)

5.4.9.3 Test CEs Following Not CEs

Test CEs that immediately follow a not CE are automatically moved by CLIPS behind the first
pattern CE that precedes the not CE. For example, the following rule

(defrule example
(a ?x)

58 Section 5 - Defrule Construct

CLIPS Reference Manual

(not (b ?x))
(test (> ?x 5))
:>)

would be changed as follows.

(defrule example
(a ?x)
(test (> ?x 5))
(not (b ?x))
:>)

5.4.9.4 Or CEsFollowing Not CEs

If an or CE immediately follows a not CE, then the not/or CE combination is replaced with an
and/not CE combination where each of the CEs contained in the original or CE is enclosed
within a not CE and then all of the not CEs are enclosed within a single and CE. For example,
the following rule

(defrule example

(a ?x)

(not (or (b ?x)
(c ?x)))

:>)

would be changed as follows.

(defrule example
(a ?x)
(and (not (b ?x))
(not (c ?x)))
:>)

5.4.9.5 Notes About Pattern Addition and Reordering

There are severa points which should be noted about the addition and reordering of pattern CEs:
1) The entire LHS of arule is considered to be within an implicit and CE; 2) The conversion of
the forall and exists CEsto equivalent not and and CEs is performed before patterns are added to
the LHS of arule; 3) In generadl, it is not very useful to have a test CE as the first CE within an
and CE; and 4) The output of commands such as the matches command display information for
the CEs that are actually added to the LHS of a rule and, because of reordering and implicit
additions, may not reflect the rule exactly as defined by the user.

5.4.10 Declaring Rule Properties

This feature allows the properties or characteristics of arule to be defined. The characteristics are
declared on the LHS of a rule using the declare keyword. A rule may only have one declare

CLIPS Basic Programming Guide 59

CLIPS Reference Manual

statement and it must appear before the first conditional element on the LHS (as shown in section
5.1).

Syntax
<declaration> ::= (declare <rule-property>+)
<rule-property> ::= (salience <integer-expression>) |
(auto-focus <boolean-symbol>)
<boolean-symbol> ::= TRUE | FALSE

5.4.10.1 The Salience Rule Property

The salience rule property allows the user to assign a priority to a rule. When multiple rules are
in the agenda, the rule with the highest priority will fire first. The declared salience value should
be an expression that evaluates to an an integer in the range -10000 to +10000. Salience
expressions may freely reference global variables and other functions (however, you should
avoid using functions with side-effects). If unspecified, the salience value for a rule defaults to
zero.

Example
(defrule test-1
(declare (salience 99))
(fire test-1)
=>
(printout t "Rule test-1 firing." crif))

(defrule test-2
(declare (salience (+ ?*constraint-salience* 10)))
(fire test-2)
=>
(printout t "Rule test-2 firing." crif))

Salience values can be evaluated at one of three times: when a rule is defined, when a rule is
activated, and every cycle of execution (the latter two Situations are referred to as dynamic
salience). By default, salience values are only evaluated when a rule is defined. The
set-salience-evaluation command can be used to change this behavior. Note that each salience
evaluation method encompasses the previous method (i.e. if saliences are evaluated every cycle,
then they are also evaluated when rules are activated or defined).

5.4.10.2 The Auto-Focus Rule Property

The auto-focus rule property alows an automatic focus command to be executed whenever a
rule becomes activated. If the auto-focus property for a rule is TRUE, then a focus command on
the module in which the rule is defined is automatically executed whenever the rule is activated.
If the auto-focus property for arule is FALSE, then no action is taken when the rule is activated.
If unspecified, the auto-focus value for arule defaultsto FALSE.

60 Section 5 - Defrule Construct

CLIPS Reference Manual

Example
(defrule VIOLATIONS: :bad-age
(declare (auto-focus TRUE))
(person (name ?name) (age ?x&:(< ?x 0)))
=>
(printout t ?name " has a bad age value.”™ crlif))

CLIPS Basic Programming Guide 61

CLIPS Reference Manual

Section 6 - Defglobal Construct

With the defglobal construct, global variables can be defined, set, and accessed within the
CLIPS environment. Global variables can be accessed as part of the pattern-matching process,
but changing them does not invoke the pattern-matching process. The bind function is used to
set the value of global variables. Global variables are reset to their origina value when the r eset
command is performed or when bind is called for the global with no values. This behavior can
be changed using the set-reset-globals function. Global variables can be removed by using the
clear command or the undefglobal command. If the globals item is being watched (see section
13.2), then an informational message will be displayed each time the value of aglobal variableis
changed.

ntax
(defglobal [<defmodule-name>] <global-assignment>%*)

<global-assignment> ::= <global-variable> = <expression>

<global-variable> 1I= ?*<symbol>*

There may be multiple defglobal constructs and any number of global variables may be defined
in each defglobal statement. The optional <defmodule-name> indicates the module in which the
defglobals will be defined. If none is specified, the globals will be placed in the current module.
If avariable was defined in a previous defglobal construct, its value will be replaced by the value
found in the new defglobal construct. If an error is encountered when defining a defglobal
construct, any global variable definitions that occurred before the error was encountered will still
remain in effect.

Commands that operate on defglobals such as ppdefglobal and undefglobal expect the symbolic
name of the global without the astericks (e.g. use the symbol max when you want to refer to the
global variable ?* max*).

Global variables may be used anyplace that a local variable could be used (with two exceptions).
Global variables may not be used as a parameter variable for a deffunction, defmethod, or
message-handler. Global variables may not be used in the same way that alocal variable is used
on the LHS of aruleto bind avalue. Therefore, the following ruleisillegal

(defrule example
(fact ?*x*)
:>)

The following rule, however, islegal.

(defrule example
(fact ?y&:(> ?y ?*x*))
:>)

CLIPS Basic Programming Guide 63

CLIPS Reference Manual

Note that this rule will not necessarily be updated when the value of ?*x* is changed. For
example, if 7*x* is 4 and the fact (fact 3) is added, then the rule is not satisfied. If the value of
?*x* isnow changed to 2, the rule will not be activated.

Example
(defglobal
?*x* = 3
?*y* = P*x*
P*z* = (+ PRy ?*y*)
?*q* = (create$ a b c))

64 Section 6 - Defglobal Construct

CLIPS Reference Manual

Section 7 - Deffunction Construct

With the deffunction construct, new functions may be defined directly in CLIPS. Deffunctions
are equivalent in use to other functions; see section 2.3.2 for more detail on calling functions in
CLIPS. The only differences between user-defined external functions and deffunctions are that
deffunctions are written in CLIPS and executed by CLIPS interpretively and user-defined
external functions are written in an external language, such as C, and executed by CLIPS
directly. Also, deffunctions allow the addition of new functions without having to recompile and
relink CLIPS.

A deffunction is comprised of five elements: 1) a name, 2) an optional comment, 3) alist of zero
or more required parameters, 4) an optional wildcard parameter to handle a variable number of
arguments and 5) a sequence of actions, or expressions, which will be executed in order when the
deffunction is called.

ntax
(deffunction <name> [<comment>]
(<regular-parameter>* [<wildcard-parameter>])
<action>¥*)

<regular-parameter> ::= <single-field-variable>
<wildcard-parameter>::= <multifield-variable>

A deffunction must have a unique name different from all other system functions and generic
functions. In particular, a deffunction cannot be overloaded like a system function (see section 8
for more detail). A deffunction must be declared prior to being called from another deffunction,
generic function method, object message-handler, rule, or the top level. The only exception is a
self recursive deffunction.

A deffunction may accept exactly or at least a specified number of arguments, depending on
whether a wildcard parameter is used or not. The regular parameters specify the minimum
number of arguments that must be passed to the deffunction. Each of these parameters may be
referenced like a normal single-field variable within the actions of the deffunction. If a wildcard
parameter is present, the deffunction may be passed any number of arguments greater than or
equal to the minimum. If no wildcard parameter is present, then the deffunction must be passed
exactly the number of arguments specified by the regular parameters. All arguments to a
deffunction that do not correspond to a regular parameter are grouped into a multifield value that
can be referenced by the wildcard parameter. The standard CLIPS multifield functions, such as
length and nth, can be applied to the wildcard parameter.

Example
CLIPS> (clear)
CLIPS>
(deffunction print-args (?a ?b $?c)
(printout t ?2a ™ " ?b " and " (length ?c) " extras: " ?c
crif))

CLIPS Basic Programming Guide 65

CLIPS Reference Manual

CLIPS> (print-args 1 2)

1 2 and 0 extras:

CLIPS> (print-args a b c d)
a b and 2 extras: (c d)
CLIPS>

When a deffunction is called, its actions are executed in order. The return value of a deffunction
is the evaluation of the last action. If a deffunction has no actions, its return value is the symbol
FALSE. If an error occurs while the deffunction is executing, any actions not yet executed will
be aborted, and the deffunction will return the symbol FALSE.

Deffunctions may be self and mutually recursive. Self recursion is accomplished simply by
calling the deffunction from within its own actions.

Example
(deffunction factorial (?a)
(if (or (not (integerp ?a)) (< ?a 0)) then
(printout t "Factorial Error!" crif)
else
(if (= ?a 0) then
1
else
(* ?a (factorial (- ?a 1))))))

Mutual recursion between two deffunctions requires a forward declaration of one of the
deffunctions. A forward declaration is simply a declaration of the deffunction without any
actions. In the following example, the deffunction foo is forward declared so that it may be
called by the deffunction bar. Then the deffunction foo is redefined with actions that call the
deffunction bar.

Example
(deffunction foo ()

(deffunction bar ()

(foo))
(deffunction foo ()

(bar))

Care should be taken with recursive deffunctions; too many levels of recursion can lead to an
overflow of stack memory (especially on PC-type machines).

66 Section 7 - Deffunction Construct

CLIPS Reference Manual

Section 8 - Generic Functions

With the defgeneric and defmethod constructs, new generic functions may be written directly in
CLIPS. Generic functions are similar to deffunctions because they can be used to define new
procedura code directly in CLIPS, and they can be called like any other function (see sections
2.3.2 and 7). However, generic functions are much more powerful because they can do different
things depending on the types (or classes) and number of their arguments. For example, a “+”
operator could be defined which performs concatenation for strings but still performs arithmetic
addition for numbers. Generic functions are comprised of multiple components called methods,
where each method handles different cases of arguments for the generic function. A generic
function which has more than one method is said to be overloaded.

Generic functions can have system functions and user-defined external functions as implicit
methods. For example, an overloading of the “+” operator to handle strings consists of two
methods: 1) an implicit one which is the system function handling numerical addition, and 2) an
explicit (user-defined) one handling string concatenation. Deffunctions, however, may not be
methods of generic functions because they are subsumed by generic functions anyway.
Deffunctions are only provided so that basic new functions can be added directly in CLIPS
without the concerns of overloading. For example, a generic function which has only one method
that restricts only the number of argumentsis equivalent to a deffunction.

In most cases, generic function methods are not caled directly (the function
call-specific-method described in section 12.15.8 can be used to do so, however). CLIPS
recognizes that a function call is generic and uses the generic function’s arguments to find and
execute the appropriate method. This process is termed the generic dispatch.

8.1NOTE ON THE USE OF THE TERM METHOD

Most OOP systems support procedural behavior of objects either through message-passing (e.g.
Smalltalk) or by generic functions (e.g. CLOS). CLIPS supports both of these mechanisms,
although generic functions are not strictly part of COOL. A generic function may examine the
classes of its arguments but must still use messages within the bodies of its methods to
manipulate any arguments which are instances of user-defined classes. Section 9 gives more
details on COOL. The fact that CLIPS supports both mechanisms leads to a confusion in
terminology. In OOP systems which support message-passing only, the term method is used to
denote the different implementations of a message for different classes. In systems which
support generic functions only, however, the term method is used to denote the different
implementations of a generic function for different sets of argument restrictions. To avoid this
confusion, the term message-handler is used to take the place of method in the context of
messages. Thus in CLIPS, message-handler s denote the different implementations of a message
for different classes, and methods denote the different implementations of a generic function
for different sets of argument restrictions.

CLIPS Basic Programming Guide 67

CLIPS Reference Manual

8.2 PERFORMANCE PENALTY OF GENERIC FUNCTIONS

A call to a generic function is computationally more expensive than a call to a system function,
user-defined external function or deffunction. This is because CLIPS must first examine the
function arguments to determine which method is applicable. A performance penalty of
15%-20% is not unexpected. Thus, generic functions should not be used for routines for which
time is critical, such as routines which are called within a while loop, if a all possible. Also,
generic functions should always have at least two methods. Deffunctions or user-defined external
functions should be used when overloading is not required. A system or user-defined externa
function which is not overloaded will, of course, execute as quickly as ever, since the generic
dispatch is unnecessary.

8.3 ORDER DEPENDENCE OF GENERIC FUNCTION DEFINITIONS

If a construct which uses a system or user-defined external function is loaded before a generic
function which uses that function as an implicit method, all calls to that function from that
construct will bypass the generic dispatch. For example, if a generic function which overloads
the “+” operator is defined after a rule which uses the “+” operator, that rule will always call the
“+” system function directly. However, similar rules defined after the generic function will use
the generic dispatch.

8.4 DEFINING A NEW GENERIC FUNCTION

A generic function is comprised of a header (similar to a forward declaration) and zero or more
methods. A generic function header can either be explicitly declared by the user or implicitly
declared by the definition of at least one method. A method is comprised of six elements. 1) a
name (which identifies to which generic function the method belongs), 2) an optional index, 3)
an optional comment , 4) a set of parameter restrictions, 5) an optional wildcard parameter
restriction to handle a variable number of arguments and 6) a sequence of actions, or
expressions, which will be executed in order when the method is called. The parameter
restrictions are used by the generic dispatch to determine a method's applicability to a set of
arguments when the generic function is actually called. The defgeneric construct is used to
specify the generic function header, and the defmethod construct is used for each of the generic
function’s methods.

68 Section 8 - Generic Functions

CLIPS Reference Manual

ntax
(defgeneric <name> [<comment>])

(defmethod <name> [<index>] [<comment>]
(<parameter-restriction>* [<wildcard-parameter-restriction>])
<action>¥*)

<parameter-restriction> =
<single-field-variable> |
(<single-field-variable> <type>* [<query>])

<wildcard-parameter-restriction> I=
<multifield-variable> |
(<multifield-variable> <type>* [<query>])

<type> 1= <class-name>
<query> ::= <global-variable> |
<function-call>

A generic function must be declared, either by a header or a method, prior to being called from
another generic function method, deffunction, object message-handler, rule, or the top level. The
only exception is a self recursive generic function.

8.4.1 Generic Function Headers

A generic function is uniquely identified by name. In order to reference a generic function in
other constructs before any of its methods are declared, an explicit header is necessary.
Otherwise, the declaration of the first method implicitly creates a header. For example, two
generic functions whose methods mutually call the other generic function (mutually recursive
generic functions) would require explicit headers.

8.4.2 Method Indices

A method is uniquely identified by name and index, or by name and parameter restrictions. Each
method for a generic function is assigned a unique integer index within the group of all methods
for that generic function. Thus, if a new method is defined which has exactly the same name and
parameter restrictions as another method, CLIPS will automatically replace the older method.
However, any difference in parameter restrictions will cause the new method to be defined in
addition to the older method. To replace an old method with one that has different parameter
restrictions, the index of the old method can be explicitly specified in the new method definition.
However, the parameter restrictions of the new method must not match that of another method
with a different index. If an index is not specified, CLIPS assigns an index that has never been
used by any method (past or current) of this generic function. The index assigned by CLIPS can
be determined with the list-defmethods command (see section 13.10.4).

CLIPS Basic Programming Guide 69

CLIPS Reference Manual

8.4.3 Method Parameter Restrictions

Each parameter for a method can be defined to have arbitrarily complex restrictions or none at
al. A parameter restriction is applied to a generic function argument at run-time to determine if a
particular method will accept the argument. A parameter can have two types of restrictions: type
and query. A type restriction constrains the classes of arguments that will be accepted for a
parameter. A query restriction is a user-defined boolean test which must be satisfied for an
argument to be acceptable. The complexity of parameter restrictions directly affects the speed of
the generic dispatch.

A parameter that has no restrictions means that the method will accept any argument in that
position. However, each method of a generic function must have parameter restrictions that make
it distinguishable from all of the other methods so that the generic dispatch can tell which one to
call at run-time. If there are no applicable methods for a particular generic function call, CLIPS
will generate an error (see section 8.5.4 for more detail).

A type restriction allows the user to specify alist of types (or classes), one of which must match
(or be a superclass of) the class of the generic function argument. If COOL is not installed in the
current CLIPS configuration, the only types (or classes) available are: OBJECT, PRIMITIVE,
LEXEME, SYMBOL, STRING, NUMBER, INTEGER, FLOAT, MULTIFIELD,
FACT-ADDRESS and EXTERNAL-ADDRESS. Section 9 describes each of these system
classes. With COOL, INSTANCE, INSTANCE-ADDRESS, INSTANCE-NAME, USER,
INITIAL-OBJECT and any user-defined classes are also available. Generic functions which use
only the first group of types in their methods will work the same whether COOL is installed or
not. The classes in atype restriction must be defined already, since they are used to predetermine
the precedence between a generic function’s methods (see section 8.5.2 for more detail).
Redundant classes are not allowed in restriction class lists. For example, the following method
parameter’ s type restriction is redundant since INTEGER is a subclass of NUMBER.

Example
(defmethod foo ((?a INTEGER NUMBER)))

If the type restriction (if any) is satisfied for an argument, then a query restriction (if any) will be
applied. The query restriction must either be a global variable or afunction call. CLIPS evaluates
this expression, and if it evaluates to anything but the symbol FALSE, the restriction is
considered satisfied. Since a query restriction is not always satisfied, queries should not have any
side-effects, for they will be evaluated for a method that may not end up being applicable to the
generic function call. Since parameter restrictions are examined from left to right, queries which
involve multiple parameters should be included with the rightmost parameter. This insures that
all parameter type restrictions have already been satisfied. For example, the following method
delays evaluation of the query restriction until the classes of both arguments have been verified.

Example
(defmethod foo ((?a INTEGER) (?b INTEGER (> ?a 2?b))))

70 Section 8 - Generic Functions

CLIPS Reference Manual

If the argument passes all these tests, it is deemed acceptable to a method. If all generic function
arguments are accepted by a method’ s restrictions, the method itself is deemed applicable to the
set of arguments. When more than one method is applicable to a set of arguments, the generic
dispatch must determine an ordering among them and execute the first one in that ordering.
Method precedence is used for this purpose and will be discussed in section 8.5.2.

Example
In the following example, the first call to the generic function “+” executes the system operator

“+” an implicit method for numerical addition. The second call executes the explicit method for
string concatenation, since there are two arguments and they are both strings. The third call
generates an error because the explicit method for string concatenation only accepts two
arguments and the implicit method for numerical addition does not accept strings at all.

CLIPS> (clear)

CLIPS>

(defmethod + ((?a STRING) (?b STRING))
(str-cat ?a ?b))

CLIPS> (+ 1 2)

3

CLIPS> (+ "foo"™ "bar™)

"foobar"

CLIPS> (+ "foo" "bar'™ "woz"™)

[GENRCEXE1] No applicable methods for +.

FALSE

8.4.4 Method Wildcard Parameter

A method may accept exactly or at least a specified number of arguments, depending on whether
a wildcard parameter is used or not. The regular parameters specify the minimum number of
arguments that must be passed to the method. Each of these parameters may be referenced like a
normal single-field variable within the actions of the method. If a wildcard parameter is present,
the method may be passed any number of arguments greater than or equal to the minimum. If no
wildcard parameter is present, then the method must be passed exactly the number of arguments
specified by the regular parameters. Method arguments which do not correspond to a regular
parameter can be grouped into a multifield value that can be referenced by the wildcard
parameter within the body of the method. The standard CLIPS multifield functions, such as
length$ and expand$, can be applied to the wildcard parameter.

If multifield values are passed as extra arguments, they will all be merged into one multifield
value referenced by the wildcard parameter. This is because CLIPS does not support nested
multifield values.

Type and query restrictions can be applied to arguments grouped in the wildcard parameter
similarly to regular parameters. Such restrictions apply to each individual field of the resulting
multifield value (not the entire multifield). However, expressions involving the wildcard

CLIPS Basic Programming Guide 71

CLIPS Reference Manual

parameter variable may be used in the query. In addition, a special variable may be used in query
restrictions on the wildcard parameter to refer to the individual arguments grouped into the
wildcard: ?current-argument. This variable is only in scope within the query and has no
meaning in the body of the method. For example, to create a version of the ‘+’ operator which
acts differently for sums of all even integers:

Example
CLIPS>

(defmethod +
(($?any INTEGER (evenp ?current-argument)))
(div (call-next-method) 2))

CLIPS> (+ 1 2)

3

CLIPS> (+ 4 6 4)

7

CLIPS>

It is important to emphasize that query and type restrictions on the wildcard parameter are
applied to every argument grouped in the wildcard. Thus in the following example, the > and
length$ functions are actually called three times, since there are three arguments:

Example
CLIPS> (defmethod foo (($?any (> (length$?any) 2))) yes)
CLIPS> (foo 1 red 3)
yes
CLIPS>

In addition, a query restriction will never be examined if there are no arguments in the wildcard
parameter range. For example, the the previous methodwould be applicable to a call to the
generic function with no arguments because the query restriction is never eval uated:

Example
CLIPS> (foo)
yes
CLIPS>

Typicaly query restrictions applied to the entire wildcard parameter are testing the cardinality
(the number of arguments passed to the method). In cases like this where the type is irrelevant to
the test, the query restriction can be attached to a regular parameter instead to improve
performance (see section 8.5.1). Thus the previous method could be improved as follows:

Example
CLIPS> (clear)

CLIPS> (defmethod foo ((?arg (> (length$?any) 1)) $?any) yes)
CLIPS> (foo)

[GENRCEXE1] No applicable methods for foo.

FALSE

CLIPS>

72 Section 8 - Generic Functions

CLIPS Reference Manual

This approach should not be used if the types of the arguments grouped by the wildcard must be
verified prior to safely evaluating the query restriction.

8.5 GENERIC DISPATCH

When a generic function is called, CLIPS selects the method for that generic function with
highest precedence for which parameter restrictions are satisfied by the arguments. This method
is executed, and its value is returned as the value of the generic function. This entire process is
referred to as the generic dispatch. Below isaflow diagram summary:

START :; Input is a ranked list of applicable methods.

METHOD STEP : Are there any uncalled methods? <_ The solid arrows indicate
YES: Call the next most specific method. automatic control transfer by
If the body uses call-next-method or - - the gene”c dlspatch.

override-next-method, repeat this step.
Else go to DONE.
When body returns, return its values to caller.

v

ERROR: There are no applicable methods for this
generic function. Return control to caller.

The dashed arrows indicate
control transfer that can only
be accomplished by the use
or lack of the use of
call-next-method or
override-next-method

NO:

1
1
1
1
1
1
1
1
1
1
1
1
DONE: Return control and values to caller. !
1

.<_

8.5.1 Applicability of Methods Summary

An explicit (user-defined) method is applicable to a generic function call if the following three
conditions are met: 1) its name matches that of the generic function, 2) it accepts at least as
many arguments as were passed to the generic function, and 3) every argument of the generic
function satisfies the corresponding parameter restriction (if any) of the method.

Method restrictions are examined from left to right. As soon as one restriction is not satisfied, the
method is abandoned, and the rest of the restrictions (if any) are not examined.

When a standard CLIPS system function is overloaded, CLIPS forms an implicit method
definition corresponding to that system function. This implicit method is derived from the
argument restriction string for the external DefineFunction2 call defining that function to CLIPS
(see the Advanced Programming Guide). This string can be accessed with the function
get-function-restrictions. The specification of this implicit method can be examined with the
list-defmethods or get-method-restrictions functions. The method that CLIPS will form for a
system function can be derived by the user from the BNF given in this document. For example,

CLIPS Basic Programming Guide 73

CLIPS Reference Manual

(+ <number> <number>+)

would yield the following method for the *+’ function:

(defmethod + ((?first NUMBER) (?second NUMBER) ($?rest NUMBER))
=)

The method definition is used to determine the applicability and precedence of the system
function to the generic function call.

The following system functions cannot be overloaded, and CLIPS will generate an error if an
attempt is made to do so.

adive-duplicateindance ddayed-dofor-dl-ingances message-madify-indance
adiveinitidizeingance dofor-dl-ingances modify
adivemakeindance dofor-ingance moadify-indance
adivemessage-duplicateingance duplicate next-handlerp
adivemessagemodify-indance duplicateingance next-methodp
adtivemodify-insance expand$ objet-pattern-match-dday
any-ingancep find-all-ingances ovaridened-handler
aset find-ingance ovearridened-method
bind if progn

break makeingance progn$
cal-next-handler initidizeingance reurn

cal-next-method loop-for-count awitch
cal-gpedficmethod message-duplicateindance while

8.5.2 Method Precedence

When two or more methods are applicable to a particular generic function call, CLIPS must pick
the one with highest precedence for execution. Method precedence is determined when a
method is defined; the list-defmethods function can be used to examine the precedence of
methods for a generic function (see section 13.10).

The precedence between two methods is determined by comparing their parameter restrictions.
In general, the method with the most specific parameter restrictions has the highest precedence.
For example, a method which demands an integer for a particular argument will have higher
precedence than a method which only demands a number. The exact rules of precedence between
two methods are given in order below; the result of the first rule which establishes precedence is
taken.

74 Section 8 - Generic Functions

CLIPS Reference Manual

1)) The parameter restrictions of both methods are positionally compared from left to right. In
other words, the first parameter restriction in the first method is matched against the first
parameter restriction in the second method, and so on. The comparisons between these pairs of
parameter restrictions from the two methods determine the overall precedence between the two
methods. The result of the first pair of parameter restrictions which specifies precedence is taken.
The following rules are applied in order to a parameter pair; the result of the first rule which
establishes precedence is taken.

1a) A regular parameter has precedence over awildcard parameter.

1b) The most specific type restriction on a particular parameter has priority. A class is
more specific than any of its superclasses.

1c) A parameter with a query restriction has priority over one that does not.

2) The method with the greater number of regular parameters has precedence.
3) A method without awildcard parameter has precedence over one that does
4) A method defined before another one has priority.

If there are multiple classes on a single restriction, determining specificity is slightly more
complicated. Since al precedence determination is done when the new method is defined, and
the actual class of the generic function argument will not be known until run-time, arbitrary (but
deterministic) rules are needed for determining the precedence between two class lists. The two
class lists are examined by pairs from left to right, e.g. the pair of first classes from both lists, the
pair of second classes from both lists and so on. The first pair containing a class and its
superclass specify precedence. The class list containing the subclass has priority. If no class pairs
specify precedence, then the shorter class list has priority. Otherwise, the class lists do not
specify precedence between the parameter restrictions.

Example 1
; The system operator "+" is an implicit method ; #1
; Its definition provided by the system is:
; (defmethod + ((?a NUMBER) (?b NUMBER) ($?rest NUMBER)))

(defmethod + ((?a NUMBER) (?b INTEGER))) ; #2
(defmethod + ((?a INTEGER) (?b INTEGER))) ; #3
(defmethod + ((?a INTEGER) (?b NUMBER))) ; #4
(defmethod + ((?a NUMBER) (?b NUMBER)

($?rest PRIMITIVE))) ; #5
(defmethod + ((?a NUMBER)

(?b INTEGER (> ?b 2)))) ; #6
(defmethod + ((?a INTEGER (> ?a 2))

(?b INTEGER (> ?b 3)))) ; #H7
(defmethod + ((?a INTEGER (> ?a 2))

(?b NUMBER))) ; #8

CLIPS Basic Programming Guide 75

CLIPS Reference Manual

The precedence would be: #7,#8,#3#4,#6,#2 #1,#5. The methods can be immediately partitioned
into three groups of decreasing precedence according to their restrictions on the first parameter:
A) methods which have a query restriction and a type restriction of INTEGER (#7,#8), B)
methods which have atype restriction of INTEGER (#3,#4), and C) methods which have a type
restriction of NUMBER (#1#2,#5#6). Group A has precedence over group B because
parameters with query restrictions have priority over those that do not. Group B has precedence
over group C because INTEGER is a subclass of NUMBER. Thus, the ordering so far is:
(#7,#8),(#3,#4),(#1,#2,#5,#6). Ordering between the methods in a particular set of parenthesesis
not yet established.

The next step in determining precedence between these methods considers their restrictions on
the second parameter. #7 has priority over #8 because INTEGER is a subclass of NUMBER. #3
has priority over #4 because INTEGER is a subclass of NUMBER. #6 and #2 have priority over
#1 and #5 because INTEGER is a subclass of NUMBER. #6 has priority over #2 because it has a
guery restriction and #2 does not. Thus the ordering is now: #7 #8#3,#4,#6,#2,(#1,#5).

The restriction on the wildcard argument yields that #1 (the system function implicit method) has
priority over #5 since NUMBER is a sublclass of PRIMITIVE. This gives the final ordering:
H#1 ,H8#H3#4 H6,#2,#1 #5.

Example 2
(defmethod foo ((?a NUMBER STRING))) ; #1
(defmethod foo ((?a INTEGER LEXEME))) ; #2

The precedence would be #2,#1. Although STRING is a subclass of LEXEME, the ordering is
still #2,#1 because INTEGER is a subclass of NUMBER, and NUMBER/INTEGER is the
leftmost pair in the class lists.

Example 3
(defmethod foo ((?a MULTIFIELD STRING))) ; #1
(defmethod foo ((?a LEXEME))) ; #2

The precedence would be #2#1 because the classes of the first pair in the type restriction
(MULTIFIELD/LEXEME) are unrelated and #2 has fewer classesin its classlist.

Example 4
(defmethod foo ((?a INTEGER LEXEME))) ; #1
(defmethod foo ((?a STRING NUMBER))) ; #2

Both pairs of classes (INTEGER/STRING and LEXEME/NUMBER) are unrelated, and the class
lists are of equal length. Thus, the precedence is taken from the order of definition: #1,#2.

8.5.3 Shadowed M ethods

If one method must be called by another method in order to be executed, the first function or
method is a said to be shadowed by the second method. Normally, only one method or system

76 Section 8 - Generic Functions

CLIPS Reference Manual

function will be applicable to a particular generic function call. If there is more than one
applicable method, the generic dispatch will only execute the one with highest precedence.
Letting the generic dispatch automatically handle the methods in this manner is called the
declar ative technique, for the declarations of the method restrictions dictate which method gets
executed in gpecific circumstances. However, the functions call-next-method and
override-next-method (see section 12.15.6 and 12.15.7) may also be used which alow a
method to execute the method that it is shadowing. Thisis called the imper ative technique, since
the method execution itself plays arole in the generic dispatch. This is not recommended unless
it is absolutely necessary. In most circumstances, only one piece of code should need to be
executed for a particular set of arguments. Another imperative technigue is to use the function
call-specific-method to override method precedence (see section 12.15.8)

8.5.4 Method Execution Errors

If an error occurs while any method for a generic function call is executing, any actions in the
current method not yet executed will be aborted, any methods not yet called will be aborted, and
the generic function will return the symbol FALSE. The lack of any applicable methods for a set
of generic function arguments is considered a method execution error.

8.5.5 Generic Function Return Value

The return value of a generic function is the return value of the applicable method with the
highest precedence. Each applicable method that is executed can choose to ignore or capture the
return value of any method that it is shadowing.

The return value of a particular method is the last action evaluated by that method.

CLIPS Basic Programming Guide 7

CLIPS Reference Manual

Section 9 - CLIPS Object Oriented L anguage (COOL)

This section provides the comprehensive details of the CLIPS Object-Oriented Language
(COOL). Sections 2.3.1, 2.4.2 and 2.5.2.3 explain object references and structure. Section 2.6
gives a high level overview of COOL. This section assumes a complete understanding of the
material given in the listed sections.

9.1 BACKGROUND

COOL is a hybrid of features from many different OOP systems as well as new ideas. For
example, object encapsulation concepts are similar to those in Smalltalk, and the Common Lisp
Object System (CLOS) provides the basis for multiple inheritance rules. A mixture of ideas from
Smalltalk, CLOS and other systems form the foundation of messages. Section 8.1 explains an
important contrast between the terms method and message-handler in CLIPS.

9.2 PREDEFINED SYSTEM CLASSES

COOL provides seventeen system classes: OBJECT, USER, INITIAL-OBJECT, PRIMITIVE,
NUMBER, INTEGER, FLOAT, INSTANCE, INSTANCE-NAME, INSTANCE-ADDRESS,
ADDRESS, FACT-ADDRESS, EXTERNAL-ADDRESS, MULTIFIELD, LEXEME, SYMBOL
and STRING. The user may not delete or modify any of these classes. The diagram illustrates the

inheritance relationships between these classes.
OBJECT,

T

PRIMITIVE

/ / \\\A.N:AL osseCT

NUMBER INSTANCE ADDRESS MULTIFIELD LEXEME

INTEGER FLOA/ \ / \‘\A SYMBOL STRING

INSTANCE-NAME INSTANCE-ADDRESS FACT-ADDRESS EXTERNAL-ADDRESS

USER

All of these system classes except INITIAL-OBJECT are abstract classes, which means that
their only use is for inheritance (direct instances of this class are illegal). None of these classes
have dots, and, except for the class USER, none of them have message-handlers. However, the
user may explicitly attach message-handlers to all of the system classes except for INSTANCE,
INSTANCE-ADDRESS and INSTANCE-NAME. The OBJECT classis a superclass of all other
classes, including user-defined classes. All user-defined classes should (but are not required to)
inherit directly or indirectly from the class USER, since this class has all of the standard system

CLIPS Basic Programming Guide 79

CLIPS Reference Manual

message-handlers, such as initialization and deletion, attached to it. Section 9.4 describes these
system message-handlers.

The PRIMITIVE system class and all of its subclasses are provided mostly for use in generic
function method restrictions, but message-handlers and new subclasses may be attached if
desired. However, the three primitive system classes INSTANCE, INSTANCE-ADDRESS and
INSTANCE-NAME are provided strictly for use in methods (particularly in forming implicit
methods for overloaded system functions - see section 8.5.1) and as such cannot have subclasses
or message-handlers attached to them.

The INITIAL-OBJECT class is provided for use by the default definstances initial-object in
creating the default instance [initial-object] during the reset command. This system class is
concrete and reactive to pattern-matching on the LHS of rules but is in other respects exactly
like the system class USER. The instance [initial-object] is for use by the initial-object pattern
(see section 5.4.9).

9.3 DEFCLASS CONSTRUCT

A defclassis aconstruct for specifying the properties (slots) and behavior (message-handlers) of
aclass of objects. A defclass consists of five elements: 1) a name, 2) alist of superclasses from
which the new class inherits slots and message-handlers, 3) a specifier saying whether or not the
creation of direct instances of the new class is allowed, 4) a specifier saying whether or not
instances of this class can match object patterns on the LHS of rules and 5) alist of slots specific
to the new class. All user-defined classes must inherit from at least one class, and to this end
COOL provides predefined system classes for use as a base in the derivation of new classes.

Any dots explicitly given in the defclass override those gotten from inheritance. COOL applies
rules to the list of superclasses to generate a class precedence list (see section 9.3.1) for the new
class. Facets (see section 9.3.3) further describe slots. Some examples of facets include: default
value, cardinality, and types of access allowed.

Syntax

Defaults are outlined.

(defclass <name> [<comment>]
(is-a <superclass-name>+)
[<role>]
[<pattern-match-role>]
<slot>*
<handler-documentation>%*)

<role> ::= (role concrete | abstract)

<pattern-match-role>
::= (pattern-match reactive | non-reactive)

80 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

<slot> = (slot <name> <facet>*) |
(single-slot <name> <facet>%*) |
(multislot <name> <facet>*)

<facet> = <default-facet> | <storage-facet> |

<access-facet> | <propagation-facet> |
<source-facet> | <pattern-match-facet> |
<visibility-facet> | <create-accessor-facet>
<override-message-facet> | <constraint-attributes>

<default-facet> ::=
(default ?DERIVE | ?NONE | <expression>*) |
(default-dynamic <expression>%*)

<storage-facet> ::= (storage [ocall | shared)

<access-facet>
::= (access read-write | read-only | initialize-only)

<propagation-facet> ::= (propagation inherit | no-inherit)
<source-facet> ::= (source exclusfive | composite)

<pattern-match-facet>
::= (pattern-match reactive | non-reactive)

<visibility-facet> ::= (visibility private | public)

<create-accessor-facet>
::= (create-accessor ?NONE | read | write | read-write)

<override-message-facet>
::= (override-message ?DEFAULT | <message-name>)

<handler-documentation>
::= (message-handler <name> [<handler-type>])

<handler-type> ::= primary | around | before | after

Redefining an existing class deletes the current subclasses and all associated message-handlers.
An error will occur if instances of the class or any of its subclasses exist.

9.3.1 Multiple Inheritance

If one class inherits from another class, the first class is a subclass of the second class, and the
second class is a superclass of the first class. Every user-defined class must have at least one
direct superclass, i.e. at least one class must appear in the is-a portion of the defclass. Multiple
inheritance occurs when a class has more than one direct superclass. COOL examines the direct
superclass list for a new class to establish alinear ordering called the class precedence list. The
new class inherits slots and message-handlers from each of the classes in the class precedence
list. The word precedence implies that slots and message-handlers of a class in the list override

CLIPS Basic Programming Guide 81

CLIPS Reference Manual

conflicting definitions of another class found later in the list. A class that comes before another
classin thelist is said to be more specific. All class precedence lists will terminate in the system
class OBJECT, and most (if not al) class precedence lists for user-defined classes will terminate
in the system classes USER and OBJECT. The class precedence list can be listed using the
describe-classfunction (see section 13.11.1.4).

9.3.1.1 Multiple Inheritance Rules

COOL uses the inheritance hierarchy of the direct superclasses to determine the class precedence
list for anew class. COOL recursively applies the following two rules to the direct superclasses:

1) A class has higher precedence than any of its superclasses.
2) A class specifies the precedence between its direct superclasses.

If more than one class precedence list would satisfy these rules, COOL chooses the one most
similar to a strict preorder depth-first traversal. This heuristic attempts to preserve “family trees’
to the greatest extent possible. For example, if a child inherited genetic traits from a mother and
father, and the mother and father each inherited traits from their parents, the child's class
precedence list would be: child mother maternal-grandmother maternal-grandfather father
paternal-grandmother paternal-grandfather. There are other orderings which would satisfy the
rules (such as child mother father paternal-grandfather maternal-grandmother
paternal-grandmother maternal-grandfather), but COOL chooses the one which keeps the family
trees together as much as possible.

Example 1
(defclass A (is-a USER))

Class A directly inherits information from the class USER. The class precedence list for A is: A
USER OBJECT.

Example 2
(defclass B (is-a USER))

Class B directly inherits information from the class USER. The class precedence list for B is: B
USER OBJECT.

Example 3
(defclass C (is-a A B))

Class C directly inherits information from the classes A and B. The class precedence list for Ciis:
C A B USER OBJECT.

Example 4
(defclass D (is-a B A))

82 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

Class D directly inherits information from the classes B and A. The class precedence list for D is:
D B A USER OBJECT.

Example5
(defclass E (is-a A C))

By rule #2, A must precede C. However, C is a subclass of A and cannot succeed A in a
precedence list without violating rule #1. Thus, thisis an error.

Example 6
(defclass E (is-a C A))

Specifying that E inherits from A is extraneous, since C inherits from A. However, this definition
does not violate any rules and is acceptable. The class precedence list for E is: E C A B USER
OBJECT.

Example 7
(defclass F (is-a C B))

Specifying that F inherits from B is extraneous, since C inherits from B. The class precedence
list for Fis: F C A B USER OBJECT. The superclass list says B must follow C in F's class
precedence list but not that B must immediately follow C.

Example 8
(defclass G (is-a C D))

Thisis an error, for it violates rule #2. The class precedence of C says that A should precede B,
but the class precedence list of D says the opposite.

Example9
(defclass H (is-a A))
(defclass 1 (is-a B))
(defclass J (is-a H 1 A B))

The respective class precedence lists of H and | are: H A USER OBJECT and | B USER
OBJECT. If J did not have A and B as direct superclasses, J could have one of three possible
class precedence lists: JH A | B USER OBJECT, JH | A BUSER OBJECT or JH | B A USER
OBJECT. COOL would normally pick the first list since it preserves the family trees (H A and |
B) to the greatest extent possible. However, since J inherits directly from A and B, rule #2
dictates that the class precedence list must be JH | A B USER OBJECT.

CLIPS Basic Programming Guide 83

CLIPS Reference Manual

9.3.2 Class Specifiers

9.3.2.1 Abstract and Concrete Classes

An abstract class is intended for inheritance only, and no direct instances of this class can be
created. A concrete class can have direct instances. Using the abstract role specifier in a defclass
will cause COOL to generate an error if make-instance is ever caled for this class. If the
abstract or concrete descriptor for a classis not specified, it is determined by inheritance.

9.3.2.2 Reactive and Non-Reactive Classes

Objects of areactive class can match object patterns in a rule. Objects of a non-reactive class
cannot match object patterns in a rule and are not considered when the list of applicable classes
are determined for an object pattern. An abstract class cannot be reactive. If the reactive or
non-reactive descriptor for aclassis not specified, it is determined by inheritance.

9.3.3Sots

Slots are placeholders for values associated with instances of a user-defined class. Each instance
has a copy of the set of dots specified by the immediate class as well as any obtained from
inheritance. Only available memory limits the number of slots. The name of a slot may be any
symbol with the exception of the keywords is-a and name which are reserved for use in object
patterns.

To determine the set of dlots for an instance, the class precedence list for the instance's class is
examined in order from most specific to most general (left to right). A classis more specific than
its superclasses. Slots specified in any of the classes in the class precedence list are given to the
instance, with the exception of no-inherit slots (see section 9.3.3.5). If a dot is inherited from
more than one class, the definition given by the more specific class takes precedence, with the
exception of composite slots (see section 9.3.3.6).

Example
(defclass A (is-a USER)
(slot fooA)
(slot barA))

(defclass B (is-a A)
(slot fooB)
(slot barB))

The class precedence list of A is: A USER OBJECT. Instances of A will have two sots: fooA
and barA. The class precedence list of B is: B A USER OBJECT. Instances of B will have four
sots: fooB, barB, fooA and barA.

84 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

Just as slots make up classes, facets make up slots. Facets describe various features of a slot that
hold true for al objects which have the dot: default value, storage, access, inheritance
propagation, source of other facets, pattern-matching reactivity, visibility to subclass
message-handlers, the automatic creation of message-handlers to access the dlot, the name of the
message to send to set the slot and constraint information. Each object can still have its own
value for asot, with the exception of shared dlots (see section 9.3.3.3).

9.3.3.1 Sot Field Type

A dot can hold either a single-field or multifield value. By default, a dot is single-field. The
keyword multislot specifies that a slot can hold a multifield value comprised of zero or more
fields, and the keywords slot or single-dot specify that the slot can hold one value. Multifield
dot values are stored as multifield values and can be manipulated with the standard multifield
functions, such as nth$ and length$, once they are retrieved via messages. COOL also provides
functions for setting multifield slots, such as sot-insert$ (see section 12.16.4.12.2). Single-field
slots are stored as a CLIPS primitive type, such asinteger or string.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(multislot foo (create-accessor read)
(default abc def ghi)))
CLIPS> (make-instance a of A)
[a]
CLIPS> (nth$ 2 (send [a] get-fo0))
def
CLIPS>

9.3.3.2 Default Value Facet

The default and default-dynamic facets can be used to specify an initia value given to a slot
when an instance of the classis created or initialized. By default, a slot will have a default value
which is derived from the slot’s constraint facets (see sections 9.3.3.11 and 11.5). Default values
are directly assigned to dlots without the use of messages, unlike dlot overrides in a
make-instance call (see section 9.6.1).

The default facet is a static default: the specified expression is evaluated once when the classis
defined, and the result is stored with the class. This result is assigned to the appropriate slot when
a new instance is created. If the keyword ?DERIVE is used for the default value, then a default
value is derived from the constraints for the slot (see section 11.5 for more details). By defaullt,
the default attribute for a slot is (default ?PDERIVE). If the keyword ?NONE is used for the
default value, then the dlot is not assigned a default value. Using this keyword causes

CLIPS Basic Programming Guide 85

CLIPS Reference Manual

make-instance to require a slot-override for that slot when an instance is created. Note that in
CLIPS 6.0, a slot now has a default even if one is not explicitly specified (unlike CLIPS 5.1).
This could cause different behavior for CLIPS 5.1 programs using the initialize-instance
function. The ?NONE keyword can be used to recover the original behavior for classes.

The default-dynamic facet is a dynamic default: the specified expression is evaluated every time
an instance is created, and the result is assigned to the appropriate slot.

Example
CLIPS> (clear)

CLIPS> (setgen 1)
1
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo (default-dynamic (gensym))
(create-accessor read)))
CLIPS> (make-instance al of A)
[al]
CLIPS> (make-instance a2 of A)
[a2]
CLIPS> (send [al] get-foo)
genl
CLIPS> (send [a2] get-foo0)
gen2
CLIPS>

9.3.3.3 Storage Facet

The actual value of an instance’s copy of a slot can either be stored with the instance or with the
class. The local facet specifies that the value be stored with the instance, and this is the default.
The shared facet specifies that the value be stored with the class. If the slot value is locally
stored, then each instance can have a separate value for the slot. However, if the dot value is
stored with the class, al instances will have the same value for the slot. Anytime the value is
changed for ashared dot, it will be changed for al instances with that slot.

A shared slot will always pick up a dynamic default value from a defclass when an instance is
created or initialized, but the shared dot will ignore a static default value unless it does not
currently have a value. Any changes to a shared slot will cause pattern-matching for rules to be
updated for all reactive instances containing that slot.

Example
CLIPS> (clear)

CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo (create-accessor write)
(storage shared)
(default 1))
(slot bar (create-accessor write)

86 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

(storage shared)
(default-dynamic 2))
(slot woz (create-accessor write)

(storage local)))

CLIPS> (make-instance a of A)

[al

CLIPS> (send [a] print)

[a] of A

(foo 1)

(bar 2)

(woz nil)

CLIPS> (send [a] put-foo 56)

56

CLIPS> (send [a] put-bar 104)

104

CLIPS> (make-instance b of A)

[b]

CLIPS> (send [b] print)

[b] of A

(foo 56)

(bar 2)

(woz nil)

CLIPS> (send [b] put-foo 34)

34

CLIPS> (send [b] put-woz 68)

68

CLIPS> (send [a] print)

[a] of A

(foo 34)

(bar 2)

(woz nil)

CLIPS> (send [b] print)

[b] of A

(foo 34)

(bar 2)

(woz 68)

CLIPS>

9.3.3.4 Access Facet

There are three types of access facets which can be specified for a sot: read-write, read-only,
and initialize-only. The read-write facet is the default and says that a slot can be both written
and read. The read-only facet says the slot can only be read; the only way to set this ot is with
default facets in the class definition. The initialize-only facet is like read-only except that the
dlot can also be set by slot overrides in a make-instance call (see section 9.6.1) and init
message-handlers (see section 9.4). These privileges apply to indirect access via messages as
well as direct access within message-handler bodies (see section 9.4). Note: aread-only dlot that
has a static default value will implicitly have the shared storage facet.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)

CLIPS Basic Programming Guide 87

CLIPS Reference Manual

(role concrete)
(slot foo (create-accessor write)
(access read-write))
(slot bar (access read-only)
(default abc))
(slot woz (create-accessor write)
(access initialize-only)))
CLIPS>
(defmessage-handler A put-bar (?value)
(dynamic-put (sym-cat bar) ?value))
CLIPS> (make-instance a of A (bar 34))
[MSGFUN3] bar slot in [a] of A: write access denied.
[PRCCODE4] Execution halted during the actions of message-handler put-bar
primary in class A
FALSE
CLIPS> (make-instance a of A (foo 34) (woz 65))
[a]
CLIPS> (send [a] put-bar 1)
[MSGFUN3] bar slot in [a] of A: write access denied.
[PRCCODE4] Execution halted during the actions of message-handler put-bar
primary in class A
FALSE
CLIPS> (send [a] put-woz 1)
[MSGFUN3] woz slot in [a] of A: write access denied.
[PRCCODE4] Execution halted during the actions of message-handler put-bar
primary in class A
FALSE
CLIPS> (send [a] print)
[a] of A
(foo 34)
(bar abc)
(woz 65)
CLIPS>

9.3.3.5 Inheritance Propagation Facet

An inherit facet says that a slot in a class can be given to instances of other classes that inherit
from thefirst class. Thisisthe default. The no-inherit facet says that only direct instances of this
classwill get the dot.

Example

88

CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo (propagation inherit))
(slot bar (propagation no-inherit)))
CLIPS> (defclass B (is-a A))
CLIPS> (make-instance a of A)
[a]
CLIPS> (make-instance b of B)
[b]
CLIPS> (send [a] print)
[a] of A
(foo nil)

Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

(bar nil)

CLIPS> (send [b] print)
[b] of B

(foo nil)

CLIPS>

9.3.3.6 Sour ce Facet

When obtaining slots from the class precedence list during instance creation, the default behavior
is to take the facets from the most specific class which gives the slot and give default values to
any unspecified facets. Thisis the behavior specified by the exclusive facet. The composite facet
causes facets which are not explicitly specified by the most specific class to be taken from the
next most specific class. Thus, in an overlay fashion, the facets of an instance’'s slot can be
specified by more than one class. Note that even though facets may be taken from superclasses,
the dot is still considered to reside in the new class for purposes of visibility (see section
9.3.3.8). One good example of ause of thisfeature isto pick up a slot definition and change only
its default value for a new derived class.

Example

CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)

(multislot foo (access read-only)

(default a b c¢)))

CLIPS>
(defclass B (is-a A)

(slot foo (source composite) ; multiple and read-only

; from class A
(default d e f)))

CLIPS> (describe-class B)

AEXA XA EAA A A A A A XA XA XA A AKX AKX AAAAXAAXAAAAAAXAAAAARAAXAA A AL A AKX A AR A LA hhdX

Abstract: direct instances of this class cannot be created.

Direct Superclasses: A

Inheritance Precedence: B A USER OBJECT

Direct Subclasses:

SLOTS : FLD DEF PRP ACC STO MCH SRC VIS CRT OVRD-MSG SOURCE(S)
foo : MLT STC INH R LCL RCT CMP PRV NIL NIL A B

Constraint information for slots:

SLOTS : SYM STR INN INA EXA FTA INT FLT

foo : + + + + + + + + RNG:[-00..+00] CRD:[O..+00]
Recognized message-handlers:

init primary in class USER

delete primary in class USER

print primary in class USER

direct-modify primary in class USER

message-modify primary in class USER

direct-duplicate primary in class USER

CLIPS Basic Programming Guide 89

CLIPS Reference Manual

message-duplicate primary in class USER
AE A A A A A A A A A A A A XA A XA A A A A A A AAAA XA AXAAXAAXAAXAAAAAXAA XA XA A A A AR A AR LA A hkX

CLIPS>

9.3.3.7 Pattern-Match Reactivity Facet

Normally, any change to a dot of an instance will be considered as a change to the instance for
purposes of pattern-matching. However, it is possible to indicate that changes to a slot of an
instance should not cause pattern-matching. The reactive facet specifies that changes to a slot
trigger pattern-matching, and this is the default. The non-reactive facet specifies that changes to
aslot do not affect pattern-matching.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(pattern-match reactive)
(slot foo (create-accessor write)
(pattern-match non-reactive)))
CLIPS>
(defclass B (is-a USER)
(role concrete)
(pattern-match reactive)
(slot foo (create-accessor write)
(pattern-match reactive)))
CLIPS>
(defrule Create
?ins<-(object (is-a A | B))
=>
(printout t "Create " (instance-name ?ins) crlif))
CLIPS>
(defrule Foo-Access
?ins<-(object (is-a A | B) (foo ?))
=>
(printout t "Foo-Access " (instance-name ?ins) crif))
CLIPS> (make-instance a of A)
[a]
CLIPS> (make-instance b of B)
[b]
CLIPS> (run)
Create [b]
Foo-Access [b]
Create [a]
CLIPS> (send [a] put-foo 1)
1
CLIPS> (send [b] put-foo 1)
1
CLIPS> (run)
Foo-Access [b]
CLIPS>

20 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

9.3.3.8 Visibility Facet

Normally, only message-handlers attached to the class in which a dlot is defined may directly
access the dlot. However, it is possible to allow message-handlers attached to superclasses or
subclasses which inherit the slot to directly access the slot as well. Declaring the visibility facet
to be private specifies that only the message-handlers of the defining class may directly access
the dlot, and this is the default. Declaring the visibility facet to be public specifies that the
message-handlers and subclasses which inherit the slot and superclasses may also directly access
the dlot.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(slot foo (visibility private)))
CLIPS>
(defclass B (is-a A)
(role concrete))
CLIPS>
(defmessage-handler B get-foo ()
?self:foo)
[MSGFUN6] Private slot foo of class A cannot be accessed directly by
handlers attached to class B

[PRCCODE3] Undefined variable self:foo referenced in message-handler.

ERROR:
(defmessage-handler MAIN::B get-foo
O

?self:foo

)
CLIPS>

9.3.3.9 Create-Accessor Facet

In CLIPS 5.1, implicit slot-accessor message-handlers were created for every dlot. This is not
true in CLIPS 6.0. The user must define their own message-handlers for reading and writing the
dot. This was done because in most cases the accessors were not required; explicit
message-handlers attached to the class of the dot directly accessed the slot anyway. However,
the create-accessor facet instructs CLIPS to automatically create explicit message-handlers for
reading and/or writing a slot. By default, no accessors are created. While these message-handlers
are real message-handlers and can be manipulated as such, they have no pretty-print form and
cannot be directly modified by the user.

If the valueread is specified for the facet, CLIPS creates the following message-handler:

(defmessage-handler <class> get-<slot-name> primary ()
?self:<slot-name>)

CLIPS Basic Programming Guide 91

CLIPS Reference Manual

If the value write is specified for the facet, CLIPS creates the following message-handler for
single-field dots:

(defmessage-handler <class> put-<slot-name> primary (?value)
(bind ?self:<slot-name> ?value)

or the following message-handler for multifield dlots:

(defmessage-handler <class> put-<slot-name> primary ($?value)
(bind ?self:<slot-name> ?value)

If the value read-write is specified for the facet, both the get- and one of the put-
message-handlers are created.

If accessors are required that do not use static slot references (see sections 9.4.2, 9.6.3 and 9.6.4),
then user must define them explicitly with the defmessage-handler construct.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo (create-accessor write))
(slot bar))
CLIPS> (make-instance a of A (foo 36))
[a]
CLIPS> (make-instance b of A (bar 45))
[MSGFUN1] No applicable primary message-handlers found for put-bar.
FALSE
CLIPS>

9.3.3.10 Override-M essage Facet

There are several COOL support functions which set slots via use of message-passing, e.g.,
make-instance, initialize-instance, message-modify-instance and
message-duplicate-instance. By default, al these functions attempt to set a dot with the
message called put-<dot-name>. However, if the user has elected not to use standard
dlot-accessors and wishes these functions to be able to perform dlot-overrides, then the
override-message facet can be used to indicate what message to send instead.

Example

CLIPS> (clear)

CLIPS>

(defclass A (is-a USER)
(role concrete)
(slot special (override-message special-put)))

CLIPS>

(defmessage-handler A special-put primary (?value)
(bind 7?self:special ?value))

CLIPS> (watch messages)

92 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

CLIPS> (make-instance a of A (special 65))
MSG >> special-put ED:1 (<Instance-a> 65)
MSG << special-put ED:1 (<Instance-a> 65)
MSG >> init ED:1 (<Instance-a>)

MSG << init ED:1 (<Instance-a>)

[a]

CLIPS> (unwatch messages)

CLIPS>

9.3.3.11 Constraint Facets

The syntax and functionality of single and multifield constraint facets (attributes) are described
in detail in Section 11. Static and dynamic constraint checking for classes and their instances is
supported. Static checking is performed when constructs or commands which specify dlot
information are being parsed. Object patterns used on the LHS of a rule are also checked to
determine if constraint conflicts exist anong variables used in more that one slot. Errors for
inappropriate values are immediately signaled. Static checking is enabled by default. This
behavior can be changed using the set-static-constraint-checking function. Dynamic checking
is also supported. If dynamic checking is enabled, then new instances have their values checked
whenever they are set (e.g. initialization, slot-overrides, and put- access). This dynamic checking
is disabled by default. This behavior can be changed using the
set-dynamic-constraint-checking function. If an violation occurs when dynamic checking is
being performed, then execution will be halted.

Regardless of whether static or dynamic checking is enabled, multifield values can never be
stored in single-field slots. Single-field values are converted to a multifield value of length one
when storing in a multifield slot. In addition, the evaluation of a function which has no return
valueisalwaysillegal asasdlot value.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(multislot foo (create-accessor write)
(type SYMBOL)
(cardinality 2 3)))
CLIPS> (make-instance a of A (foo 45))
[a]
CLIPS> (set-dynamic-constraint-checking TRUE)
FALSE
CLIPS> (make-instance a of A (foo red 5.0))
[CSTRNCHK1] (red 5.0) for slot foo of instance [a] found in put-foo
primary in class A does not match the allowed types.
[PRCCODE4] Execution halted during the actions of message-handler put-foo
primary in class A
FALSE
CLIPS> (make-instance a of A (foo red))
[CSTRNCHK1] (red) for slot foo of instance [a] found in put-foo primary in
class A does not satisfy the cardinality restrictions.

CLIPS Basic Programming Guide 93

CLIPS Reference Manual

[PRCCODE4] Execution halted during the actions of message-handler put-foo
primary in class A

FALSE

CLIPS>

9.3.4 Message-handler Documentation

COOL allows the user to forward declare the message-handlers for a class within the defclass
statement. These declarations are for documentation only and are ignored by CLIPS. The
defmessage-handler construct must be used to actually add message-handlers to a class.
Message-handlers can later be added which are not documented in the defclass.

Example

CLIPS> (clear)

CLIPS>

(defclass rectangle (is-a USER)
(slot side-a (default 1))
(slot side-b (default 1))
(message-handler find-area))

CLIPS>

(defmessage-handler rectangle find-area ()
(* ?self:side-a 7?self:side-b))

CLIPS>

(defmessage-handler rectangle print-area ()
(printout t (send 7?self find-area) crlif))

CLIPS>

9.4 DEFMESSAGE-HANDLER CONSTRUCT

Objects are manipulated by sending them messages via the function send. The result of a
message is a useful return-value or side-effect. A defmessage-handler is a construct for
specifying the behavior of a class of objects in response to a particular message. The
implementation of a message is made up of pieces of procedural code called message-handlers
(or handlers for short). Each class in the class precedence list of an object’s class can have
handlers for a message. In this way, the object’s class and all its superclasses share the labor of
handling the message. Each class's handlers handle the part of the message which is appropriate
to that class. Within a class, the handlers for a particular message can be further subdivided into
four types or categories. primary, before, after and around. The intended purposes of each
type are summarized in the chart below:

Type Rolefor the Class

primary Performs the mgjority of the work for the message

before Does auxiliary work for a message before the primary handler executes
after Does auxiliary work for a message after the primary handler executes

around Sets up an environment for the execution of the rest of the handlers

94 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

Before and after handlers are for side-effects only; their return values are always ignored. Before
handlers execute before the primary ones, and after message-handlers execute after the primary
ones. The return value of a message is generaly given by the primary message-handlers, but
around handlers can aso return a value. Around message-handlers allow the user to wrap code
around the rest of the handlers. They begin execution before the other handlers and pick up again
after all the other message-handlers have finished.

A primary handler provides the part of the message implementation which is most specific to an
object, and thus the primary handler attached to the class closest to the immediate class of the
object overrides other primary handlers. Before and after handlers provide the ability to pick up
behavior from classes that are more general than the immediate class of the object, thus the
message implementation uses al handlers of this type from al the classes of an object. When
only the roles of the handlers specify which handlers get executed and in what order, the
message is said to be declar atively implemented. However, some message implementations may
not fit this model well. For example, the results of more than one primary handler may be
needed. In cases like this, the handlers themselves must take part in deciding which handlers get
executed and in what order. This is called the imperative technique. Around handlers provide
imperative control over all other types of handlers except more specific around handlers. Around
handlers can change the environment in which other handlers execute and modify the return
value for the entire message. A message implementation should use the declarative technique if
at al possible because this allows the handlers to be more independent and modular.

A defmessage-handler is comprised of seven elements. 1) a class name to which to attach the
handler (the class must have been previously defined), 2) a message name to which the handler
will respond, 3) an optional type (the default is primary), 4) an optional comment, 5) a list of
parameters that will be passed to the handler during execution, 6) an optional wildcard parameter
and 7) a series of expressions which are executed in order when the handler is called. The
return-value of a message-handler isthe evaluation of the last expression in the body.

Syntax

Defaults are outlined.

(defmessage-handler <class-name> <message-name>
[<handler-type>] [<comment>]
(<parameter>* [<wildcard-parameter>])
<action>¥*)

<handler-type> around | before | primary | after
<parameter> ::= <single-field-variable>
<wildcard-parameter>::= <multifield-variable>

Message-handlers are uniquely identified by class, name and type. Message-handlers are never
called directly. When the user sends a message to an object, CLIPS selects and orders the
applicable message-handlers attached to the object’s class(es) and then executes them. This
process is termed the message dispatch.

CLIPS Basic Programming Guide 95

CLIPS Reference Manual

Example
CLIPS> (clear)
CLIPS> (defclass A (is-a USER) (role concrete))

CLIPS>
(defmessage-handler A delete before ()

(printout t "Deleting an instance of the class A..." crlIf))
CLIPS>

(defmessage-handler USER delete after ()
(printout t "System completed deletion of an instance.”

crlf))

CLIPS> (watch instances)

CLIPS> (make-instance a of A)

==> instance [a] of A

[a]

CLIPS> (send [a] delete)

Deleting an instance of the class A._.

<== instance [a] of A

System completed deletion of an instance.

TRUE

CLIPS> (unwatch instances)

CLIPS>

9.4.1 Message-handler Parameters

A message-handler may accept exactly or at least a specified number of arguments, depending
on whether a wildcard parameter is used or not. The regular parameters specify the minimum
number of arguments that must be passed to the handler. Each of these parameters may be
referenced like a normal single-field variable within the actions of the handler. If a wildcard
parameter is present, the handler may be passed any number of arguments greater than or equal
to the minimum. If no wildcard parameter is present, then the handler must be passed exactly the
number of arguments specified by the regular parameters. All arguments to a handler that do not
correspond to a regular parameter are grouped into a multifield value that can be referenced by
the wildcard parameter. The standard CLI1PS multifield functions, such as length$ and expand$,
can be applied to the wildcard parameter.

Handler parameters have no bearing on the applicability of a handler to a particular message (see
section 9.5.1). However, if the number of arguments is inappropriate, a message execution error
(see section 9.5.4) will be generated when the handler is called. Thus, the number of arguments
accepted should be consistent for al message-handlers applicable to a particular message.

Example

CLIPS> (clear)

CLIPS>

(defclass CAR (is-a USER)
(role concrete)
(slot front-seat)
(multislot trunk)
(slot trunk-count))

CLIPS>

(defmessage-handler CAR put-items-in-car (?item $?rest)
(bind ?self:front-seat ?item)

96 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

(bind ?self:trunk ?rest)
(bind ?self:trunk-count (length$?rest)))
CLIPS> (make-instance Pinto of CAR)
[Pinto]
CLIPS> (send [Pinto] put-items-in-car bag-of-groceries
tire suitcase)
2
CLIPS> (send [Pinto] print)
[Pinto] of CAR
(front-seat bag-of-groceries)
(trunk tire suitcase)
(trunk-count 2)
CLIPS>

9.4.1.1 Active I nstance Par ameter

The term active instance refers to an instance which is responding to a message. All
message-handlers have an implicit parameter called ?self which binds the active instance for a
message. This parameter name is reserved and cannot be explicitly listed in the
message-handler’ s parameters, nor can it be rebound within the body of a message-handler.

Example
CLIPS> (clear)
CLIPS> (defclass A (is-a USER) (role concrete))
CLIPS> (make-instance a of A)

[al

CLIPS>

(defmessage-handler A print-args (?a ?b $7?c¢)
(printout t (instance-name ?self) " " ?2a "™ " ?b

*'and " (length$?c) " extras: " ?c crlIf))
CLIPS> (send [a] print-args 1 2)
[a] 1 2 and O extras: ()
CLIPS> (send [a] print-args a b c d)
[a] a b and 2 extras: (c d)
CLIPS>

9.4.2 Message-handler Actions

The body of a message-handler is a sequence of expressions that are executed in order when the
handler is called. The return value of the message-handler is the result of the evaluation of the
last expression in the body.

Handler actions may directly manipulate slots of the active instance. Normally, slots can only be
manipulated by sending the object slot-accessor messages (see sections 9.3.3.9 and 9.4.3).
However, handlers are considered part of the encapsulation (see section 2.6.2) of an object, and
thus can directly view and change the sots of the object. There are several functions which
operate implicitly on the active instance (without the use of messages) and can only be called
from within a message-handler. These functions are discussed in section 12.16.

CLIPS Basic Programming Guide 97

CLIPS Reference Manual

A shorthand notation is provided for accessing slots of the active instance from within a
message-handler.

Syntax

?self:<slot-name>

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo (default 1))
(slot bar (default 2)))

CLIPS>

(defmessage-handler A print-all-slots ()
(printout t ?self:foo " " ?self:bar crif))

CLIPS> (make-instance a of A)

[a]

CLIPS> (send [a] print-all-slots)

12

CLIPS>

The bind function can also take advantage of this shorthand notation to set the value of aslot.

ntax
(bind ?self:<slot-name> <value>*)

Example
CLIPS>

(defmessage-handler A set-foo (?value)
(bind ?self:foo ?value))

CLIPS> (send [a] set-foo 34)

34

CLIPS>

Direct dlot accesses are statically bound to the appropriate dlot in the defclass when the
message-handler is defined. Care must be taken when these direct slot accesses can be executed
as the result of a message sent to an instance of a subclass of the class to which the
message-handler is attached. If the subclass has redefined the slot, the direct ot access
contained in the message-handler attached to the superclass will fail. That message-handler
accesses the ot in the superclass, not the subclass.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(slot foo (create-accessor read)))
CLIPS>
(defclass B (is-a A)
(role concrete)
(slot fo0))
CLIPS> (make-instance b of B)

[b]

98 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

CLIPS> (send [b] get-foo)

[MSGPASS3] Static reference to slot foo of class A does not apply to [b]
of B

[PRCCODE4] Execution halted during the actions of message-handler get-foo
primary in class A

FALSE

CLIPS>

In order for direct slot accesses in a superclass message-handler to apply to new versions of the
dot in subclasses, the dynamic-put and dynamic-get (see sections 12.16.4.10 and 12.16.4.11)
must be used. However, the subclass slot must have public visibility for this to work (see section
9.3.3.9).

Example

CLIPS> (clear)

CLIPS>

(defclass A (is-a USER)
(slot foo0))

CLIPS>

(defmessage-handler A get-foo ()
(dynamic-get fo00))

CLIPS>

(defclass B (is-a A)

(role concrete)

(slot foo (visibility public)))
CLIPS> (make-instance b of B)
[b]

CLIPS> (send [b] get-foo)
nil
CLIPS>

9.4.3 Daemons

Daemons are pieces of code which execute implicitly whenever some basic action is taken upon
an instance, such asinitialization, deletion, or reading and writing of slots. All these basic actions
are implemented with primary handlers attached to the class of the instance. Daemons may be
easily implemented by defining other types of message-handlers, such as before or after, which
will recognize the same messages. These pieces of code will then be executed whenever the
basic actions are performed on the instance.

Example
CLIPS> (clear)

CLIPS> (defclass A (is-a USER) (role concrete))
CLIPS>
(defmessage-handler A init before ()
(printout t "Initializing a new instance of class A..."
crilf))
CLIPS> (make-instance a of A)
Initializing a new instance of class A...
[al
CLIPS>

CLIPS Basic Programming Guide 99

CLIPS Reference Manual

9.4.4 Predefined System M essage-handlers

CLIPS defines seven primary message-handlers that are attached to the class USER. These
handlers cannot be deleted or modified.

9.4.4.1 Instance I nitialization

ntax
(defmessage-handler USER init primary ()

This handler is responsible for initializing instances with class default values after creation. The
make-instance and initialize-instance functions send the init message to an instance (see
sections 9.6.1 and 9.6.2); the user should never send this message directly. This handler is
implemented using the init-slotsfunction (see section 12.13). User-defined init handlers should
not prevent the system message-handler from responding to aninit message (see section 9.5.3).

Example
CLIPS> (clear)

CLIPS>
(defclass CAR (is-a USER)
(role concrete)
(slot price (default 75000))
(slot model (default Corniche)))
CLIPS> (watch messages)
CLIPS> (watch message-handlers)
CLIPS> (make-instance Rolls-Royce of CAR)
MSG >> init ED:1 (<Instance-Rolls-Royce>)
HND >> init primary in class USER
ED:1 (<Instance-Rolls-Royce>)
HND << init primary in class USER
ED:1 (<Instance-Rolls-Royce>)
MSG << init ED:1 (<Instance-Rolls-Royce>)
[Rolls-Royce]
CLIPS>

9.4.4.2 Instance Deletion

ntax
(defmessage-handler USER delete primary ())

This handler is responsible for deleting an instance from the system. The user must directly send
a delete message to an instance. User-defined delete message-handlers should not prevent the
system message-handler from responding to a delete message (see section 9.5.3). The handler
returns the symbol TRUE if the instance was successfully deleted, otherwise it returns the
symbol FALSE.

100 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

Example
CLIPS> (send [Rolls-Royce] delete)

MSG >> delete ED:1 (<Instance-Rolls-Royce>)
HND >> delete primary in class USER
ED:1 (<Instance-Rolls-Royce>)
HND << delete primary in class USER
ED:1 (<Stale Instance-Rolls-Royce>)
MSG << delete ED:1 (<Stale Instance-Rolls-Royce>)
TRUE
CLIPS>

9.4.4.3 Instance Display

ntax
(defmessage-handler USER print primary ())

This handler prints out slots and their values for an instance.

Example
CLIPS> (make-instance Rolls-Royce of CAR)

MSG >> init ED:1 (<Instance-Rolls-Royce>)
HND >> init primary in class USER

ED:1 (<Instance-Rolls-Royce>)
HND << init primary in class USER

ED:1 (<Instance-Rolls-Royce>)
MSG << init ED:1 (<Instance-Rolls-Royce>)
[Rolls-Royce]
CLIPS> (send [Rolls-Royce] print)
MSG >> print ED:1 (<Instance-Rolls-Royce>)
HND >> print primary in class USER

ED:1 (<Instance-Rolls-Royce>)
[Rolls-Royce] of CAR
(price 75000)
(model Corniche)
HND << print primary in class USER

ED:1 (<Instance-Rolls-Royce>)
MSG << print ED:1 (<Instance-Rolls-Royce>)
CLIPS> (unwatch messages)
CLIPS. (unwatch message-handlers)
CLIPS>

9.4.4.4 Directly Modifying an I nstance

ntax
(defmessage-handler USER direct-modify primary
(?slot-override-expressions))

This handler modifies the slots of an instance directly rather than using put- override messages to
place the slot values. The dot-override expressions are passed as an EXTERNAL_ADDRESS

CLIPS Basic Programming Guide 101

CLIPS Reference Manual

data object to the direct-modify handler. This message is used by the functions modify-instance
and active-modify-instance.

Example
The following around message-handler could be used to insure that all modify message

slot-overrides are handled using put- messages.

(defmessage-handler USER direct-modify around
(?overrides)
(send ?self message-modify ?overrides))

9.4.4.5 Modifying an I nstance using M essages

ntax
(defmessage-handler USER message-modify primary
(?slot-override-expressions)

This handler modifies the slots of an instance using put- messages for each dot update. The
slot-override expressions are passed as an EXTERNAL_ADDRESS data object to the
message-modify handler. This message is used by the functions message-modify-instance and
active-message-modify-instance.

9.4.4.6 Directly Duplicating an I nstance

ntax
(defmessage-handler USER direct-duplicate primary
(?new-instance-name ?slot-override-expressions))

This handler duplicates an instance without using put- messages to assign the slot-overrides. Slot
values from the original instance and slot overrides are directly copied. If the name of the new
instance created matches a currently existing instance-name, then the currently existing instance
is deleted without use of a message. The dlot-override expressions are passed as an
EXTERNAL_ADDRESS data object to the direct-duplicate handler. This message is used by the
functions duplicate-instanceand active-duplicate-instance.

Example
The following around message-handler could be used to insure that all duplicate message

dlot-overrides are handled using put- messages.

(defmessage-handler USER direct-duplicate around
(?new-name ?overrides)
(send ?self message-duplicate ?new-name ?overrides))

102 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

9.4.4.7 Duplicating an I nstance using M essages

ntax

(defmessage-handler USER message-duplicate primary
(?new-instance-name ?slot-override-expressions)

This handler duplicates an instance using messages. Slot values from the original instance and
slot overrides are copied using put- and get- messages. If the name of the new instance created
matches a currently existing instance-name, then the currently existing instance is deleted using a
delete message. After creation, the new instance is sent an init message. The sot-override
expressions are passed as an EXTERNAL_ADDRESS data object to the message-duplicate
handler. This message is used by the functions message-duplicate-instance and
active-message-duplicate-instance.

9.5 MESSAGE DISPATCH

When a message is sent to an object using the send function, CLIPS examines the class
precedence list of the active instance’s class to determine a complete set of message-handlers
which are applicable to the message. CLIPS uses the roles (around, before, primary or after) and
specificity of these message-handlers to establish an ordering and then executes them. A handler
which is attached to a subclass of another message-handler’s class is said to be more specific.
This entire process is referred to as the message dispatch. Following is a flow diagram
summary:

CLIPS Basic Programming Guide 103

CLIPS Reference Manual

START : Input is a list of applicable message-handlers

AROUND STEP: Are there any uncalled around handlers?
YES: Call most specific uncalled around handler.
If body uses call-next-handler, repeat this step.
Else go to DONE.
When body returns , return its values to caller.

* The solid arrows indicate

NO: v

BEFORE STEP: Are there any uncalled before handlers?
YES: Call most specific uncalled before handler.
When the body returns, repeat this step.

© automatic control transfer by

NO: v

~ | the message dispatch system.
: The dashed arows indicate
-

PRIMARY STEP: Are there any uncalled primary handlers?
YES: Call most specific uncalled primary handler.
If body uses call-next-handler, repeat this step
When body returns, return its values to caller.

© control transfer that can only be
----- - accomplished by the use or lack
© of the use of call-next-handler

: (or override-next-handler).

NO: v

AFTER STEP: Are there any uncalled after handlers? :,

YES: Call least specific uncalled after handler.
When body returns, repeat this step.

NO: v

DONE: Return control and values to caller. - - ;

9.5.1 Applicability of Message-handlers

A message-handler is applicable to a message if its name matches the message, and it is attached
to aclass which isin the class precedence list of the class of the instance receiving the message.

9.5.2 Message-handler Precedence

The set of all applicable message-handlers are sorted into four groups according to role, and
these four groups are further sorted by class specificity. The around, before and primary handlers
are ordered from most specific to most general, whereas after handlers are ordered from most
general to most specific.

The order of execution is as follows: 1) around handlers begin execution from most specific to
most general (each around handler must explicitly allow execution of other handlers), 2) before
handlers execute (one after the other) from most specific to most general 3) primary handlers
begin execution from most specific to most general (more specific primary handlers must
explicitly allow execution of more general ones), 4) primary handlers finish execution from most
general to most specific, 5) after handlers execute (one after the other) from most general to most
specific and 6) around handlers finish execution from most general to most specific.

104 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

There must be at least one applicable primary handler for a message, or a message execution
error will be generated (see section 9.5.4).

9.5.3 Shadowed M essage-handlers

When one handler must be called by another handler in order to be executed, the first handler is
said to be shadowed by the second. An around handler shadows all handlers except more
specific around handlers. A primary handler shadows all more general primary handlers.

Messages should be implemented using the declarative technique, if possible. Only the handler
roles will dictate which handlers get executed; only before and after handlers and the most
specific primary handler are used. This allows each handler for a message to be completely
independent of the other message-handlers. However, if around handlers or shadowed primary
handlers are necessary, then the handlers must explicitly take part in the message dispatch by
calling other handlers they are shadowing. This is called the imperative technique. The functions
call-next-handler and override-next-handler (see section 12.16.2) allow a handler to execute
the handler it is shadowing. A handler can call the same shadowed handler multiple times.

Example
(defmessage-handler USER my-message around ()
(call-next-handler))
(defmessage-handler USER my-message before ())
(defmessage-handler USER my-message () —USER around begin
(call-next-handler)) __OBJECT around begin
(defmessage-handler USER my-message after ()) USER before
(defmessage-handler OBJECT my-message around ()
(call-next-handler)) OBJECT before
(defmessage-handler OBJECT my-message before ()) USER primary begin
(defmessage-handler OBJECT my-message ()) .
(defmessage-handler OBJECT my-message after ()) OBJECT primary

USER primary end
For a message sent to an instance of a class which inherits from USER, OBJECT after

the diagram to the right illustrates the order of execution for the handlers USER after
attached to the classes USER and OBJECT. The brackets indicate where — OBJECT around end

a particular handler begins and ends execution. Handlers enclosed within “~{ser around end

a bracket are shadowed.

9.5.4 Message Execution Errors

If an error occurs at any time during the execution of a message-handler, any currently executing
handlers will be aborted, any handlers which have not yet started execution will be ignored, and
the send function will return the symbol FALSE.

A lack of applicable of primary message-handlers and a handler being called with the wrong
number of arguments are common message execution errors.

CLIPS Basic Programming Guide 105

CLIPS Reference Manual

9.5.5 Message Return Value

The return value of call to the send function is the return value of the most specific around
handler, or the most specific primary handler if there are no around handlers. The return value of
ahandler isthe result of the evaluation of the last action in the handler.

The return values of the before and after handlers are ignored; they are for side-effects only. An
around handler can choose to ignore or capture the return value of the next most specific around
or primary handler. A primary handler can choose to ignore or capture the return value of a more
genera primary handler.

9.6 MANIPULATING INSTANCES

Objects are manipulated by sending them messages. Thisis achieved by using the send function,
which takes as arguments the destination object for the message, the message itself and any
arguments which are to be passed to handlers.

Syntax

(send <object-expression>
<message-name-expression> <expression>%*)

Section 2.4.2 explains object references. The return value of send is the result of the message as
explained in section 9.5.5.

The dots of an object may be read or set directly only within the body of a message-handler that
is executing on behalf of a message that was sent to that object. Thisis how COOL implements
the notion of encapsulation (see Section 2.6.2). Any action performed on an object by an external
source, such as arule or function, must be done with messages. There are two maor exceptions:
1) objects which are not instances of user-defined classes (floating-point and integer numbers,
symbols, strings, multifield values, fact-addresses and external-addresses) can be manipulated in
the standard non-OOP manner of previous versions of CLIPS as well and 2) creation and
initialization of an instance of a user-defined class are performed via the function
make-instance.

9.6.1 Creating Instances

Like facts, instances of user-defined classes must be explicitly created by the user. Likewise, all
instances are deleted during the reset command, and they can be loaded and saved similarly to
facts. All operations involving instances require message-passing using the send function except
for creation, since the object does not yet exist. A function called make-instance is used to
create and initialize a new instance. This function implicitly sends an initialization message to
the new object after alocation, and the user can customize instance initialization with daemons.
make-instance aso alows slot-overrides to change any predefined initialization for a particular

106 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

instance. make-instance automatically delays all object pattern-matching activities for rules
until all ot overrides have been processed. The function active-make-instance can be used if
delayed pattern-matching is not desired. active-make-instance remembers the current state of
delayed pattern-matching, explicitly turns delay on, and then restores it to its previous state once
all ot overrides have been processed.

ntax
(make-instance <instance-definition>)
(active-make-instance <instance-definition>)

<instance-definition> ::= [<instance-name-expression>] of
<class-name-expression>
<slot-override>*
<slot-override> ::= (<slot-name-expression>
<expression>*)

The return value of make-instance is the name of the new instance on success or the symbol
FALSE on falure. The evauation of <instance-name-expression> can either be an
instance-name or a symbol. If <instance-name-expression> is not specified, then the function
gensym* will be called to generate the instance-name.

make-instance performs the following stepsin order:

1) If an instance of the specified name already exists, that instance receives a delete message,
e.g. (send <instance-name> delete). If this falls for any reason, the new instance creation is
aborted. Normally, the handler attached to class USER will respond to this message (see section
9.4.5.2).

2) A new and uninitialized instance of the specified classis created with the specified name.

3) All dot-overrides are immediately evaluated and placed via put- messages (see section
9.3.3.10), e.g. (send <instance-name> put-<slot-name> <expression>*). If there are any errors,
the new instance is deleted.

4) The new instance receives the init message, e.g. (send <instance-name> init). Normally, the
handler attached to class USER will respond to this message (see section 9.4.4.1). This handler
calls the init-glots function (see section 12.16.4.1). This function uses defaults from the class
definition (if any) for any slots which do not have dlot-overrides. The class defaults are placed
directly without the use of messages. If there are any errors, the new instance is deleted.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot x (default 34)
(create-accessor write))
(slot y (default abc)))
CLIPS>
(defmessage-handler A put-x before (?value)
(printout t "Slot x set with message.”" crif))
CLIPS>

CLIPS Basic Programming Guide 107

CLIPS Reference Manual

(defmessage-handler A delete after ()
(printout t "Old instance deleted." crif))

CLIPS> (make-instance a of A)

[a]

CLIPS> (send [a] print)

[a] of A

(x 34)

(y abc)

CLIPS> (make-instance [a] of A (x 65))

Old instance deleted.

Slot x set with message.

[a]

CLIPS> (send [a] print)

a of A

(x 65)

(y abc)

CLIPS> (send [a] delete)

Old instance deleted.

TRUE

CLIPS>

9.6.1.1 Definstances Construct

Similar to deffacts, the definstances construct allows the specification of instances which will be
created every time the reset command is executed. On every reset all current instances receive a
delete message, and the equivalent of a make-instance function call is made for every instance
specified in definstances constructs.

Syntax
(definstances <definstances-name> [active] [<comment>]
<instance-template>*)
<instance-template> ::= (<instance-definition>)

A definstances cannot use classes which have not been previously defined. The instances of a
definstances are created in order, and if any individual creation fails, the remainder of the
definstances will be aborted. Normally, definstances just use the make-instancefunction (which
means delayed Rete activity) to create the instances. However, if this is not desired,then the
active keyword can be specified after the definstances name so that the active-make-instance
function will be used.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER) (role concrete)
(slot x (create-accessor write) (default 1)))
CLIPS>
(definstances A-OBJECTS
(al of A)
(of A (x 65)))
CLIPS> (watch instances)
CLIPS> (reset)
==> instance [initial-object] of INITIAL-OBJECT

108 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

==> instance [al] of A

==> instance [genl] of A

CLIPS> (reset)

<== instance [initial-object] of INITIAL-OBJECT
<== instance [al] of A

<== instance [genl] of A

==> instance [initial-object] of INITIAL-OBJECT
=> instance [al] of A

=> instance [gen2] of A

CLIPS> (unwatch instances)

CLIPS>

Upon startup and after a clear command, CLIPS automatically constructs the following
definstances.

(definstances initial-object
(initial-object of INITIAL-OBJECT))

The class INITIAL-OBJECT is apredefined system class that is a direct subclass of USER.

(defclass INITIAL-OBJECT
(is-a USER)
(role concrete)
(pattern-match reactive))

The initial-object definstances and the INITIAL-OBJECT class are only defined if both the
object system and defrules are enabled (see section 2 of the Advanced Programming Guide). The
INITIAL-OBJECT class cannot be deleted, but the initial-object definstances can. See section
5.4.9 for details on default patterns which pattern-match against the initial-object instance.

9.6.2 Reinitializing Existing | nstances

The initialize-instancefunction provides the ability to reinitialize an existing instance with class
defaults and new dlot-overrides. The return value of initialize-instance is the name of the
instance on success or the symbol FALSE on failure. The evauation of
<instance-name-expression> can either be an instance-name, instance-address or a symbol.
initialize-instance automatically delays all object pattern-matching activities for rules until all
dlot overrides have been processed. The function active-initialize-instance can be used if
delayed pattern-matching is not desired.

ntax
(initialize-instance <instance-name-expression>
<slot-override>%*)

initialize-instance performs the following steps in order:

1) All dot-overrides are immediately evaluated and placed via put- messages (see section
9.3.3.10), e.g. (send <instance-name> put-<slot-name> <expression>*).

CLIPS Basic Programming Guide 109

CLIPS Reference Manual

2) The instance receives the init message, e.g. (send <instance-name> init). Normally, the
handler attached to class USER will respond to this message (see section 9.4.5.1). This handler
calls the init-glots function (see section 12.16.4.1). This function uses defaults from the class
definition (if any) for any slots which do not have dlot-overrides. The class defaults are placed
directly without the use of messages.

If no slot-override or class default specifies the value of a dot, that value will remain the same.
Empty class default values allow initialize-instanceto clear aslot.

If an error occurs, the instance will not be deleted, but the slot values may be in an inconsistent
state.

Example

CLIPS> (clear)

CLIPS>

(defclass A (is-a USER)
(role concrete)
(slot x (default 34)

(create-accessor write))
(slot y (default ?NONE)
(create-accessor write))

(slot z (create-accessor write)))

CLIPS> (make-instance a of A (y 100))

[a]

CLIPS> (send [a] print)

[a] of A

(x 34)

(y 100)

(z nil)

CLIPS> (send [a] put-x 65)

65

CLIPS> (send [a] put-y abc)

abc

CLIPS> (send [a] put-z "Hello world.™)

“Hello world.”

CLIPS> (send [a] print)

[a] of A

(x 65)

(y abc)

(z "Hello world.™)

CLIPS> (initialize-instance a)

[a]

CLIPS> (send [a] print)

a of A

(x 34)

(y abc)

(z nil)

CLIPS>

110 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

9.6.3 Reading Slots

Sources external to an object, such as a rule or deffunction, can read an object’s slots only by
sending the object a message. Message-handlers executing on the behalf of an object can either
use messages or direct access to read the object’ s dots (see section 9.4.2). Severa functions also
exist which operate implicitly on the active instance for a message that can only be called by
message-handlers, such asdynamic-get (see section 12.16.4.10).

Section 12.16 describes ways of testing for the existence of slots and their values.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot x (create-accessor read)
(default abc)))
CLIPS> (make-instance a of A)
[a]
CLIPS> (sym-cat (send [a] get-x) def)
abcdef
CLIPS>

9.6.4 Setting Slots

Sources external to an object, such as a rule or deffunction, can write an object’s slots only by
sending the object a message. Severa functions aso exist which operate implicitly on the active
instance for a message that can only be called by message-handlers, such as dynamic-put (see
section 12.16.4.11). The bind function can also be used to set a dot's value from within a
message-handler (see section 9.4.2).

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot x (create-accessor write)
(default abc)))
CLIPS> (make-instance a of A)
[a]
CLIPS> (send [a] put-x "New value.™)
“New value.”
CLIPS>

9.6.5 Deleting I nstances

Sending the delete message to an instance removes it from the system. Within a
message-handler, the delete-instance function (see section 12.16) can be used to delete the
active instance for a message.

CLIPS Basic Programming Guide 111

CLIPS Reference Manual

ntax
(send <instance> delete)

9.6.6 Delayed Patter n-Matching When M anipulating I nstances

While manipulating instances (either by creating, modifying, or deleting), it is possible to delay
pattern-matching activities for rules until after all of the manipulations have been made. This can
be accomplished using the object-patter n-match-delay function. This function acts identically
to the progn function, however, any actions which could affect object pattern-matching for rules
are delayed until the function is exited. This function’s primary purpose is to provide some
control over performance.

ntax
(object-pattern-match-delay <action>%*)

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(pattern-match reactive))
CLIPS>
(defrule match-A
(object (is-a A))
:>)
CLIPS> (make-instance a of A)
[al
CLIPS> (agenda)
0] match-A: [a]
For a total of 1 activation.
CLIPS> (make-instance b of A)

[b]

CLIPS> (agenda)

0 match-A: [b]

0 match-A: [a]

For a total of 2 activations.
CLIPS>

(object-pattern-match-delay
(make-instance c of A)

(printout t "After c..." crlif)
(agenda)
(make-instance d of A)
(printout t "After d..." crlif)
(agenda))

After c...

0 match-A: [b]

0 match-A: [a]

For a total of 2 activations.

After d...

0 match-A: [b]

0 match-A: [a]

For a total of 2 activations.
CLIPS> (agenda)
0 match-A: [d]

112 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

0 match-A: [c]

0 match-A: [b]

0 match-A: [a]

For a total of 4 activations.
CLIPS>

9.6.7 Madifying I nstances

Four functions are provided for modifying instances. These functions allow instance slot updates
to be performed in blocks without requiring a series of put- messages. Each of these functions
returns the symbol TRUE if successful, otherwise the symbol FAL SE is returned.

9.6.7.1 Directly Modifying an Instance with Delayed Patter n-M atching

The modify-instance function uses the direct-modify message to change the values of the
instance. Object pattern-matching is delayed until all of the slot modifications have been
performed.

ntax
(modify-instance <instance> <slot-override>%*)

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo0)
(slot bar))
CLIPS> (make-instance a of A)
[a]
CLIPS> (watch all)
CLIPS> (modify-instance a (foo 0))
MSG >> direct-modify ED:1 (<Instance-a> <Pointer-0019CD5A>)
HND >> direct-modify primary in class USER.
ED:1 (<Instance-a> <Pointer-0019CD5A>)
::= local slot foo in instance a <- 0
HND << direct-modify primary in class USER.
ED:1 (<Instance-a> <Pointer-0019CD5A>)
MSG << direct-modify ED:1 (<Instance-a> <Pointer-0019CD5A>)
TRUE
CLIPS> (unwatch all)
CLIPS>

9.6.7.2 Directly Modifying an Instance with |mmediate Patter n-M atching

The active-modify-instance function uses the direct-modify message to change the values of
the instance. Object pattern-matching occurs as slot modifications are being performed.

CLIPS Basic Programming Guide 113

CLIPS Reference Manual

ntax
(active-modify-instance <instance> <slot-override>%*)

9.6.7.3 Madifying an Instance using M essages with Delayed Pattern-Matching

The message-modify-instance function uses the message-modify message to change the values
of the instance. Object pattern-matching is delayed until all of the slot modifications have been
performed.

ntax
(message-modify-instance <instance> <slot-override>%*)

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo0)
(slot bar (create-accessor write)))
CLIPS> (make-instance a of A)
[a]
CLIPS> (watch all)
CLIPS> (message-modify-instance a (bar 4))
MSG >> message-modify ED:1 (<Instance-a> <Pointer-009F04A0>)
HND >> message-modify primary in class USER
ED:1 (<Instance-a> <Pointer-009F04A0>)
MSG >> put-bar ED:2 (<Instance-a> 4)
HND >> put-bar primary in class A
ED:2 (<Instance-a> 4)
::= local slot bar in instance a <- 4
HND << put-bar primary in class A
ED:2 (<Instance-a> 4)
MSG << put-bar ED:2 (<Instance-a> 4)
HND << message-modify primary in class USER
ED:1 (<Instance-a> <Pointer-009F04A0>)
MSG << message-modify ED:1 (<Instance-a> <Pointer-009F04A0>)
TRUE
CLIPS> (unwatch all)
CLIPS>

9.6.7.4 Modifying an Instance using M essages with Immediate Patter n-Matching

The active-message-modify-instance function uses the message-modify message to change the
values of the instance. Object pattern-matching occurs as slot modifications are being performed.

ntax
(active-message-modify-instance <instance> <slot-override>*)

114 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

9.6.8 Duplicating I nstances

Four functions are provided for duplicating instances. These functions alow instance duplication
and dlot updates to be performed in blocks without requiring a series of put- messages. Each of
these functions return the instance-name of the new duplicated instance if successful, otherwise
the symbol FALSE is returned.

Each of the duplicate functions can optionally specify the name of the instance to which the old
instance will be copied. If the name is not specified, the function will generate the name using
the (gensym*) function. If the target instance aready exists, it will be deleted directly or with a
delete message depending on which function was called.

9.6.8.1 Directly Duplicating an I nstance with Delayed Pattern-M atching

The duplicate-instance function uses the dir ect-duplicate message to change the values of the
instance. Object pattern-matching is delayed until all of the slot modifications have been
performed.

Syntax

(duplicate-instance <instance> [to <instance-name>]
<slot-override>¥*)

Example

CLIPS> (clear)
CLIPS> (setgen 1)
1
CLIPS>
(defclass A (is-a USER)

(role concrete)

(slot foo (create-accessor write))

(slot bar (create-accessor write)))
CLIPS> (make-instance a of A (foo 0) (bar 4))
[a]
CLIPS> (watch all)
CLIPS> (duplicate-instance a)
MSG >> direct-duplicate ED:1 (<Instance-a> [genl] <Pointer-00000000>)
HND >> direct-duplicate primary in class USER

ED:1 (<Instance-a> [genl] <Pointer-00000000>)
==> instance [genl] of A
::= local slot foo in instance genl <- 0
2= local slot bar in instance genl <- 4
HND << direct-duplicate primary in class USER
ED:1 (<Instance-a> [genl] <Pointer-00000000>)

MSG << direct-duplicate ED:1 (<Instance-a> [genl] <Pointer-00000000>)
[genl]
CLIPS> (unwatch all)
CLIPS>

CLIPS Basic Programming Guide 115

CLIPS Reference Manual

9.6.8.2 Directly Duplicating an I nstance with Immediate Pattern-M atching

The active-duplicate-instance function uses the direct-duplicate message to change the values
of the instance. Object pattern-matching occurs as slot modifications are being performed.

ntax
(active-duplicate-instance <instance> [to <instance-name>]
<slot-override>*)

9.6.8.3 Duplicating an I nstance using M essages with Delayed Pattern-M atching

The message-duplicate-instance function uses the message-duplicate message to change the
values of the instance. Object pattern-matching is delayed until al of the slot modifications have
been performed.

Syntax
(message-duplicate-instance <instance> [to <instance-name>]
<slot-override>*)

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo (create-accessor write))
(slot bar (create-accessor write)))
CLIPS> (make-instance a of A (foo 0) (bar 4))
[a]
CLIPS> (make-instance b of A)
[b]
CLIPS> (watch all)
CLIPS> (message-duplicate-instance a to b (bar 6))
MSG >> message-duplicate ED:1 (<Instance-a> [b] <Pointer-009F04A0>)
HND >> message-duplicate primary in class USER
ED:1 (<Instance-a> [b] <Pointer-009F04A0>)
MSG >> delete ED:2 (<Instance-b>)
HND >> delete primary in class USER
ED:2 (<Instance-b>)
<== instance [b] of A
HND << delete primary in class USER
ED:2 (<Stale Instance-b>)
MSG << delete ED:2 (<Stale Instance-b>)
==> instance [b] of A
MSG >> put-bar ED:2 (<Instance-b> 6)
HND >> put-bar primary in class A
ED:2 (<Instance-b> 6)
::= local slot bar in instance b <- 6
HND << put-bar primary in class A
ED:2 (<Instance-b> 6)
MSG << put-bar ED:2 (<Instance-b> 6)
MSG >> put-foo ED:2 (<Instance-b> 0)
HND >> put-foo primary in class A
ED:2 (<Instance-b> 0)

116 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

::= local slot foo in instance b <- 0
HND << put-foo primary in class A
ED:2 (<Instance-b> 0)
MSG << put-foo ED:2 (<Instance-b> 0)
MSG >> init ED:2 (<Instance-b>)
HND >> init primary in class USER
ED:2 (<Instance-b>)
HND << init primary in class USER
ED:2 (<Instance-b>)
MSG << init ED:2 (<Instance-b>)
HND << message-duplicate primary in class USER
ED:1 (<Instance-a> [b] <Pointer-009F04A0>)
MSG << message-duplicate ED:1 (<Instance-a> [b] <Pointer-009F04A0>)
[b]
CLIPS> (unwatch all)
CLIPS>

9.6.8.4 Duplicating an I nstance using M essages with |mmediate Pattern-Matching

The active-message-duplicate-instance function uses the message-duplicate message to
change the values of the instance. Object pattern-matching occurs as slot modifications are being
performed.

ntax
(active-message-duplicate-instance <instance>
[to <instance-name>]
<slot-override>*)

9.7 INSTANCE-SET QUERIESAND DISTRIBUTED ACTIONS

COOL provides a useful query system for determining and performing actions on sets of
instances of user-defined classes that satisfy user-defined queries. The instance query system in
COOL provides six functions, each of which operate on instance-sets determined by user-defined
criteria

Function Purpose
any-instancep Determines if one or more instance-sets satisfy a query
find-instance Returns the first instance-set that satisfies a query
find-all-instances Groups and returns all instance-sets which satisfy a query
do-for-instance Performs an action for the first instance-set which satisfies a query
do-for-all-instances Performs an action for every instance-set which satisfies a query as they are found
delayed-do-for-all-instances Groups al instance-sets which satisfy a query and then iterates an action over this group

Explanations on how to form instance-set templates, queries and actions immediately follow, for
these definitions are common to all of the query functions. The specific details of each query

CLIPS Basic Programming Guide 117

CLIPS Reference Manual

function will then be given. The following is a complete example of an instance-set query
function:

Example
Instance-set member class restrictions
CLI PS> ‘J
(do-for-alldinstance
((?car’l MASERATI BMW (?car2 ROLLS-ROYCE))4— | nstance-set templ ate
(> ?caxl:price (* 1.5 ?¢gar2:price)X I nstance-set query
(printogt t ?carl crlf)f)q—— Instance-set distributed action
[Al bert- erati]
CLI PS>

I nstance-set member vari abl es

For all of the examples in this section, assume that the commands below have aready been
entered:

Example
CLIPS>

(defclass PERSON (is-a USER)
(role abstract)
(slot sex (access read-only)
(storage shared))
(slot age (type NUMBER)
(visibility public)))
CLIPS>
(defmessage-handler PERSON put-age (?value)
(dynamic-put age ?value))
CLIPS>
(defclass FEMALE (is-a PERSON)
(role abstract)
(slot sex (source composite)
(default female)))
CLIPS>
(defclass MALE (is-a PERSON)
(role abstract)
(slot sex (source composite)
(default male)))
CLIPS>
(defclass GIRL (is-a FEMALE)
(role concrete)
(slot age (source composite)
(default 4)
(range 0.0 17.9)))
CLIPS>
(defclass WOMAN (is-a FEMALE)
(role concrete)
(slot age (source composite)
(default 25)
(range 18.0 100.0)))
CLIPS>
(defclass BOY (is-a MALE)

118 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

(role concrete)
(slot age (source composite)
(default 4)
(range 0.0 17.9)))
CLIPS>
(defclass MAN (is-a MALE)
(role concrete)
(slot age (source composite)
(default 25)
(range 18.0 100.0)))
CLIPS>
(definstances PEOPLE
(Man-1 of MAN (age 18))
(Man-2 of MAN (age 60))
(Woman-1 of WOMAN (age 18))
(Woman-2 of WOMAN (age 60))
(Woman-3 of WOMAN)
(Boy-1 of BOY (age 8))
(Boy-2 of BOY)
(Boy-3 of BOY)
(Boy-4 of BOY)
(Girl-1 of GIRL (age 8))
(Girl-2 of GIRL))
CLIPS> (reset)
CLIPS>

9.7.1 Instance-set Definition

An instance-set is an ordered collection of instances. Each instance-set member is an instance
of a set of classes, called classrestrictions, defined by the user. The class restrictions can be
different for each instance-set member. The query functions use instance-set templates to
generate instance-sets. An instance-set template is a set of instance-set member variables and
their associated class restrictions. Instance-set member variables reference the corresponding
members in each instance-set which matches a template. Variables may be used to specify the
classes for the instance-set template, but if the constant names of the classes are specified, the
classes must already be defined. Module specifiers may be included with the class names; the
classes need not be in scope of the current module.

Syntax

<instance-set-template>

::= (<instance-set-member-template>+)
<instance-set-member-template>

::= (<instance-set-member-variable> <class-restrictions>)

<instance-set-member-variable> ::= <single-field-variable>
<class-restrictions> ::= <class-name-expression>+
Example

One instance-set template might be the ordered pairs of boys or men and girls or women.

((?man-or-boy BOY MAN) (?woman-or-girl GIRL WOMAN))

CLIPS Basic Programming Guide 119

CLIPS Reference Manual

This instance-set template could have been written equivalently:

((?man-or-boy MALE) (?woman-or-girl FEMALE))

Instance-set member variables (e.g. ?man-or-boy) are bound to instance-names.

9.7.2 Instance-set Deter mination

COOL uses straightforward permutations to generate instance-sets that match an instance-set
template from the actual instances in the system. The rules are as follows:

1) When there is more than one member in an instance-set template, vary the rightmost members

first.

2) When there is more than one class that an instance-set member can be, iterate through the

classes from left to right.

3) Examine instances of a classin the order that they were defined.

3a) Recursively examine instances of subclasses in the order that the subclasses were defined.

If the specified query class was in scope of the current module, then only subclasses
which are aso in scope will be examined. Otherwise, only subclasses which are in scope
of the module to which the query class belongs will be examined.

Example
For the instance-set template given in section 9.7.1, thirty instance-sets would be generated in the

following order:

1. [Boy-1] [Girl-1] 16. [Boy-4] [Girl-1]
2. [Boy-1] [Girl-2] 17. [Boy-4] [Girl-2]
3. [Boy-1] [Woman-1] 18. [Boy-4] [Woman-1]
4. [Boy-1] [Woman-2] 19. [Boy-4] [Woman-2]
5. [Boy-1] [Woman-3] 20. [Boy-4] [Woman-3]
6. [Boy-2] [Girl-1] 21. [Man-17 [Girl-1]
7. [Boy-2] [Girl-2] 22. [Man-1] [Girl-2]
8. [Boy-2] [Woman-1] 23. [Man-1] [Woman-1]
9. [Boy-2] [Woman-2] 24_. [Man-1] [Woman-2]
10. [Boy-2] [Woman-3] 25. [Man-1] [Woman-3]
11. [Boy-3] [Girl-1] 26. [Man-2] [Girl-1]
12. [Boy-3] [Girl-2] 27. [Man-2] [Girl-2]
13 [Boy-3] [Woman-1] 28. [Man-2] [Woman-1]
14. [Boy-3] [Woman-2] 29. [Man-2] [Woman-2]
15. [Boy-3] [Woman-3] 30. [Man-2] [Woman-3]
Example

Consider the following instance-set template:

((?f1 FEMALE) (?f2 FEMALE))

Twenty-five instance-sets would be generated in the following order:

120 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

1. [Girl-1] [Girl-1] 14 . [Woman-1] [Woman-2]
2. [Girl-1] [Girl-2] 15.[Woman-1] [Woman-3]
3. [Girl-1] [Woman-1] 16.[Woman-2] [Girl-1]
4. [Girl-1] [Woman-2] 17 . [Woman-2] [Girl-2]
5. [Girl-1] [Woman-3] 18.[Woman-2] [Woman-1]
6. [Girl-2] [Girl-1] 19.[Woman-2] [Woman-2]
7. [Girl-2] [Girl-2] 20.[Woman-2] [Woman-3]
8. [Girl-2] [Woman-1] 21_[Woman-3] [Girl-1]
9. [Girl-2] [Woman-2] 22 _[Woman-3] [Girl-2]
10.[Girl-2] [Woman-3] 23.[Woman-3] [Woman-1]
11.[Woman-1] [Girl-1] 24 _[Woman-3] [Woman-2]
12._.[Woman-1] [Girl-2] 25.[Woman-3] [Woman-3]

13.[Woman-1] [Woman-17]

The instances of class GIRL are examined before the instances of class WOMAN because GIRL
was defined before WOMAN.

9.7.3 Query Definition

A query is a user-defined boolean expression applied to an instance-set to determine if the
instance-set meets further user-defined restrictions. If the evaluation of this expression for an
instance-set is anything but the symbol FAL SE, the instance-set is said to satisfy the query.

ntax
<query> ::= <boolean-expression>

Example
Continuing the previous example, one query might be that the two instances in an ordered pair

have the same age.
(= (send ?man-or-boy get-age) (send ?woman-or-girl get-age))

Within a query, slots of instance-set members can be directly read with a shorthand notation
similar to that used in message-handlers (see section 9.4.2). If message-passing is not explicitly
required for reading a ot (i.e. there are no accessor daemons for reads), then this second method
of slot access should be used, for it gives a significant performance benefit.

ntax
<instance-set-member-variable>:<slot-name>

Example
The previous example could be rewritten as:

(= ?man-or-boy:age ?woman-or-girl:age)

Since only instance-sets which satisfy a query are of interest, and the query is evaluated for al
possible instance-sets, the query should not have any side-effects.

CLIPS Basic Programming Guide 121

CLIPS Reference Manual

9.7.4 Distributed Action Definition

A distributed action is a user-defined expression evaluated for each instance-set which satisfies
a query. Unlike queries, distributed actions must use messages to read sots of instance-set
members. If more than one action is required, use the progn function (see section 12.6.5) to
group them.

Action Syntax

<action> ::= <expression>

Example
Continuing the previous example, one distributed action might be to simply print out the ordered

pair to the screen.

(printout t (" ?man-or-boy '," ?woman-or-girl)" crlf)

9.7.5 Scope in Instance-set Query Functions

An instance-set query function can be called from anywhere that a regular function can be called.
If avariable from an outer scope is not masked by an instance-set member variable, then that
variable may be referenced within the query and action. In addition, rebinding variables within
an instance-set function action is alowed. However, attempts to rebind instance-set member
variables will generate errors. Binding variables is not allowed within a query. Instance-set query
functions can be nested.

Example
CLIPS>

(deffunction count-instances (?class)
(bind ?count 0)
(do-for-all-instances ((?ins ?class)) TRUE

(bind ?count (+ ?count 1)))

?count)

CLIPS>

(deffunction count-instances-2 (?class)
(length (Ffind-all-instances ((?ins ?class)) TRUE)))

CLIPS> (count-instances WOMAN)

3

CLIPS> (count-instances-2 BOY)

4

CLIPS>

Instance-set member variables are only in scope within the instance-set query function.
Attempting to use instance-set member variablesin an outer scope will generate an error.

Example
CLIPS>
(deffunction last-instance (?class)
(any-instancep ((?ins ?class)) TRUE)
?ins)

122 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

[PRCCODE3] Undefined variable ins referenced in deffunction.

ERROR:
(deffunction last-instance
(?class)
(any-instancep ((?ins ?class))
TRUE)
?ins

)
CLIPS>

9.7.6 Errorsduring I nstance-set Query Functions

If an error occurs during an instance-set query function, the function will be immediately
terminated and the return value will be the symbol FALSE.

9.7.7 Halting and Returning Values from Query Functions

The functions break and return are now valid inside the action of the instance-set query
functions do-for-instance, do-for-all-instances and delayed-do-for-all-instances. The return
function is only valid if it is applicable in the outer scope, whereas the break function actually
halts the query.

9.7.8 Instance-set Query Functions

The instance query system in COOL provides six functions. For a given set of instances, al six
guery functions will iterate over these instances in the same order (see section 9.7.2). However,
if aparticular instance is deleted and recreated, the iteration order will change.

9.7.8.1 Testing if Any Instance-set Satisfiesa Query

This function applies a query to each instance-set which matches the template. If an instance-set
satisfies the query, then the function is immediately terminated, and the return value is the
symbol TRUE. Otherwise, the return value is the symbol FALSE.

Syntax

(any-instancep <instance-set-template> <query>)

Example
Are there any men over age 30?

CLIPS> (any-instancep ((?man MAN)) (> ?man:age 30))
TRUE
CLIPS>

CLIPS Basic Programming Guide 123

CLIPS Reference Manual

9.7.8.2 Determining the First Instance-set Satisfying a Query

This function applies a query to each instance-set which matches the template. If an instance-set
satisfies the query, then the function is immediately terminated, and the instance-set is returned
in a multifield value. Otherwise, the return value is a zero-length multifield value. Each field of
the multifield value is an instance-name representing an instance-set member.

Syntax

(find-instance <instance-set-template> <query>)

Example
Find the first pair of aman and a woman who have the same age.

CLIPS>

(find-instance ((?m MAN) (?w WOMAN)) (= ?m:age ?w:age))
([Man-1] [Woman-1])

CLIPS>

9.7.8.3 Deter mining All I nstance-sets Satisfying a Query

This function applies a query to each instance-set which matches the template. Each instance-set
which satisfies the query is stored in a multifield value. This multifield value is returned when
the query has been applied to al possible instance-sets. If there are n instances in each
instance-set, and m instance-sets satisfied the query, then the length of the returned multifield
value will ben* m. Thefirst n fields correspond to the first instance-set, and so on. Each field of
the multifield value is an instance-name representing an instance-set member. The multifield
value can consume a large amount of memory due to permutational explosion, so this function
should be used judiciously.

ntax
(find-all-instances <instance-set-template> <query>)

Example
Find all pairs of aman and a woman who have the same age.

CLIPS>

(find-all-instances ((?m MAN) (?w WOMAN)) (= ?m:age ?w:age))
([Man-1] [Woman-1] [Man-2] [Woman-2])

CLIPS>

9.7.8.4 Executing an Action for the First Instance-set Satisfying a Query

This function applies a query to each instance-set which matches the template. If an instance-set
satisfies the query, the specified action is executed, and the function is immediately terminated.
The return value is the evaluation of the action. If no instance-set satisfied the query, then the
return value is the symbol FALSE.

124 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

ntax
(do-for-instance <instance-set-template> <query> <action>)

Example
Print out the first triplet of different people that have the same age. The calls to neq in the query

eliminate the permutations where two or more members of the instance-set are identical.

CLIPS>
(do-for-instance ((?pl PERSON) (?p2 PERSON) (?p3 PERSON))
(and (= ?pl:age ?p2:age ?p3:age)
(neq ?pl ?p2)
(neq ?pl ?p3)
(neq ?p2 ?p3))

(printout t ?pl ™ "™ ?p2 " "™ ?p3 crlf))
[Girl-2] [Boy-2] [Boy-3]
CLIPS>

9.7.8.5 Executing an Action for All Instance-sets Satisfying a Query

This function applies a query to each instance-set which matches the template. If an instance-set
satisfies the query, the specified action is executed. The return value is the evaluation of the
action for the last instance-set which satisfied the query. If no instance-set satisfied the query,
then the return value is the symbol FALSE.

Syntax

(do-for-all-instances <instance-set-template> <query> <action>)

Example
Print out all triplets of different people that have the same age. The calls to str-compar elimit the

instance-sets which satisfy the query to combinations instead of permutations. Without these
restrictions, two instance-sets which differed only in the order of their members would both
satisfy the query.

CLIPS>
(do-for-all-instances ((?pl PERSON) (?p2 PERSON) (?p3 PERSON))
(and (= ?pl:age ?p2:age ?p3:age)
(> (str-compare ?pl ?p2) 0)
(> (str-compare ?p2 ?p3) 0))
(printout t ?pl1 ™ ™ ?p2 "™ ' ?p3 crif))
[Girl-2] [Boy-3] [Boy-2]
[Girl-2] [Boy-4] [Boy-2]
[Girl-2] [Boy-4] [Boy-3]
[Boy-4] [Boy-3] [Boy-2]
CLIPS>

CLIPS Basic Programming Guide 125

CLIPS Reference Manual

9.7.8.6 Executing a Delayed Action for All Instance-sets
Satisfying a Query

This function is similar to do-for-all-instances except that it groups all instance-sets which
satisfy the query into an intermediary multifield value. If there are no instance-sets which satisfy
the query, then the function returns the symbol FALSE. Otherwise, the specified action is
executed for each instance-set in the multifield value, and the return value is the evaluation of the
action for the last instance-set to satisfy the query. The intermediary multifield value is
discarded. This function can consume large amounts of memory in the same fashion as
find-all-instances. This function should be used in lieu of do-for-all-instances when the action
applied to one instance-set would change the result of the query for another instance-set (unless
that isthe desired effect).

Syntax

(delayed-do-for-all-instances <instance-set-template>
<query> <action>)

Example
Delete all boys with the greatest age. The test in this case is another query function which

determines if there are any older boys than the one currently being examined. The action needs
to be delayed until all boys have been processed, or the greatest age will decrease as the older
boys are deleted.

CLIPS> (watch instances)

CLIPS>

(delayed-do-for-all-instances ((?bl BOY))
(not (any-instancep ((?b2 BOY))

(> ?b2:age ?bl:age)))

(send ?bl delete))

<== instance [Boy-1] of BOY

TRUE

CLIPS> (unwatch instances)

CLIPS> (reset)

CLIPS> (watch instances)

CLIPS>

(do-for-all-instances ((?b1l BOY))
(not (any-instancep ((?b2 BOY))

(> ?b2:age ?bl:age)))

(send ?bl delete))

<== instance [Boy-1] of BOY

<== instance [Boy-2] of BOY

<== instance [Boy-3] of BOY

<== instance [Boy-4] of BOY

TRUE

CLIPS> (unwatch instances)

CLIPS>

126 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

Section 10 - Defmodule Construct

CLIPS provides support for the modular development and execution of knowledge bases with
the defmodule construct. CLIPS modules allow a set of constructs to be grouped together such
that explicit control can be maintained over restricting the access of the constructs by other
modules. This type of control is similar to global and local scoping used in languages such as C
or Ada (note, however, that the global scoping used by CLIPS is strictly hierarchical and in one
direction only—if module A can see constructs from module B, then it is not possible for module
B to see any of module A’s constructs). By restricting access to deftemplate and defclass
constructs, modules can function as blackboards, permitting only certain facts and instances to be
seen by other modules. Modules are also used by rules to provide execution control.

10.1 DEFINING MODULES
Modules are defined using the defmodule construct.

ntax

(defmodule <module-name> [<comment>]
<port-spec>¥*)

<port-specification> ::= (export <port-item>) |

(import <module-name> <port-item>)

<port-item> 1= ?ALL |
?NONE |
<port-construct> ?ALL |
<port-construct> ?NONE |
<port-construct> <construct-name>+

<port-construct> ::= deftemplate | defclass |
defglobal | deffunction |
defgeneric

A defmodule cannot be redefined or even deleted once it is defined (with the exception of the
MAIN module which can be redefined once). The only way to delete a module is with the clear
command. Upon startup and after a clear command, CLIPS automatically constructs the
following defmodule.

(defmodule MAIN)

All of the predefined system classes (see section 9.2) belong to the MAIN module. However, it is
not necessary to import or export the system classes; they are always in scope. Discounting the
previous exception, the predefined MAIN module does not import or export any constructs.
However, unlike other modules, the MAIN module can be redefined once after startup or a clear
command.

CLIPS Basic Programming Guide 127

CLIPS Reference Manual

Example

(defmodule FOO
(import BAR ?ALL)
(import YAK deftemplate ?ALL)
(import GOZ defglobal x y z)
(export defgeneric +)
(export defclass ?ALL))

10.2 SPECIFYING A CONSTRUCT'SMODULE

The module in which a constructs is placed can be specified when the construct is defined. The
deffacts, deftemplate, defrule, deffunction, defgeneric, defclass, and definstances constructs all
specify the module for the construct by including it as part of the name. The module of a
defglobal construct is indicated by specifying the module name after the defglobal keyword. The
module of a defmessage-handler is specified as part of the class specifier. The module of a
defmethod is specified as part of the generic function specifier. For example, the following
constructs would be placed in the DETECTION module.

(defrule DETECTION: :Find-Fault
(sensor (name ?name) (value bad))

=>

(assert (fault (name ?name))))

(defglobal DETECTION ?*count* = 0)

(defmessage-handler DETECTION: :COMPONENT get-charge ()
(* ?self:flux ?self:flow))

(defmethod DETECTION::+ ((?x STRING) (?y STRING))
(str-cat ?x ?y))

Example
CLIPS>

CLIPS>
CLIPS>
CLIPS>
CLIPS>
CLIPS>
bar

(clear)

(defmodule A)
(defmodule B)
(defrule foo =>)
(defrule A::bar =>)
(list-defrules)

For a total of 1 defrule.

CLIPS>
A
CLIPS>
foo

(set-current-modu