
COMPSCI334 1COMPSCI334 1

• Welcome to 334.
• People

– Ulrich Speidel (supervisor), Xinfeng Ye
• Assessment

– 4 assignments with a combined weight of 15%
– one test with a weight of 25%
– one exam with a weight of 60%
– you must pass both practical and theory to pass the course

• Schedule
– Week 1 - 2 (Xinfeng Ye)
– Week 3 - 4 (Ulrich Speidel)
– Week 5 – 6 (Xinfeng Ye)
– Week 7 – 8 (Ulrich Speidel)
– Week 9 – 10 (Xinfeng Ye)
– Week 11 – 12 (Ulrich Speidel)
– The even numbered weeks’ (e.g. week 2, 4, etc.) Wednesday 4:30pm

lectures are in-class on-demand tutorials.

COMPSCI334 2COMPSCI334 2

• Xin Feng Ye
• Office

– 303.589 (City)
• Office Hours (during my lecturing period)

– Mon 5:30pm – 6:00pm (Tamaki)
– Wed 5:30pm – 6:00pm (Tamaki)
– or in my city office

COMPSCI334 3COMPSCI334 3

Assignment Marking

• All assignments carry equal weight, i.e., 3.75% of
your final mark.

• Each assignment will carry a specific number of
points, typically 100 points.
– Getting 60 or more of the assignment points gives you full

marks (3.75% of the total course marks) for the assignment.
– Scoring more points does not give you any extra marks, but

it gives you a better preparation for test and exam.
– Marking is based on block-box marking

COMPSCI334 4COMPSCI334 4

Recommended Readings

• RMI
– Tutorials on Sun’s web site
– Tutorials that come with J2SE 6 download

• Servlets and JSP
– Core SERVLETS and JAVASERVER PAGES, Volume

1: Core Technologies, by Marty Hall and Larry Brown
A Sun Microsystems Press/Prentice Hall PTR Book
ISBN 0-13-009229-0

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 5COMPSCI334 5

Distributed Systems Middleware
• A complex system consists of software

components running on different machines.
• To make the system work, the components on

different machines must communicate with
each other.

• The communication need protocols to
exchange data/transfer control.

client server
send request

send response

COMPSCI334 6COMPSCI334 6

Sockets

• Basic inter-machine communication model
– find out IP addresses
– make connection
– exchange data

client server

1. set up socket 2. accept connection3. send request 4. send reply5. close connection

COMPSCI334 7COMPSCI334 7

Lots of Complexities...

• How does client locate server? Server
object(s)?

• What if server location moves/multiple
servers?

• What if multiple clients/concurrent access?
• What protocol/language on client? Server?

– How “serialise”/”deserialise” data for transport?
– How does client invoke server function?

COMPSCI334 8COMPSCI334 8

Middleware for Distributed Systems

• A middleware can be regarded as a software that
connects two otherwise separate applications.

• A middleware for distributed systems is responsible
for handling the communication between the
software components running on different machines.

• A middleware also provides mechanisms for
registering and discovering services in the system.

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 9COMPSCI334 9

Java Remote Method Invocation (RMI)

• The Java Remote Method Invocation (RMI) system
allows an object running in one Java Virtual Machine
(VM) to invoke methods on an object running in
another Java VM.

• RMI provides for remote communication between
programs written in the Java programming language.

• A primary goal of RMI was to allow programmers to
develop distributed Java programs (i.e. programs
running on different machines) with the same syntax
and semantics used for non-distributed programs.

COMPSCI334 10COMPSCI334 10

References on RMI

• Sun provides on-line tutorials on RMI
http://java.sun.com/docs/books/tutorial/rmi/TO
C.html

• You can also read the RMI tutorial that comes
with the J2SE 6.0 download

• Compared with previous versions, there are
some differences in writing RMI applications
in J2SE 6.0.
– we use J2SE 6.0

COMPSCI334 11COMPSCI334 11

An Overview of RMI Applications
• RMI applications are often comprised of two separate

parts: a server and a client.
• A typical server application

– creates some objects, called remote objects
– makes references to remote objects accessible
– waits for clients to invoke methods on these remote objects

• A typical client application gets a remote reference to
remote objects in the server and then invokes
methods on them.
– The execution of the methods of the remote objects are

carried out on the server
COMPSCI334 12COMPSCI334 12

• RMI provides the mechanism by which the
server and the client communicate and pass
information back and forth.

• RMI provides a simple naming facility, the
rmiregistry, for
– Server to register remote objects
– Client to discover references to the remote objects

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 13COMPSCI334 13

registryclient server
1. register

object

2. obtain
reference
to object

3. call method

4. return result

COMPSCI334 14COMPSCI334 14

Writing an RMI Application

• writing an RMI server
– define server interface
– implement server interface
– set up server objects

• creating a client program
– obtain a reference to a remote object
– manipulate the object

COMPSCI334 15COMPSCI334 15

Writing an RMI Server
• An account object represents some kind of bank

account. We use RMI to export it as a remote object
so that remote clients, e.g. ATMs, personal banking
software running on a PC) can access it and carry out
operations.

• The server is comprised of an interface and a class.
– The interface provides the definition for the methods that

can be called from the client.
– The class provides the implementation.

• Writing an RMI server consists of two tasks:
– Define the interface
– Write a class to implement the interface

COMPSCI334 16COMPSCI334 16

Server interface

• The interface extends java.rmi.Remote to be an
RMI object.

• All the methods in the interface must throw
java.rmi.RemoteException.

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 17COMPSCI334 17

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Account extends Remote {
public String getName() throws RemoteException;
public int getBalance() throws RemoteException;
public void withdraw(int amt) throws RemoteException;
public void deposit(int amt) throws RemoteException;
public void transfer(int amt, Account src) throws RemoteException;

}

must extend this to
be an RMI object

all the methods
must throw this
exception

COMPSCI334 18COMPSCI334 18

Implementing server interface

• The implementation class should implement
all the methods in the interface.

• The implementation can implement methods
that are not defined in the interface. However,
these methods cannot be called by the clients
of the remote (server) objects.

COMPSCI334 19COMPSCI334 19

import java.rmi.RemoteException;
public class AccountImpl implements Account {

private int balance; // account balance
private String name; // name of the account holder
public AccountImpl(String name) throws RemoteException {

this.name = name;
}
public String getName() throws RemoteException {return name;}
public int getBalance() throws RemoteException {return balance;}
public void withdraw(int amt) throws RemoteException {balance -= amt;}
public void deposit(int amt) throws RemoteException {balance += amt;}
public void transfer(int amt, Account src) throws RemoteException {

src.withdraw(amt);
this.deposit(amt);

}
}

COMPSCI334 20COMPSCI334 20

Setting up server objects

• create server (remote) objects on the server
• export the objects to RMI runtime (the

middleware)
• register the object with a name service

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 21COMPSCI334 21

// contains methods for accessing name service
import java.rmi.Naming;

// contains methods for manipulating server objects
import java.rmi.server.UnicastRemoteObject;
public class RegAccount {

public static void main(String[] args) {
try {

// create a server (remote) object
AccountImpl account = new AccountImpl("X");

// export the server object to the RMI runtime
// the server object listens on a port assigned by JVM
Account stub = (Account)

UnicastRemoteObject.exportObject(account,0);

COMPSCI334 22COMPSCI334 22

// register the object with a name server
// the server object is given name “X” on the name server
// the name server is at port 8081
Naming.rebind("//localhost:8081/X",stub);

// the server object is ready to be called
System.out.println("Account registerd.");

}
catch (Exception e) {

System.out.println("Error in RegAccount");
e.printStackTrace();

}
}

}

COMPSCI334 23COMPSCI334 23

Creating a Client Program

• Regarding the use of the remote (i.e. server)
object, a client program needs to carry out the
following two tasks:
– Look up the remote object
– Manipulate the remote object using the methods

specified in the server interface

COMPSCI334 24COMPSCI334 24

// contains methods for accessing name service
import java.rmi.Naming;
public class AccountClient {

public static void main(String[] args) {
try {

// look up the server object with name “X”
Account xAccount =

(Account)Naming.lookup("//localhost:8081/X");

// call the getBalance method to display account balance
System.out.println("Balance of account is: "+

xAccount.getBalance());

// deposit money to the account
xAccount.deposit(1234);

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 25COMPSCI334 25

// display the new balance
System.out.println("Deposit 1234 into "+

xAccount.getName());
System.out.println("Balance of account is: "+

xAccount.getBalance());
}
catch (Exception e) {

System.out.println("Error in AccountClient");
e.printStackTrace();

}
}

}

COMPSCI334 26COMPSCI334 26

Compiling and Running
• Compile all the classes and interfaces

– javac *.java
• Start the name server

– rmiregistry 8081
• Create and register the account object

– java RegAccount
• Run the client

– java AccountClient

COMPSCI334 27COMPSCI334 27

RMI Architecture

Client objects

Stub

Remote reference
manager

Remote reference
manager

Skeleton

Server objects

R
M

I t
ra

ns
po

rt
pr

ot
oc

ol

COMPSCI334 28COMPSCI334 28

• When a client calls a method on a remote
object, the corresponding method in the stub is
called.

• The stub marshals the arguments in the method
call into serialized form. There are three
possible cases:
– An argument is a Remote object: forwards the

reference to the object
– An argument is a primitive data type or a

Serializable object: serialize the argument
– Neither of the above: raise an exception

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 29COMPSCI334 29

• On the client side, the remote reference manager
converts the stub request to low-level protocol
messages.

• On the server side, the remote reference manager
converts the low-level protocol messages into a
format that the skeleton can understand.

• The skeleton unmarshals the arguments and calls the
appropriate method on the actual server object.

• If there are information to be passed back to the
client, the skeleton marshals the information and
forwards them to the client side. The stub on the
client side would unmarshal the information and pass
them to the client.

COMPSCI334 30COMPSCI334 30

How does a client get the stub?

server object

name serverclient

stub

1. generated
when exported

2. register

3. look up
5. stub downloaded

AccountImpl account = new AccountImpl("X");
Account stub = (Account) UnicastRemoteObject.exportObject(account,0);
Naming.rebind("//localhost:8081/X",stub);

4. return reference

COMPSCI334 31COMPSCI334 31

The registry and naming services

• When you start rmiregistry, you can specify a
port number. By default, rmiregistry listens to
port 1099.

• Once the RMI registry is running, you register
remote objects with it using one of the classes:
– java.rmi.registry.LocateRegistry
– java.rmi.Naming
– java.rmi.registry.Registry

COMPSCI334 32COMPSCI334 32

Some useful methods
• java.rmi.registry.LocateRegistry

– createRegistry
• Start your own registry service

– getRegistry
• Obtain a reference to a registry service either on

localhost or on a specified host

• java.rmi.registry.Registry
– bind, rebind, unbind

Registry reg =
LocateRegistry.getRegistry(8081);

reg.rebind(“X",account);

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 33COMPSCI334 33

On server:

LocateRegistry.createRegistry(8081);
Registry reg = LocateRegistry.getRegistry(8081);
reg.rebind("X",stub);

On client:

Registry reg = LocateRegistry.getRegistry("localhost", 8081);
Account xAccount = (Account)reg.lookup("X");

COMPSCI334 34COMPSCI334 34

• java.rmi.Naming
– This class can be used to bind an object to a known

registry
• bind, rebind, unbind

– This class lets a client look up local and remote
objects using URL-like naming syntax.

• //host:port/object-name
– On server

Naming.rebind("//localhost:8080/X",account);
– On client

Account xAccount =
(Account)Naming.lookup("//localhost:8080/X");

COMPSCI334 35COMPSCI334 35

JDBC

• Load the JDBC driver.
• Define the connection URL.
• Establish the connection.
• Create a statement object.
• Execute a query or update.
• Process the results.
• Close the connection.

COMPSCI334 36COMPSCI334 36

DB Connection Pool

• Opening a connections to a database is a time-
consuming process.

• To make the access to DBs more efficient, the
connections to DBs should be reused.

• Refer to Chapter 17&18 of Core SERVLETS
and JAVASERVER PAGES

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 37COMPSCI334 37

DBConn class
• Hold a set of connection to a DB
• DBConn()

– DB driver, location, user name, password, number of connections in the
pool

• makeConnection()
– obtain a connection to the DB, called by DBConn()
– declared as private

• getConnection()
– obtain a connection from the connection pool

• releaseConnection()
– return a connection to the connection pool

• closeAllConnection()
– release all the DB connections in the connection pool

COMPSCI334 38COMPSCI334 38

// obtain a connection from the DB connection pool
public synchronized Connection getConnection() {

Connection conn=null;
try {

// there are still connections available in the pool
if (!available.isEmpty()) {

// obtain the connection
conn = available.lastElement();
// record the connection as no longer available
available.remove(conn);
busy.addElement(conn);

}

COMPSCI334 39COMPSCI334 39

Integrating the Account Example with
DB

AccountClient

AccountManager

Account

select

new AccountImpl()

getAccount()

getBalance()

DB

COMPSCI334 40COMPSCI334 40

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface AccountManager extends Remote {
// retrieve an account from the DB according to the account’s name
public Account getAccount(String name) throws RemoteException;

}

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 41COMPSCI334 41

AccountManagerImpl class

• AccountManagerImpl
– create a DB connection pool,

• DBConn

COMPSCI334 42COMPSCI334 42

• getAccount
– obtains a connection from the DB connection pool

• getConnection()
– retrieve account details from the DB

• The DB table account has two columns, name and balance.
• SQL statement for retrieving the account details of a given user:

select * from account where name=‘X’
• Java statements for querying a DB: getConnection, createStatement,

executeQuery
– construct an Account object

• account = new AccountImpl(accountName,balance);

– make the object a RMI remote object
• stub = (Account) UnicastRemoteObject.exportObject(account, 0);

– return the DB connection back to the connection pool
• releaseConnection

– return the reference to the server object back to the caller
• return stub

COMPSCI334 43COMPSCI334 43

RegAccountManager class

• Create an AccountManagerImpl object
• Make the object a RMI remote object

– AccountManager stub = (AccountManager)
UnicastRemoteObject.exportObject(accountManager, 0);

• Create a RMI registry
– LocateRegistry.createRegistry(8081);
– No need to start rmi registry manually

• Register the RMI object with the registry

COMPSCI334 44COMPSCI334 44

BankClient class

• Look up the AccountManager object
– AccountManager manager =

(AccountManager)Naming.lookup("//localhost:8081/manager");

• Obtains references to some Account objects
– Account xAccount = manager.getAccount("X");
– Account yAccount = manager.getAccount("Y");

• Manipulate the Account objects
– getBalance, transfer

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 45COMPSCI334 45

rmiregistry DB

4. retrieve
1. re

giste
r AccountManager2. look up AccountManager

3. call getAccount

5. obtain reference to Account
and download Account stub

6. call methods of Account

ServerClient

COMPSCI334 46COMPSCI334 46

Improvement to the Account Example

AccountClient

AccountManager

Account

update

updateAccount

getAccount()

withdraw
deposit
transfer

DB
select

COMPSCI334 47COMPSCI334 47

AccountManager Interface

• Account objects and the AccountManager
objects reside at the same location.
– updateAccount does not need to be provided as a

method that can be accessed remotely
– AccountManager Interface remains the same

• The class that implements AccountManager
needs to implement the updateAccount method
– This method can only be accessed locally, i.e.

cannot be accessed by client at a different location.

COMPSCI334 48COMPSCI334 48

AccountManagerImpl2 class
• Same as the AccountManagerImpl apart from the

discussions below.
• updateAccount

– obtains a DB connection from the connection pool
– update the account details in the DB

• SQL statement for updating a record of a given client
– update account set balance=X where name=‘Y’

– return the DB connection to the connection pool
• getAccount

– when an Account object is created, a reference to the
AccountManager should be passed to the Account object
(see explanation later)

• account = new AccountImpl2(accountName,balance, this);

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 49COMPSCI334 49

AccountImpl2 class
• Same as AccountImpl apart from the discussion

below.
• AccountImpl2

– The constructor should receive a reference to the
AccountManagerImpl2 object. This is to allow the Account
object call the updateAccount method of the
AccountManagerImpl2.

• AccountImpl2(String name, int balance, AccountManagerImpl2
accountManager)

• this.accountManager = accountManager;

• withdraw, deposit
– call the updateAccount method of the AccountManager to

write the changes back to DB
• accountManager.updateAccount(this);

COMPSCI334 50COMPSCI334 50

Remote Method Arguments and Return
Values
• The arguments and the return values of a remote

method are either primitive data types, e.g int, or
objects which implement java.io.Serializable
interface, or references to remote objects.

• The server does not necessarily know the concrete
implementation of the objects being passed in. As a
consequence, the server’s JVM might also need to
download the relevant classes when a remote method
call is made.

COMPSCI334 51COMPSCI334 51

Download Classes Dynamically
• JVM can dynamically download Java software from any URL,

e.g. a web server.
• A codebase is a place, from which to load classes into a virtual

machine.
– CLASSPATH is a "local codebase", because it is the list of places on disk

from which you load local classes.
– java.rmi.server.codebase property value represents one or more URL

locations from which classes needed during the execution of the RMI
applications can be downloaded.

• The classes needed to execute remote method calls should be
made accessible from a network resource, such as an HTTP or
FTP server.

• java.rmi.server.codebase can be specified when a program is
started
– java -Djava.rmi.server.codebase=http://localhost:8080/rmi/ex6/

ComputeClient
COMPSCI334 52COMPSCI334 52

The need for downloading classes
dynamically (1)
• When a client makes a method call, there are three

possible cases:
– All of the method parameters (and return value) are primitive

data types, so the remote object knows how to interpret them.
Thus, there is no need to check its CLASSPATH or any
codebase.

– At least one remote method parameter or the return value is an
object, for which the remote object can find the class
definition locally in its CLASSPATH.

– The remote method receives an object instance, for which the
remote object cannot find the class definition locally in its
CLASSPATH.

• The class of the object sent by the client will be a subtype of the
declared parameter type.

• In this case the class need to be downloaded to the server.

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 53COMPSCI334 53

• When a client receives a stub, the stub uses
classes which cannot be found in the client's
CLASSPATH. In this case the class need to
be downloaded to the client.

The need for downloading classes
dynamically (2)

COMPSCI334 54COMPSCI334 54

client serverRMI
registry

1. upload
class files

http server http server

2. register3. look up

4. download classes
relating to stub/result

5. method call

6. download classes
relating to
parameters

1. upload
class files

COMPSCI334 55COMPSCI334 55

Compute Engine
(http://java.sun.com/docs/books/tutorial/rmi/)

• A client can submit a task to the server (computer engine) for
execution.
– The submitted task is executed on the server

• The server provides a (remote) interface for client to submit a
task .

• An interface is defined to specify the task to be submitted to
the server.
– This interface is available on both client and server
– The task submitted by the client implements the interface.
– The interface is non-remote.

COMPSCI334 56COMPSCI334 56

public class Adder
{

private int i, j;
public Adder(int i, int j) {

this.i = i;
this.j = j;

}
public Integer execute() {

return (new Integer(i+j));
}

}

public class Multiplier
{

private double i, j;
public Adder(double i, double j) {

this.i = i;
this.j = j;

}
public Double execute() {

return (new Double(i+j));
}

}

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 57COMPSCI334 57

Argument (task) Interface

• Task is not a remote object
• The Task interface must extend Serializable to allow

the task to be sent to the server.
• In order to allow development on server and client

site, the server interface and the argument interface
should be available on both sites.

import java.io.Serializable;
public interface Task<T> extends Serializable {

T execute();
}

COMPSCI334 58COMPSCI334 58

Server interface (remote)

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Compute extends Remote {
<T> T executeTask(Task<T> t) throws RemoteException;

}

Java generic types:
http://www-128.ibm.com/developerworks/edu/j-dw-java-generics-i.html

COMPSCI334 59COMPSCI334 59

Server Implementation

• The task submitted by the client is a subtype of
the Task<T> interface. The class needs to be
downloaded by the server at run time.

• In order for a JVM to attempt to load classes
remotely, a security manager has to be
installed to allow remote class loading.
– System.setSecurityManager(new

RMISecurityManager())

COMPSCI334 60COMPSCI334 60

import java.rmi.*;
import java.rmi.server.*;

public class ComputeImpl implements Compute
{

public ComputeImpl() throws RemoteException {
// set up security manager to allow class downloading
System.setSecurityManager(new RMISecurityManager());

}

public <T> T executeTask(Task<T> t) {
// execute the submitted job
return t.execute();

}
}

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 61COMPSCI334 61

Create Server Object

• create a remote object
– ComputeImpl ce = new ComputeImpl();

• export the remote object
– UnicastRemoteObject.exportObject

• create a RMI registry
– LocateRegistry.createRegistry

• register with the RMI registry
– rebind
– The reference to the stub

COMPSCI334 62COMPSCI334 62

Policy files
• When a compute engine object is created, the

security manager of the object will read a
policy file to determine which actions are
allowed for the compute engine.

• The file below allows the engine to accept
connections and make connections on any non-
privileged port.

grant {
permission java.net.SocketPermission "*:1024-65535", "accept, connect";
};

java -Djava.security.policy=mypolicy RegCompute

COMPSCI334 63COMPSCI334 63

Client Implementation
• Write a concrete task implementation.

– The class specifies the task to be sent to the server.
– The execute method should contain the code that carry out

the computation.
• Upload the task class to a web server for server to

download during its execution.
• Write client application

– Create a task.
– Look up the compute engine.
– Submit the task to the compute engine through the remote

interface.
– When start the client, specify the value of

java.rmi.server.codebase
• java -Djava.rmi.server.codebase=http://localhost:8080/rmi/ex6/

ComputeClient
COMPSCI334 64COMPSCI334 64

public class Adder implements Task<Integer>
{

private static final long serialVersionUID = 334L;
private int i, j;
public Adder(int i, int j) {

this.i = i;
this.j = j;

}
public Integer execute()
{

return (new Integer(i+j));
}

}

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 65COMPSCI334 65

public class ComputeClient {
public static void main(String[] args) {

try {
// look up the compute engine
Compute ce = (Compute)Naming.lookup("//localhost:8081/ce");
// create a task
Adder adder = new Adder(1,2);
// send the task to the server
Integer result = (Integer)ce.executeTask(adder);
System.out.println("Result is: "+result.intValue());

}

COMPSCI334 66COMPSCI334 66

rmiregistry
http server:
Adder.class

2. register

3. look up

4. method calls

5. load Adder

Client Server

1. upload

COMPSCI334 67COMPSCI334 67

Tomcat in the lab

• download rmi-classes.zip file from
http://www.cs.auckland.ac.nz/compsci334s1t/r
esources/rmi-classes.zip

• unpack the file and store it at H:\sfac-
apps\tomcat-6.0\webapps

• Start Tomcat in the lab
– Start menuà programsà developmentà

development environmentà Apache Tomcat

COMPSCI334 68COMPSCI334 68

• download rmi-classes.zip file from
http://www.cs.auckland.ac.nz/compsci334s1t/resources/rmi-
classes.zip

• unpack the file and store it at H:\\sfac_apps\tomcat-
6.0\webapps

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 69

Performance Tuning

• Many applications are time-critical.
– It is important to make your application as efficient as

possible.
• How is the efficiency of a program affected?

COMPSCI334 70

How to make a program run efficiently
• Reduce the amount of operations involving the

network
– Only access a remote service when it is necessary

• Send data to the machine on which the processing
occurs

– Avoid sending a large amount of data over the
network

• Process the data at the place that the data is stored
– There is a trade-off between processing data

locally and remotely
• Have as much data in the cache as possible

COMPSCI334 71

Process data remotely
• Process data remotely means the data will be

processed at the location that the data is stored
– Pass reference of data to the applications
– Invoke methods on data object to execute the operations

remotely
• Pros: avoid transmitting a large amount of data across

the network
• Cons: there are overhead associated with the

middleware

COMPSCI334 72

• In our banking examples, the AccountManager
returns a reference of an account object to the
client
– In AccountManager

• public Account getAccount(String name) throws
RemoteException;

– public interface Account extends Remote
• All the operations on the Account object are

remote operations

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 73

AccountClient

AccountManager

Account

select

new AccountImpl()

getAccount()

getBalance()
getName()

DB

COMPSCI334 74

Process data locally

• Process data locally means that data is sent to the
client and being processed on the client’s site

• Pros: avoids the overheads associated with the
remote operations

• Cons: data transmission delays

COMPSCI334 75

• Modify our banking examples, so that the
AccountManager returns an account object to
the client
– In AccountManager

• public Account getAccount(String name) throws
RemoteException

– Account is defined as
• public class Account implements Serializable

• Account object is returned to the client
– All the operations on the Account object are

carried out on the client machine

COMPSCI334 76

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 77

Caching within applications
• Access DB could be a time-consuming operation

– OS and middleware overheads
– DB might reside on a different machine

• If an application needs to use the data repeatedly and
the data are not shared by other applications, the data
can be cached by the application.
– The data will be loaded into the CPU cache or main

memory when the application is executed.
• Apart from the first access to the data, data will be served from the

CPU cache or memory
– Application needs to manage the data

• Check whether the data exist in the cache before retrieving the data
from the DB

• Before the application terminates, write the modified data back to
the DB

COMPSCI334 78

• Pros: improve the efficiency of some
applications

• Cons: complicate the programming task
– The application becomes complicated

COMPSCI334 79

Implementing caching
• Server side

– The remote object implementation caches the data
• Improve the efficiency by avoiding needless DB access

– Reduce the load of the DB

• The client is not aware of the existence of the cache

COMPSCI334 80

• Client side
– The application running on the client manages the

cache
• Data need to be retrieved from the server first

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 81

Server side caching

COMPSCI334 82

• Re-write AccountManagerImpl in the previous
banking example

• Create a cache
– private Hashtable<String,Account> accountCache = new

Hashtable<String,Account>();

• For all the operations, before accessing the DB,
checks the cache for the requested data. For example,
for getAccount(String name)
– Try to retrieve the object from the cache

• account = accountCache.get(name);
– Check whether account is null
– If account is not null, account refers to the account object

that we want.
• Return this reference to the client

COMPSCI334 83

– If the object does not exist in the cache, retrieve the
account information from the DB

• String query = "select * from account where
name='"+name+"'";

• ResultSet result = statement.executeQuery(query);
– Constructs an object

• account = new AccountImpl(accountName,balance);
• stub = (Account)

UnicastRemoteObject.exportObject(account, 0);
– Store the object in the cache

• accountCache.put(name,stub);
– The client implementation is the same as before

COMPSCI334 84

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 85

Client side caching

COMPSCI334 86

• When getAccount is called, an Account object to
returned to the client application.

• Define a LocalManager class to manage the cached
data

• The client application interacts with the server
through LocalManager
– LocalManager should provide the same set of method as

the remote AccountManager object
• public Account getAccount(String name)
• The method is not an RMI remote method
• The Account object being returned is a local object

COMPSCI334 87

• The client application, BankClient, creates a
LocalManager object
– LocalManager localManager = new LocalManager();

• The client application interacts with the remote
AccountManager through the LocalManager
object
– account = localManager.getAccount("X");

• Once a reference to an Account object is obtained,
the client application can manipulate the object
– The Account object is not a remote object

COMPSCI334 88

• The LocalManager maintains a cache
– private Hashtable<String, Account> accountCache = new

Hashtable<String, Account>();
• The LocalManager needs to retrieve the account information from

the remote server.
– remoteManager = (AccountManager) Naming

.lookup("//localhost:8081/manager");
• When the client application wants to retrieve an Account object, the

LocalManager needs to check to see whether the object exists in the
cache first.
– localAccount = accountCache.get(name);
– if (localAccount != null)

• If the Account object does not exist in the cache, the LocalManager
obtains the object from the remote server and stores the object in the
cache.
– localAccount = remoteManager.getAccount(name);
– accountCache.put(name, localAccount);

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

COMPSCI334 89

DocumentsPDF
Complete

Click Here & Upgrade
Expanded Features

Unlimited Pages

http://www.pdfcomplete.com/1002/2001/upgrade.htm

