’ Click Here & Upgrade

b g Expanded Features

> PDF Unlimited Pages
Complete

¢ Welcometo 334.
* People
— Ulrich Speidel (supervisor), Xinfeng Ye
e Assessment
— 4 assignments with a combined weight of 15%
— one test with aweight of 25%
— one exam with a weight of 60%
— you must pass both practical and theory to pass the course
¢ Schedule
— Week 1-2 (Xinfeng Ye)
— Week 3 - 4 (Ulrich Speidel)
— Week 5-6 (Xinfeng Ye)
— Week 7 —8 (Ulrich Speidel)
Week 9 — 10 (Xinfeng Ye)
Week 11 — 12 (Ulrich Speidel)

— The even numbered weeks' (e.g. week 2, 4, etc.) Wednesday 4:30pm
lectures are in-class on-demand tutorials.

COMPSCI334 1

» XinFengYe
* Office
—303.589 (City)
» Office Hours (during my lecturing period)
— Mon 5:30pm — 6:00pm (Tamaki)
— Wed 5:30pm — 6:00pm (Tamaki)
—or in my city office

COMPSCI334

Assignment Marking

» All assignments carry equal weight, i.e., 3.75% of
your final mark.

» Each assignment will carry a specific number of
points, typically 100 points.
— Getting 60 or more of the assignment points gives you full

marks (3.75% of the total course marks) for the assignment.

— Scoring more points does not give you any extra marks, but
it gives you a better preparation for test and exam.

— Marking is based on block-box marking

COMPSCI334 3

Recommended Readings

* RMI
— Tutorials on Sun’s web site
— Tutorials that come with J2SE 6 download

* Servletsand JSP

— Core SERVLETS and JAVASERVER PAGES, Volume
1: Core Technologies, by Marty Hall and Larry Brown
A Sun Microsystems Presg/Prentice Hall PTR Book
ISBN 0-13-009229-0

COMPSCI334

http://www.pdfcomplete.com/1002/2001/upgrade.htm

&
¥
C

PDF
omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Distributed Systems Middleware

» A complex system consists of software
components running on different machines.

» To make the system work, the components on
different machines must communicate with
each other.

» The communication need protocols to
exchange data/transfer control.
send request

client | | server

send response

COMPSCI334

Sockets

 Basic inter-machine communication model
— find out 1P addresses
— make connection
— exchange data

1. set up socket .
3. send request 2. accept connection

5. close connection 4. send reply

client *| server

COMPSCI334

Lots of Complexities...

How does client locate server? Server
object(s)?

What if server location moves/multiple
servers?

What if multiple clients/concurrent access?
What protocol/language on client? Server?

— How “serialise’/" deseridise” data for transport?
— How does client invoke server function?

COMPSCI334

Middleware for Distributed Systems

* A middleware can be regarded as a software that
connects two otherwise separate applications.

» A middleware for distributed systems is responsible
for handling the communication between the
software components running on different machines.

* A middleware al so provides mechanisms for
registering and discovering services in the system.

COMPSCI334

http://www.pdfcomplete.com/1002/2001/upgrade.htm

4
& PDF
Complete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Java Remote Method Invocation (RMI)

» The Java Remote Method Invocation (RMI) system
allows an object running in one Java Virtual Machine
(VM) to invoke methods on an object running in
another Java VM.

* RMI provides for remote communication between
programs written in the Java programming language.

* A primary goa of RMI wasto allow programmersto
develop distributed Java programs (i.e. programs
running on different machines) with the same syntax
and semantics used for non-distributed programs.

COMPSCI334 9

References on RMI

 Sun provides on-line tutorials on RMI

http://java.sun.com/docs/books/tutorial/rmi/TO
C.html

* You can also read the RMI tutorial that comes
with the J2SE 6.0 download

» Compared with previous versions, there are
some differences in writing RMI applications
in J2SE 6.0.

— we use J2SE 6.0

COMPSCI334 10

An Overview of RMI Applications

* RMI applications are often comprised of two separate
parts: aserver and aclient.
» A typical server application
— creates some objects, called remote objects
— makes references to remote objects accessible
— waitsfor clients to invoke methods on these remote objects
A typicd client application gets aremote reference to
remote objects in the server and then invokes
methods on them.
— The execution of the methods of the remote objects are
carried out on the server

COMPSCI334 11

» RMI provides the mechanism by which the
server and the client communicate and pass
information back and forth.

* RMI provides a simple naming facility, the
rmiregistry, for
— Server to register remote objects
— Client to discover references to the remote objects

COMPSCI334 12

http://www.pdfcomplete.com/1002/2001/upgrade.htm

’ Click Here & Upgrade

b g Expanded Features

> PDF Unlimited Pages
Complete

4. returnresult

m

2. obtain
reference 1. register
to object registry object

client server

3. call method

COMPSCI334 13

Writing an RMI Application

» writing an RM1 server
— define server interface
— implement server interface
— Set up server objects
* creating aclient program
— obtain areference to a remote object
— manipulate the object

COMPSCI334 14

Writing an RMI Server

» An account object represents some kind of bank
account. We use RMI to export it as aremote object
so that remote clients, e.g. ATMSs, personal banking
software running on a PC) can access it and carry out
operations.

» Theserver is comprised of an interface and aclass.

— The interface provides the definition for the methods that
can be called from the client.

— Theclass provides the implementation.
» Writing an RMI server consists of two tasks:
— Definethe interface

— Write aclass to implement the interface
COMPSCI334 15

Server interface

» The interface extends java.rmi.Remote to be an
RMI object.

* All the methods in the interface must throw
javarmi.RemoteException.

COMPSCI334 16

http://www.pdfcomplete.com/1002/2001/upgrade.htm

&
¥
C

PDF
omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

must extend this to

import java.rmi.Remote; be an RM1 object

import java.rmi.RemoteException;

public interface Account extend {
public String getName() throws/RemoteException;
public int getBalance() throws|RemoteException;
public void withdraw(int amt) throws RemoteException;
public void deposit(int amt) throws RemoteException;
public void transfer(int amt, Account src) throws|RemoteException

} /'
all the methods

must throw this
exception
COMPSCI334 17

Implementing server interface

» Theimplementation class should implement
all the methods in the interface.

» The implementation can implement methods
that are not defined in the interface. However,
these methods cannot be called by the clients
of the remote (server) objects.

COMPSCI334 18

import java.rmi.RemoteException;
public class AccountImpl implements Account {
private int balance; // account balance
private String name; // name of the account holder
public Accountlmpl (String name) throws RemoteException {
thisname = name;
}
public String getName() throws RemoteException { return name;}
public int getBalance() throws RemoteException { return balance;}
public void withdraw(int amt) throws RemoteException { balance -= amt;}
public void deposit(int amt) throws RemoteException { balance += amt;}
public void transfer(int amt, Account src) throws RemoteException {
src.withdraw(amt);
thisdeposit(amt);

COMPSCI334 19

Setting up server objects

* create server (remote) objects on the server

* export the objectsto RMI runtime (the
middleware)

* register the object with a name service

COMPSCI334 20

http://www.pdfcomplete.com/1002/2001/upgrade.htm

’ Click Here & Upgrade

b g Expanded Features

> PDF Unlimited Pages
Complete

/I contains methods for accessing name service
import java.rmi.Naming;

/I contains methods for manipulating server objects
import java.rmi.server.UnicastRemoteObject;
public class RegAccount {
public static void main(String[] args) {
try {
/I create a server (remote) object
AccountIlmpl account = new Accountlmpl(*X");

/I export the server object to the RMI runtime
/I the server object listens on a port assigned by VM
Account stub = (Account)

Uni castRemoteObject.exportObject(account,0);

COMPSCI334 21

/I register the object with a name server

/I the server object is given name “X” on the name server
// the name server is at port 8081
Naming.rebind("//localhost:8081/X",stub);

/I the server object is ready to be called
System.out.println(* Account registerd.");

catch (Exceptione) {
System.out.println("Error in RegAccount”);
e.printStack Trace();
}
}
}

COMPSCI334 22

Creating a Client Program

» Regarding the use of the remote (i.e. server)
object, a client program needs to carry out the
following two tasks:

— Look up the remote object

— Manipulate the remote object using the methods
specified in the server interface

COMPSCI334 23

/I contains methods for accessing name service
import java.rmi.Naming;
public class AccountClient {
public static void main(String[] args) {
try {
/I ook up the server object with name “X”
Account xAccount =
(Account)Naming.lookup("//localhost:8081/X");

/I cdll the getBalance method to display account balance
System.out.printin(*Balance of account is. "+
xAccount.getBalancg());

/I deposit money to the account
xAccount.deposit(1234);

COMPSCI334 24

http://www.pdfcomplete.com/1002/2001/upgrade.htm

omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

/I display the new balance

System.out.printin(*Deposit 1234 into "+
xAccount.getName());

System.out.printin(*Balance of account is. "+
xAccount.getBalancg());

}
catch (Exceptione) {
System.out.printin(“Error in AccountClient");
e.printStack Trace();
}
}
}

COMPSCI334 25

Compiling and Running

» Compile all the classes and interfaces
—javac *.java

* Start the name server
— rmiregistry 8081

* Create and register the account object
— java RegAccount

* Runtheclient
— java AccountClient

COMPSCI334 26

RMI Architecture

Client objects 3 Server objects

o
S
o
5]
Q

Etub % Skeleton
s
4

Remote reference < » | Remote reference
manager - manager

COMPSCI334 27

* When aclient calls amethod on aremote
object, the corresponding method in the stub is
called.

» The stub marshals the arguments in the method
call into serialized form. There are three
possible cases:

— An argument is a Remote object: forwards the
reference to the object

— An argument is aprimitive data type or a
Serializable object: serialize the argument

— Neither of the above: raise an exception

COMPSCI334 28

http://www.pdfcomplete.com/1002/2001/upgrade.htm

omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

» On the client side, the remote reference manager
converts the stub request to low-level protocol
messages.

» On the server side, the remote reference manager
converts the low-level protocol messagesinto a
format that the skeleton can understand.

» The skeleton unmarshal s the arguments and calsthe
appropriate method on the actual server object.

* |f there areinformation to be passed back to the
client, the skeleton marshal s the information and
forwards them to the client side. The stub on the
client sde would unmarshal the information and pass
them to the client.

COMPSCI334 29

How does a client get the stub?

1. generated
when exported
server object m
Ac®

4. return reference

AccountImpl account = new Accountlmpl("X");
Account stub = (Account) UnicastRemoteObject.exportObject(account,0);
Naming.rebind("//localhost:8081/X" ,stub);

COMPSCI334 30

The registry and naming services

* When you start rmiregistry, you can specify a
port number. By default, rmiregistry listens to
port 1099.

* Once the RMI registry isrunning, you register
remote objects with it using one of the classes:
— java.rmi.registry.L ocateRegistry
— java.rmi.Naming
— javarmi.registry.Registry

COMPSCI334 31

Some useful methods
* javarmi.registry.L ocateRegistry
— createRegistry
« Start your own registry service
— getRegistry

« Obtain areference to aregistry service either on
localhost or on a specified host

* javarmi.registry.Registry
— bind, rebind, unbind
Registry reg =
LocateRegistry.getRegistry(8081);
reg.rebind(“ X" ,account);

COMPSCI334 32

http://www.pdfcomplete.com/1002/2001/upgrade.htm

4
& PDF
Complete

Click Here & Upgrade
Expanded Features
Unlimited Pages

On server:

L ocateRegistry.createRegistry(8081);
Registry reg = LocateRegistry.getRegistry(8081);
reg.rebind("X",stub);

On client:

Account xAccount = (Account)reg.lookup("X");

COMPSCI334 33

Registry reg = LocateRegistry.getRegistry("localhost”, 8081);

* java.rmi.Naming
— This class can be used to bind an object to a known
registry
« bind, rebind, unbind
— Thisclassletsa client look up local and remote
objects using URL -like naming syntax.
« //host:port/object-name
— On server
Naming.rebind("//localhost:8080/X" ,account);
— On client
Account xAccount =
(Account)Naming.lookup("//localhost:8080/X");

COMPSCI334 34

JDBC

Load the IDBC driver.
Define the connection URL.
Establish the connection.
Cresate a statement object.
Execute a query or update.
Process the results.

Close the connection.

COMPSCI334 35

DB Connection Pool

* Opening a connections to adatabaseis atime-
CoNsuMing process.

* To make the access to DBs more efficient, the
connectionsto DBs should be reused.

» Refer to Chapter 17& 18 of Core SERVLETS
and JAVASERVER PAGES

COMPSCI334 36

http://www.pdfcomplete.com/1002/2001/upgrade.htm

Click Here & Upgrade

v’ Expanded Features
> PDF Unlimited Pages
Complete

DBConn class

¢ Hold aset of connectionto aDB

« DBConn()

— DB driver, location, user name, password, number of connections in the
pool

« makeConnection()
— obtain a connection to the DB, called by DBConn()
— declared as private
¢ getConnection()
— obtain a connection from the connection pool
 releaseConnection()
— return a connection to the connection pool
¢ closeAllConnection()
— release all the DB connections in the connection pool

COMPSCI334 37

/I obtain a connection from the DB connection pool
public synchronized Connection getConnection() {
Connection conn=null;
try {
/I there are still connections available in the pool
if (favailable.isEmpty()) {
/1 obtain the connection
conn = available.lastElement();
/I record the connection as no longer available
availableremove(conn);
busy.addElement(conn);

COMPSCI334 38

Integrating the Account Example with
DB

AccountClient

getBalance()

getAccount()

new Accountimpl()

AccountManager

COMPSCI334 39

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface AccountManager extends Remote {
// retrieve an account from the DB according to the account’ s name
public Account getAccount(String name) throws RemoteException;

}

COMPSCI334 40

http://www.pdfcomplete.com/1002/2001/upgrade.htm

&
¥
C

PDF
omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

AccountManagerimpl class

» AccountManagerimpl

— create a DB connection pool,
« DBConn

COMPSCI334 41

* getAccount

— obtains a connection from the DB connection pool
« getConnection()
— retrieve account details from the DB
« The DB table account has two columns, name and balance.

« SQL gtatement for retrieving the account details of a given user:
select * from account where name='X’

« Java statements for querying a DB: getConnection, createStatement,
executeQuery
— construct an Account object
 account = new Accountlmpl (accountName,bal ance);
— make the object a RMI remote object
« stub = (Account) UnicastRemoteObj ect.exportObject(account, 0);
— return the DB connection back to the connection pool
* releaseConnection
— return the reference to the server object back to the caller

* return stub
COMPSCI334 42

RegAccountManager class

Create an AccountManagerlmpl object
Make the object a RMI remote object

— AccountManager stub = (AccountManager)
UnicastRemoteObject.exportObj ect(accountManager, 0);

Create aRMI registry
— LocateRegistry.createRegistry(8081);
— No need to start rmi registry manually

Register the RMI object with the registry

COMPSCI334 43

BankClient class

* Look up the AccountManager object

— AccountManager manager =
(AccountM anager)Nami ng.lookup("//l ocal host:8081/manager");

» Obtains references to some Account objects
— Account xAccount = manager.getAccount(*X");
— Account yAccount = manager.getAccount("Y");

» Manipulate the Account objects
— getBalance, transfer

COMPSCI334 44

http://www.pdfcomplete.com/1002/2001/upgrade.htm

omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

3. call getAccount

5. obtain reference to Account

Client and download Account stub Server

6. call methods of Account

4. retrieve

COMPSCI334 45

Improvement to the Account Example

AccountClient

withdraw
deposit
transfer

getAccount()

updateAccount
@ Lpcte
COMPSCI334 46

AccountManager Interface

» Account objects and the AccountM anager
objects reside at the same location.

— updateAccount does not need to be provided as a
method that can be accessed remotely

— AccountManager Interface remainsthe same
» The class that implements AccountM anager
needs to implement the updateA ccount method

— This method can only be accessed locally, i.e.
cannot be accessed by client at adifferent location.

COMPSCI334 47

AccountManagerimpl 2 class

» Same as the AccountManagerlmpl apart from the
discussions bel ow.

* updateAccount
— obtains a DB connection from the connection pool

— update the account details in the DB
« SQL statement for updating arecord of a given client
— update account set baance=X where name="Y"

— return the DB connection to the connection pool
* getAccount

— when an Account object is created, areference to the
AccountManager should be passed to the Account object
(see explanation later)

« account = new Accountlmpl2(accountName balance, this);

COMPSCI334 48

http://www.pdfcomplete.com/1002/2001/upgrade.htm

&
¥
C

PDF
omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Accountlmpl2 class

» Same as Accountimpl apart from the discussion
below.

» Accountlmpl2

— The constructor should receive areference to the
AccountManagerlmpl2 object. This isto allow the Account
object call the updateAccount method of the
AccountManagerImpl2.

« Accountlmpl2(String name, int balance, AccountManagerImpl2
accountM anager)

« thisaccountManager = accountManager;
 withdraw, deposit
— call the updateAccount method of the AccountManager to
write the changes back to DB

« accountManager.updateA ccount(this);
COMPSCI334 49

Remote Method Arguments and Return
Values

» The arguments and the return values of aremote
method are either primitive datatypes, eg int, or
objects which implement java.io.Serializable
interface, or references to remote objects.

» The server does not necessarily know the concrete
implementation of the objects being passed in. Asa
consequence, the server’s VM might also need to
download the relevant classes when a remote method
cal is made.

COMPSCI334 50

Download Classes Dynamically

¢ JVM candynamically download Java software from any URL,
e.g. aweb server.

* A codebase isaplace, from which to load classes into a virtual
machine.

— CLASSPATH isa"local codebase", because it isthe list of places on disk
from which you load local classes.

— javarmi.server.codebase property value represents one or more URL
locations from which classes needed during the execution of the RMI
applications can be downloaded.

» The classes needed to execute remote method calls should be
made accessible from a network resource, such asan HTTP or
FTP server.

¢ java.rmi.server.codebase can be specified when a program is
started

— java-Djava.rmi.server.codebase=http://localhost:8080/rmi/ex6/
ComputeClient

COMPSCI334 51

The need for downloading classes
dynamicaly (1)

* When aclient makes amethod call, there are three
possible cases:

— All of the method parameters (and return value) are primitive
data types, so the remote object knows how to interpret them.
Thus, there is no need to check its CLASSPATH or any
codebase.

— At least one remote method parameter or the return valueis an
object, for which the remote object can find the class
definition locally in its CLASSPATH.

— The remote method receives an object instance, for which the
remote object cannot find the class definition locally in its
CLASSPATH.

« The class of the object sent by the client will be a subtype of the
declared parameter type.

« In this case the class need to be downloaded to the server.

COMPSCI334 52

http://www.pdfcomplete.com/1002/2001/upgrade.htm

*
¥
C

PDF
omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

The need for downloading classes

dynamically (2)

» When aclient receives a stub, the stub uses
classes which cannot be found in the client's

CLASSPATH. In this case the class need to
be downloaded to the client.

COMPSCI334 53

5. method call
/ \
3. look up ;
dient RMI 2. register server
registry
4. downoad classes
relating'te stub/result
1. uplpad 1. upload
classfiles classfiles
6. download classes
relating to
http server parameters http server

COMPSCI334

54

Compute Engine
(http://java.sun.com/docs/books/tutorial /rmi/)

submit task
Client
"~ refum result

« A client can submit a task to the server (computer engine) for
execution.
— The submitted task is executed on the server
¢ The server provides a (remote) interface for client to submit a
task .
« Aninterface is defined to specify the task to be submitted to
the server.
— Thisinterface is available on both client and server
— The task submitted by the client implements the interface.
— Theinterface is non-remote.

Compute
Engine

COMPSCI334 55

public class Adder
{
privateinti, j;
public Adder(int i, intj) {
thisi =1;
thisj =j;

public Integer execute() {

return (new Integer(i+));

}
}

public class Multiplier

{
private doublei, j;

thisi =i;
thisj =j;
}
public Double execute() {
return (new Doubl e(i+}));
}
}

public Adder(double i, doublej) {

COMPSCI334

56

http://www.pdfcomplete.com/1002/2001/upgrade.htm

omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Argument (task) Interface

import java.io.Seriadizable;

public interface Task<T> extends Serializable {
T execut();

}

» Task isnot aremote object

» The Task interface must extend Serializable to allow
thetask to be sent to the server.

* In order to allow development on server and client
site, the server interface and the argument interface
should be available on both sites.

COMPSCI334 57

Server interface (remote)

submit task

Compute

Client .
return resut Engine

-

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Compute extends Remote {
<T> T executeTask(Task<T> t) throws RemoteException;
}

Java generic types:
http://www-128.ibm.com/devel operworks/edu/j-dw-java-generics-i.html

COMPSCI334 58

Server Implementation

» Thetask submitted by the client is a subtype of
the Task<T> interface. The class needsto be
downloaded by the server at run time.

* Inorder for aJVM to attempt to load classes
remotely, a security manager hasto be
installed to allow remote class loading.

— System.setSecurityM anager(new
RM I SecurityManager())

COMPSCI334 59

import javarmi.*;
import java.rmi.server.*;

public class Computelmpl implements Compute
{
public Computelmpl() throws RemoteException {
/I set up security manager to allow class downloading
System.setSecurityManager(new RM|SecurityM anager());
}

public <T> T executeTask(Task<T>t) {
/I execute the submitted job
return t.execute();

}

COMPSCI334 60

http://www.pdfcomplete.com/1002/2001/upgrade.htm

&
¥
C

PDF
omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Create Server Object

* create aremote object

— Computelmpl ce = new Computelmpl();
* export the remote object

— UnicastRemoteObject.exportObject
 createaRMI registry

— LocateRegistry.createRegistry
* register with the RM1 registry

— rebind

— Thereference to the stub

COMPSCI334 61

Policy files

* When a compute engine object is created, the
security manager of the object will read a
policy file to determine which actions are
allowed for the compute engine.

» Thefile below allows the engine to accept
connections and make connections on any non-
privileged port.

grant {
permission java.net.SocketPermission "*:1024-65535", "accept, connect";
¥

java -Djava.security.policy=mypolicy RegCompute

COMPSCI334 62

Client implementation

» Write a concrete task implementation.
— The class specifies the task to be sent to the server.
— The execute method should contain the code that carry out
the computation.
» Upload thetask classto aweb server for server to
download during its execution.
» Write dient application
— Create atask.
— Look up the compute engine.

— Submit the task to the compute engine through the remote
interface.
— When start the client, specify the value of
javarmi.server.codebase
« java-Djava.rmi.server.codebase=http://localhost:8080/rmi/ex6/
ComputeClient

COMPSCI334 63

public class Adder implements Task<Integer>

{
private static final long serialVersionUID = 334L;
private int i, j;
public Adder(int i, int j) {
this.i =1i;
thisj =j;
}
public Integer execute()
{
return (new Integer(i+j));
}
}

COMPSCI334 64

http://www.pdfcomplete.com/1002/2001/upgrade.htm

*
¥
C

PDF
omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

public class ComputeClient {
public gatic void main(String[] args) {
try {

/' 100k up the compute engine
Compute ce = (Compute)Naming.lookup("//localhost:8081/ce");
/I create atask
Adder adder = new Adder(1,2);
/I send the task to the server
Integer result = (I nteger) ce.executeTask(adder);
System.out.printin("Result is: "+result.intVaue());

COMPSCI334 65

. 4. method calls
Client Server
3. loek up
1. upload .
2. register
5. loadAdder
http server:
Adder.class rmiregistry
COMPSCI334 66

Tomcat inthelab

* download rmi-classes.zip file from
http://www.cs.auckland.ac.nz/compsci 334s1t/r
esources/rmi-classes.zip

* unpack thefile and storeiit at H:\sfac-
apps\tomcat-6.0\webapps
» Start Tomcat inthe lab

— Start menu & programs & development &
deve opment environment & Apache Tomcat

COMPSCI334 67

¢ download rmi-classes.zip file from
http://www.cs.auckland.ac.nz/compsci 334s1t/resources/rmi-
classes.zip

« unpack the fileand storeit at H:\\sfac_apps\tomcat-
6.0\webapps

‘_;(_)v | . = sfac_apps - tomcat-6.0 - webapps -~

File Edit view Tools Help

Organize v == Views ~ (&3 Burn

— Name ~ | =| Date modified | =| Type
ROGT 26/02/2008 10... File Folder

[E| Documents rmi 26/02/2008 11... File Folder

B Pictures | 334 25/02/2008 9:... File Folder

& Music

4 Recently Changed

FB Searches

Public
COMPSCI334 68

http://www.pdfcomplete.com/1002/2001/upgrade.htm

omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Performance Tuning

» Many applications are time-critical.

— It isimportant to make your application as efficient as
possible.

» How isthe efficiency of a program affected?

COMPSCI334 69

How to make a program run efficiently

* Reduce the amount of operations involving the
network
— Only access a remote service when it is necessary

« Send data to the machine on which the processing
occurs

— Avoid sending alarge amount of data over the
network
* Process the data at the place that the datais stored

— Thereisatrade-off between processing data
locally and remotely

» Have as much datain the cache as possible

COMPSCI334 70

Process data remotely

* Process data remotely means the datawill be
processed at the location that the datais stored
— Pass reference of datato the applications

— Invoke methods on data object to execute the operations
remotely

* Pros: avoid transmitting a large amount of data across
the network

» Cons:. there are overhead associated with the
middleware .

COMPSCI334 —m 71

* In our banking examples, the AccountM anager
returns a reference of an account object to the
client

— In AccountManager

« public Account getAccount(String name) throws
RemoteException;

— public interface Account extends Remote

* All the operations on the Account object are
remote operations

COMPSCI334 72

http://www.pdfcomplete.com/1002/2001/upgrade.htm

’ Click Here & Upgrade

v Expanded Features

> PDF Unlimited Pages
Complete

AccountClient

getBalance()
getName()

new Accountimpl()

DB select

getAccount()

AccountM anager

COMPSCI334 73

Process data locally

» Processdatalocally means that datais sent to the

client and being processed on the client’ s site

* Pros: avoids the overheads associated with the

remote operations

» Cons: datatransmission delays

COMPSCI334

74

» Modify our banking examples, so that the
AccountManager returns an account object to
the client

— In AccountManager

« public Account getAccount(String name) throws
RemoteException

— Account is defined as
« public class Account implements Serializable
» Account object is returned to the client

— All the operations on the Account object are
carried out on the client machine

COMPSCI334 75

Balance of ¥’'s account is: 2468
Time to complete: 16 milliseconds

C:dataworksleaching“\334%\eni\2008exanples \ex? \byvalue>

Balance of X's account is: 2468
Time to complete: 157 milliseconds

C:\data‘work\leaching\334 eni \20B8exanples \ex?\hyreference?

COMPSCI334

76

http://www.pdfcomplete.com/1002/2001/upgrade.htm

Click Here & Upgrade
Expanded Features

4
v PDF Unlimited Pages
Complete

Caching within applications
» Access DB could be a time-consuming operation
— OS and middleware overheads) o
* Pros: improve the efficiency of some
applications

— DB might reside on a different machine
» Cons: complicate the programming task

* |f an application needs to use the data repeatedly and
the data are not shared by other applications, the data
— The application becomes complicated

can be cached by the application.
— The data will be loaded into the CPU c%%he or main

memory when the application is executed.
« Apart from thefirst access to the data, data will be served from the

CPU cache or memory
— Application needs to manage the data
¢ Check whether the data exist in the cache before retrieving the data

from the DB
« Before the application terminates, write the modified data back to
the DB
COMPSCI334 78

7

COMPSCI334

Implementing caching
* Client side

e Server side

— Theremote object implementation caches the data
 Improve the efficiency by avoiding needless DB access

— Reduce the load of the DB
¢ The client is not aware of the existence of the cache

I
- = -

COMPSCI334 79

— The application running on the client manages the

cache
« Data need to beretrieved from the server first

I [
Q%
(]

<

COMPSCI334 80

http://www.pdfcomplete.com/1002/2001/upgrade.htm

&
2
C

PDF
omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Server side caching

—
e | TN
] (;:>
-
-
COMPSCI334 81

* Re-write AccountManagerimpl in the previous
banking example
» Create acache

— private Hashtable<String,Account> accountCache = new
Hashtabl e<String,Account>();

 For all the operations, before accessing the DB,
checks the cache for the requested data. For example,
for getAccount(String name)
— Try to retrieve the object from the cache
« account = accountCache.get(name);
— Check whether account is null

— If account is not null, account refers to the account object
that we wart.
« Return this reference to the client

COMPSCI334 82

— If the object does not exist in the cache, retrieve the
account information from the DB

 String query = "select * from account where
name="'+name+"",

» ResultSet result = statement.executeQuery(query);
— Constructs an object
« account = new Accountlmpl(accountName,balance);

« stub = (Account)
Uni castRemoteObject.exportObject(account, 0);

— Store the object in the cache
« accountCache.put(name,stub);
— The client implementation is the same as before

COMPSCI334 83

Balance of B's account is: 2468
Time to complete: 297 milliseconds

IC:~datasworksTeaching~334 »rmi~20B88examples exB \serverside>

Balance of X's account is: 2468
Time to complete: 125 milliseconds

IC=~data‘work~Teaching~334 rmni~2BB8examples “ex8\nocache >

COMPSCI334 84

http://www.pdfcomplete.com/1002/2001/upgrade.htm

omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Client side caching

]
|
] Kee———)]
|
COMPSCI334 85

When getAccount is called, an Account object to
returned to the client application.

Define a LocalManager classto manage the cached
data

The client application interacts with the server
through LocalManager
— LocalManager should provide the same set of method as
the remote AccountManager object
« public Account getAccount(String name)
* The method is not an RMI remote method
« The Account object being returned is alocal object

COMPSCI334 86

» Theclient application, BankClient, creates a
LocalManager object

— LocalManager localM anager = new LocalManager();

» The client application interacts with the remote
AccountManager through the Local Manager
object

— account = localManager.getAccount("X");

» Onceareferenceto an Account object is obtained,

the client application can manipulate the object
— The Account object is not aremote object

COMPSCI334 87

The LocalManager maintains a cache
— private Hashtable<String, Account> accountCache = new
Hashtable<String, Account>();
The LocalManager needs to retrieve the account information from
the remote server.
— remoteManager = (AccountManager) Naming
Jlookup("//localhost:8081/manager");
When the client application wantsto retrieve an Account object, the
LocalManager needsto check to see whether the object existsin the
cache first.
— local Account = accountCache.get(name);
— if (localAccount != null)
If the Account object does not exist in the cache, the L ocal Manager
obtains the object from the remote server and stores the object inthe
cache.
— local Account = remoteM anager. getA ccount(name);
— accountCache.put(name, local Account);

COMPSCI334 88

http://www.pdfcomplete.com/1002/2001/upgrade.htm

&
2
C

PDF
omplete

Click Here & Upgrade
Expanded Features
Unlimited Pages

Time to complete: 31 milliseconds

IC:~datasworksTeaching~334 rni~2BB8exanples exB clientside >

Balance of X's account is: 2468
Time to complete: 125 milliseconds

IC=~data‘work~Teaching~334 rmni~2BB8examples “ex8\nocache >

COMPSCI334 89

http://www.pdfcomplete.com/1002/2001/upgrade.htm

