
Chapter 1 Lexical Analysis Using JFlex Page 1 of 39 

Chapter 1 Lexical Analysis Using JFlex 
Tokens 
The first phase of compilation is lexical analysis - the decomposition of the input into tokens. 
A token is usually described by an integer representing the kind of token, possibly together with an 
attribute, representing the value of the token.  For example, in most programming languages we 
have the following kinds of tokens. 
• Identifiers (x, y, average, etc.) 
• Reserved or keywords (if, else, while, etc.) 
• Integer constants (42, 0xFF, 0177 etc.) 
• Floating point constants (5.6, 3.6e8, etc.) 
• String constants ("hello there\n", etc.) 
• Character constants ('a', 'b', etc.) 
• Special symbols (( ) : := + - etc.) 
• Comments (To be ignored.) 
• Compiler directives (Directives to include files, define macros, etc.) 
• Line information (We might need to detect newline characters as tokens, if they are 

syntactically important.  We must also increment the line count, 
so that we can indicate the line number for error messages.) 

• White space (Blanks and tabs that are used to separate tokens, but are 
otherwise not important). 

• End of file 
Each reserved word or special symbol is considered to be a different kind of token, as far as the 
parser is concerned.  They are distinguished by a different integer to represent their kind. 
All identifiers are likely to be considered as being the same kind of token, as far as the parser is 
concerned.  Different identifiers have the same kind, and are distinguished by having a different 
attribute (perhaps the text that makes up the identifier, or an integer index into a table of identifiers). 
All integer constants are considered as being the same kind of token, as far as the parser is 
concerned.  They are distinguished by their value - the numeric value of the integer.  Similarly, 
floating point constants, string constants, and character constants will represent three different kinds 
of token, and will have an attribute representing their value. 
For some constants, such as string constants, the translation from the text that makes up the 
constant, to internal form can be moderately complex.  The surrounding quote marks have to be 
deleted, and escaped characters have to be translated into internal form.  For example “\n” (a “\” 
then an “n”) has to be translated by the compiler into a newline character, “\"” into a “"” character, 
“\177” into a delete character, etc. 
Some tokens, while important for lexical analysis, are irrelevant for the parser (the portion of the 
compiler that analyses the structure of the program being compiled).  For example, layout tokens, 
such as white space, newlines, and comments are processed by the lexical analyser, then discarded, 
since they are ignored by the parser.  Nevertheless newlines will have to be counted, if we want to 
generate appropriate error messages, with a line number. 



Chapter 1 Lexical Analysis Using JFlex Page 2 of 39 

Lexical Errors 
The lexical analyser must be able to cope with text that may not be lexically valid.  For example 
• A number may be too large, a string may be too long or an identifier may be too long. 
• A number may be incomplete (e.g. 26., 26e, etc.). 
• The final quote on a string may be missing. 
• The end of a comment may be missing. 
• A special symbol may be incomplete (e.g. If the special symbols included := :=: :<>: and we 

came across :<=: in the text, we may consider this to be incomplete). 
• Invalid characters may appear in the text, for example if we accidentally attempt to lexically 

analyse a binary file. 
• Compiler directives may be invalid. 
The compiler must produce an error message and somehow continue the lexical analysis.  It would 
appear to be relatively easy to correct lexical errors (mostly just by deleting characters), but it 
should be pointed out that poor error recovery in the lexical analysis phase can produce spurious 
errors at the parsing phase.  A solution to this is terminate the rest of the compiler if a lexical error 
occurs, and only continue performing the lexical analysis. 

Regular Expressions 
In most programming languages, lexical tokens seem to have a remarkably simple structure, that 
can be described by patterns called regular expressions.  Regular expressions are used in many 
editors, and by the UNIX command grep, to describe search patterns.  They are also used by Lex, 
Flex, JLex and JFlex, four very similar special purpose computer languages used for writing lexical 
analysers.  The programmer specifies the tokens to match using regular expressions, and the action 
to perform in a conventional programming language.  Lex/Flex are C based.  JLex/JFlex are the 
Java based equivalents.  The Lex/Flex or JLex/JFlex compiler generates a C or Java program, which 
can be combined with other C or Java code.  Flex and JFlex more or less represent GNU extended 
versions of Lex and JLex.  We will use JFlex, because it is Java based and more sophisticated than 
JLex. 
To indicate that we want to match simple text, we use a pattern equal to the text itself.  For example 
while Matches the text “while”. 
We can match an identifier in most programming languages by using the pattern 
[A-Za-z][A-Za-z0-9]* 
The pattern [A-Za-z] represents any upper or lower case alphabetic letter (a range of characters is 
represented by writing the lower bound, a “-”, then the upper bound).  The pattern [A-Za-z0-9] 
represents any upper or lower case alphabetic letter or decimal digit.  Similarly, it is possible to put 
a “^” just after the “[” to match “any characters except” the following characters.  For example the 
pattern [^\r\n\"\\] matches any character except a carriage return, linefeed, double quote or 
backslash character. 
We can put a “*” after a pattern, to match text that corresponds to 0 or more occurrences of the 
pattern.  Similarly we can put a “+” after a pattern to match text that corresponds to 1 or more 
occurrences of the pattern, a “?” after a pattern to match text that corresponds to an optional 
occurrence of the pattern, {n} (where n is a decimal integer) after a pattern to match text that 



Chapter 1 Lexical Analysis Using JFlex Page 3 of 39 

corresponds to n occurrences of the pattern, and {m, n} (where m and n are a decimal integers) after 
a pattern to match text that corresponds to between m and n occurrences of the pattern  
We can write two patterns side by side, to match text corresponding to the first pattern, followed by 
text corresponding to the second pattern. 
Hence the above pattern represents an alphabetic letter, followed by 0 or more letters or digits. 
Similarly, the pattern 
0 matches the integer 0. 
[1-9][0-9]* matches a nonzero decimal integer. 
0[0-7]+ matches an octal integer. 
0[xX][0-9A-Fa-f]+ matches a hexadecimal integer. 
Some characters have a special meaning.  If we want to use these characters with their normal 
meaning, we have to “escape” or “quote” the character.  There are two ways of doing this.  We can 
precede the character by a “\” or enclose a sequence of characters in "...".  For example 
[0-9]+ \. [0-9]+ [eE] [\+\-]? [0-9]+ 
 matches one of the possible patterns for a floating point value.  (It does not 

match all alternatives, since some of the portions can be omitted.) 
In this case, we have escaped the “.”, “+” and “-” by prefacing them by a “\”, because they have a 
special meaning. 
“.” is a pattern that matches any character, other than a newline.  In fact it is only useful on UNIX 
systems, since it still matches carriage returns, which are used for line breaks on Macintoshes and 
PCs. 
For example 
"//".* matches a comment in C++ or Java (since most pattern matchers match the 

longest possible text). 
In fact, it is better to replace “.” by “[^\r\n]”, to also exclude a carriage return.  JFlex is UNIX 
based, so it assumes line breaks are newlines. 
“\r”, “\n”, “\t”, “\b”, etc have their usual meaning in C or Java, as carriage return, linefeed 
(newline), tab, backspace, etc. 
We can also write patterns to represent matching of one of several alternatives, by using the “|” 
operator.  For example 
0 | [1-9][0-9]* | 0[0-7]+ | 0[xX][0-9A-Fa-f]+ 
 represents the various styles of integer constant allowed in C or Java. 
Regular expressions have different precedences.  For example the postfix sequence operators “*”, 
“+”, and “?” have a higher precedence than concatenation, which has a higher precedence than “|”.  
Sometimes we need to overrule the precedence, by parenthesising the regular expressions.  For 
example 
{letter}({letter}|{digit})* 
 represents an identifier in most languages, if we define letter as [A-Za-z] and 

digit as [0-9]. 



Chapter 1 Lexical Analysis Using JFlex Page 4 of 39 

It is quite difficult to understand complex regular expressions, so it is desirable to be able to name 
regular expressions, and use them in other regular expressions.  In the JFlex language, used for 
writing lexical analysers, it is possible to associate identifiers with regular expressions, and use 
these identifiers later, by enclosing them in {}.  For example the following definitions describe 
many of the tokens that occur in Java.  (refer JAVA) 
package grammar; 
 
import java.io.*; 
import java_cup.runtime.*; 
 
%% 
 
%public 
%type  Symbol 
%char 
 
%{ 
 public Symbol token( int tokenType ) { 
  System.err.println( "Obtain token " + sym.terminal_name( tokenType )  
   + " \"" + yytext() + "\"" ); 
  return new Symbol( tokenType, yychar,  
   yychar + yytext().length(), yytext() ); 
  } 
 
%} 
 
InputChar  = [^\n\r] 
SpaceChar  = [\ \t] 
LineChar  = \n|\r|\r\n 
 
Zero   = 0 
DecInt   = [1-9][0-9]* 
OctalInt  = 0[0-7]+ 
HexInt   = 0[xX][0-9a-fA-F]+ 
 
Integer   = ( {Zero} | {DecInt} | {OctalInt} | {HexInt} )[lL]? 
Exponent  = [eE] [\+\-]? [0-9]+ 
Float1   = [0-9]+ \. [0-9]+ {Exponent}? 
Float2   = \. [0-9]+ {Exponent}? 
Float3   = [0-9]+ \. {Exponent}? 
Float4   = [0-9]+ {Exponent} 
Float   = ( {Float1} | {Float2} | {Float3} | {Float4} ) [fFdD]? | 
[0-9]+ [fFDd] 
Ident   = [A-Za-z_$] [A-Za-z_$0-9]* 
CChar   = [^\'\\\n\r] | {EscChar} 
SChar   = [^\"\\\n\r] | {EscChar} 
EscChar   = \\[ntbrf\\\'\"] | {OctalEscape} 
OctalEscape  = \\[0-7] | \\[0-7][0-7] | \\[0-3][0-7][0-7] 
 
%% 
abstract  { return token( sym.ABSTRACT ); } 
boolean  { return token( sym.BOOLEAN ); } 
break  { return token( sym.BREAK ); } 
… 
transient  { return token( sym.TRANSIENT ); } 
try   { return token( sym.TRY ); } 
void   { return token( sym.VOID ); } 
volatile  { return token( sym.VOLATILE ); } 
while  { return token( sym.WHILE ); } 
 



Chapter 1 Lexical Analysis Using JFlex Page 5 of 39 

"("   { return token( sym.LEFT ); } 
")"   { return token( sym.RIGHT ); } 
"{"   { return token( sym.LEFTCURLY ); } 
"}"   { return token( sym.RIGHTCURLY ); } 
"["   { return token( sym.LEFTSQ ); } 
"]"   { return token( sym.RIGHTSQ ); } 
… 
"&"   { return token( sym.AMPERSAND ); } 
"!"   { return token( sym.EXCLAIM ); } 
"~"   { return token( sym.TILDE ); } 
 
true   { return token( sym.BOOLEANLIT ); } 
false  { return token( sym.BOOLEANLIT ); } 
null   { return token( sym.NULLLIT ); } 
 
{Integer}  { return token( sym.INTEGERLIT ); } 
 
{Float}  { return token( sym.FLOATLIT ); } 
 
\'{CChar}\' { return token( sym.CHARLIT ); } 
\"{SChar}*\" {return token( sym.STRINGLIT ); } 
 
{Ident}  { return token( sym.IDENT ); } 
 
"//"{InputChar}* { } 
 
"/*"~"*/"  { } 
 
{LineChar} { } 
{SpaceChar} { } 
<<EOF>>  { return token( sym.EOF ); } 
.   { return token( sym.error ); } 

Overview of JFlex 
JFlex takes a JFlex program and creates a Java file.  I give the JFlex program a suffix of “.jflex”, 
although this is not compulsory.  The default name for the Java class generated is Yylex, and the 
code is written to a file called Yylex.java, although this can be changed, using the %class directive. 
There are two provided constructors for the lexical analyser class.  The primary one takes a Reader 
object as a parameter.  The secondary one takes an InputStream, which it converts into a Reader and 
invokes the primary constructor.  The parameter represents an object that provides the input to be 
lexically analysed.  For example, the parameter can be a StringReader (if we want to obtain the 
input from a String) or an InputStream (if we want to obtain the text from a file). 
The lexical analyser class has a method for getting a token.  The default name for this method is 
yylex(),  although this can be changed, using the %function directive.  The default return type is 
Yytoken, although this can be changed, using the %type directive.  This method loops, matching the 
input to regular expressions, and performing the action associated with that regular expression.  If 
the action contains a return statement, the method returns the value indicated. 

An Example 
(Refer SENTENCE.) 
The following program takes text as input, and reformats it, one sentence to a line, with the first 
letter of the sentence capitalised, and only one space between words. 
 



Chapter 1 Lexical Analysis Using JFlex Page 6 of 39 

package grammar; 
 
import java.io.*; 
 
%% 
 
%{ 
 static String capitalize( String s ) { 
  return Character.toUpperCase( s.charAt( 0 ) ) + s.substring( 1 ); 
  } 
 
%} 
 
%public 
%class Sentence 
%type Void 
 
%init{ 
    yybegin( FIRST ); 
%init} 
 
letter  = [A-Za-z] 
word   = {letter}+ 
endPunct  = [\.\!\?] 
otherPunct = [\,\;\:] 
space  = [\ \t\r\n] 
 
%state FIRST, REST 
 
%% 
<FIRST> { 
 {word}  { 
    System.out.print( capitalize( yytext() ) ); 
    yybegin( REST ); 
    } 
 } 
  
<REST> { 
 {word}  { 
    System.out.print( " " + yytext() ); 
    } 
 {endPunct}  { 
    System.out.println( yytext() ); 
    yybegin( FIRST ); 
    } 
 {otherPunct} { 
    System.out.print( yytext() ); 
    } 
 } 
  
{space}   { 
    } 
        
.    { 
    System.err.println(  
     "Invalid character \"" + yytext() + "\"" ); 
    } 

Our main() method in our Main class takes a directory as a parameter.  This directory is meant to 
contain an input file “program.in”, and output and error files are created in this directory.  Once we 
have created our lexical analyser instance, we can invoke the yylex() method (an instance method). 



Chapter 1 Lexical Analysis Using JFlex Page 7 of 39 

import grammar.*; 
import java.io.*; 
 
public class Main { 
 
 public static void main( String[] argv ) { 
  String dirName = null; 
 
  try { 
   for ( int i = 0; i < argv.length; i++ ) { 
    if ( argv[ i ].equals( "-dir" ) ) { 
     i++; 
     if ( i >= argv.length ) 
      throw new Error( "Missing directory name" ); 
     dirName = argv[ i ]; 
     } 
    else { 
     throw new Error(  
      "Usage: java Main -dir directory" ); 
     } 
    } 
 
   if ( dirName == null ) 
    throw new Error( "Directory not specified" ); 
 
   FileInputStream fileInputStream = new FileInputStream(  
    new File( dirName, "program.in" ) ); 
   System.setErr( new PrintStream( new FileOutputStream(  
    new File( dirName, "program.err" ) ) ) ); 
   System.setOut( new PrintStream( new FileOutputStream(  
    new File( dirName, "program.out" ) ) ) ); 
 
   Sentence lexer = new Sentence( fileInputStream ); 
   lexer.yylex(); 
   } 
  catch ( Exception exception ) { 
   System.err.println( "Exception in Main " + exception.toString() ); 
   exception.printStackTrace(); 
   } 
  } 
 
 } 

The method yylex() loops, obtaining characters from the input stream, and matching patterns.  
Whenever it matches a pattern, it executes the action associated with that pattern.  In our example, 
there is no return statement in the action, so yylex() just eats up all the input and performs the action 
for each token.  Eventually, it reaches end of file, and returns.  Most sensible lexical analysers make 
yylex() return a value when it matches a token other than white space or a comment. 
What does our sample program do? 
If it matches a word at the beginning of a sentence (represented by the FIRST state), it prints it out 
again, with the first letter in upper case.  The line 
    yybegin( REST ); 

causes the current state to change to the REST state. 
If it matches a word within a sentence (represented by the REST state), it prints it out again, 
preceded by a space.  



Chapter 1 Lexical Analysis Using JFlex Page 8 of 39 

If it matches a “.” or “!”or “?”, it prints it out, followed by a newline.  It then changes to the FIRST 
state. 
If it matches a “,” or “;”or “:”, it prints it out. 
It just eats up white space and line breaks. 
Anything else causes an error message to be printed. 

Lexical Structure of JFlex 
Comments 
Both /* ... */ and // style comments are permitted in all parts of a JFlex program.  /* ... */ style 
comments can be nested. 
Spaces and line breaks 
Generally, with some exceptions, JFlex programs can be laid out in free format, without regard to 
spaces and line breaks. 

The Syntax of JFlex 
It is a little early to give you a grammar definition, but the following gives a rough indication of the 
syntax of JFlex.  It is a bit more complex than indicated by the grammar, because line breaks and 
white space are sometimes significant, and sometimes not.  I have sometimes specified the grammar 
as it should be, rather than as it is.  (However, the grammar of JFlex is far from regular, due to its 
historical origins, and could be much improved.)  Moreover, I have not specified some things, such 
as “Java code” or “Directive”. 
Overall structure 
specification::= 
  “Java code” 
  “%%” 
  macroList 
  “%%” 
  ruleList 
 ; 

A JFlex program is composed of three sections, separated by “%%”, which must occur at the 
beginning of a line.  The first section is Java code, that is just copied into the Java program to be 
generated.  The second section is composed of a list of macro declarations and directives.  The third 
section is composed of a list of rules.  For example 
package grammar; 
%% 
%public 
%type Void 
letter = [A-Za-z] 
newline = \r|\n|\r\n 
%% 
{letter}+  { System.out.println( yytext() ); } 
{newline}  { } 
.   { } 

is a simple JFlex program that reprints the words that appear in its input, one to a line, and discards 
the rest of the input.  It generates a class  



Chapter 1 Lexical Analysis Using JFlex Page 9 of 39 

package grammar; 
public class Yylex { 
 public Yylex( Reader reader ) { 
  ... 
  } 
 public Yylex( InputStream in ) { 
  ... 
  } 
 public Void yylex() { 
  … 
  } 
 } 

which can be invoked from Java code. 
import grammar.*; 
import java.io.*; 
 
public class Main { 
 
 public static void main( String[] argv ) { 
  try { 
   if ( argv.length != 1 ) 
    throw new Error( "Usage: java Main filename" ); 
   FileInputStream fileInputStream =  
    new FileInputStream( argv[ 0 ] ); 
   Yylex lexer = new Yylex( fileInputStream ); 
   lexer.yylex(); 
   } 
  catch ( Exception exception ) { 
   System.out.println( "Exception in Main "  
    + exception.toString() ); 
   exception.printStackTrace(); 
   } 
  } 
 } 

Directives and macros 
macroList::= 
  macroList macro 
 | /* Empty */ 
 ; 
 
macro::= 
  “Directive” 
 | IDENT “=” regExpr “\n” 
 ; 

There are lots of directives.  Directives generally start with a “%” at the beginning of a line, and are 
used to specify options such as the name of the class generated to perform lexical analysis. 
A macro can be used to name a regular expression.  For example, we can write 
Ident = [A-Za-z][A-Za-z0-9]* 

and later use “{Ident}” to represent the pattern “[A-Za-z][A-Za-z0-9]*”. 
Rules 
ruleList::= 
  ruleList rule 
 | rule 
 ; 
 
rule::= 
  statesOpt startLineOpt regExpr followOpt endLineOpt action 



Chapter 1 Lexical Analysis Using JFlex Page 10 of 39 

 | statesOpt “<<EOF>>” action 
 | “<” stateList “>” “{” ruleList “}” 
 ; 
 
statesOpt::= 
  “<” stateList “>” 
 | /* Empty */ 
 ; 
 
stateList::= 
  IDENT “,” stateList 
 | IDENT 
 ; 
 
startLineOpt::= 
  “^” 
 | /* Empty */ 
 ; 
 
followOpt::= 
  “/” regExpr 
 | /* Empty */ 
 ; 
 
endLineOpt::= 
  “$” 
 | /* Empty */ 
 ; 
 
action::= 
  “{ Java code }” 
 | “|\n” 
 ; 
 

A rule specifies what actions to perform when a regular expression is matched.  It is composed of: 
• An optional list of start states indicating that the rule should only be matched if the lexical 

analyser is in one of the specified start states.  The start states are enclosed in “<...>”. 
• An optional “^”, indicating that the rule should only be matched if the text occurs at the 

beginning of a line.  This is often useful in languages in which “#” at the beginning of a line 
means a macro, while “#” in any other position is just a comment. 

 For example, we could write 
 <NORMAL>^#  { yybegin( MACRO ); } 

 to match a line starting with a “#” and change into a new state for processing a macro. 
• A regular expression indicating the text to be matched. 
• An optional “/ regular expression” indicating that the rule should only be matched if the 

following text matches the specified regular expression.  The input matched by the regular 
expression after the “/” is not considered to be part of the token itself, and is not consumed. 

 For example, sometimes we might not want to match white space as a token (because to a 
large extent the language is in free format), but we might want to recognise a token followed 
by white space differently from one not followed by white space. 

• An optional “$”, indicating that the rule should only be matched if the text is at the end of a 
line. 



Chapter 1 Lexical Analysis Using JFlex Page 11 of 39 

• An action, indicating the Java code to perform if the rule is matched. 
The action can be replaced by “|”, at the end of line, to indicate that the action is the same as that of 
the following rule.  It effectively allows alternatives in a regular expression to be split across a line.  
For example 
0    | 
0[0-7]+   | 
[1-9][0-9]*  | 
0[xX][0-9a-fA-F]+ { return token( sym.INTCONST ); } 

The pattern “<<EOF>>” can be used to match end of file. 
<<EOF>>  { return token( sym.EOF ) } 

Several rules can be grouped together, with the same start state list.  The syntax “<stateList> { 
ruleList }” has the same effect as putting the stateList in front of each rule individually, but it is 
more concise and provides better structuring of the program.  If subrules have states, they will be 
matched if the lexical analyser is in either the states of the enclosing group of rules, or the states of 
the specific rule. 
For example, the following program processes text, and when it finds a string constant, builds the 
string, converting escape characters, etc.  It reprints the string when it finds the end of the string. 



Chapter 1 Lexical Analysis Using JFlex Page 12 of 39 

package grammar; 
%% 
 
%{ 
 String text; 
  
 void append( char c ) { 
  text += c; 
  } 
 
%} 
 
%public 
%type Void 
%state STRING 
newline  = \r|\n|\r\n 
%% 
<YYINITIAL> { 
 \"     { yybegin( STRING ); text = ""; } 
 {newline}    { } 
 .     { } 
 } 
 
<STRING> { 
 \"     { 
      yybegin( YYINITIAL ); 
      System.out.println( text ); 
      } 
 {newline}    { 
      yybegin( YYINITIAL ); 
      System.out.println( text  
       + " <<< Incomplete string" ); 
      } 
 \\b     { append( '\b' ); } 
 \\t     { append( '\t' ); } 
 \\f     { append( '\f' ); } 
 \\r     { append( '\r' ); } 
 \\n     { append( '\n' ); } 
 \\[0-3][0-7][0-7]  | 
 \\[0-7][0-7]   | 
 \\[0-7]    {  
      append( ( char ) Integer.parseInt(  
       yytext().substring( 1 ), 8 ) ); 
      } 
 \\x[0-9a-fA-F][0-9a-fA-F] | 
 \\x[0-9a-fA-F]   { 
      append( ( char ) Integer.parseInt(  
       yytext().substring( 2 ), 16 ) ); 
      } 
 \\.     { append( yytext().charAt( 1 ) ); } 
 .     { append( yytext().charAt( 0 ) ); } 
 } 

Regular expressions 
The different operators that can be used in regular expressions have different precedences.  The 
lowest precedence operator is “|”, then concatenation, then the sequence operators.  So “a | bc*” 
matches either “a”, or (“b” followed by a sequence of 0 or more “c”s). 
regExpr::= 
  altExpr 
 ; 



Chapter 1 Lexical Analysis Using JFlex Page 13 of 39 

altExpr::= 
  altExpr “|” concatExpr 
 | concatExpr 
 ; 

We can combine a number of alternative patterns we want to match, by writing the alternatives 
down with “|” (pronounced “or”) between them. For example “ab | cd | ef” can match any one of the 
strings “ab”, “cd” or “ef”. 
concatExpr::= 
  concatExpr prefixExpr 
 | prefixExpr 
 ; 

We can specify that we want to match several patterns in sequence, by writing the patterns one after 
the other.  For example “[abc][def]” can match any one of the strings “ad”, “ae”, “af”,  “bd”, “be”, 
“bf”,  “cd”, “ce”, or “cf”. 
prefixExpr::= 
  “!” prefixExpr 
 | “~” prefixExpr 
 | seqExpr 
 ; 

We can precede a pattern by “!” (pronounced “not”), to specify that we want to match anything 
except the pattern.  The use of “!” can cause JFlex to generate a finite state automaton with 
exponential size, so it is not an operator to be used without due care.   I am not convinced that it is 
all that useful.  The only use I can think of is to get the intersection “A&B” of two regular 
expressions by writing “!(!A|!B)”, or the difference “A\B” of two regular expressions by writing 
“!(!A|B)”. 
We can precede a pattern by “~” (pronounced “up to”), to specify that we want to match all text up 
to the first occurrence of the pattern.  For example "/*"~"*/" can be used to match a C/Java 
comment, so long as we do not allow nested comments. 
seqExpr::= 
  simpleExpr “*” 
 | simpleExpr “+” 
 | simpleExpr “?” 
 | simpleExpr “{” INTCONST “}” 
 | simpleExpr “{” INTCONST “,” INTCONST “}” 
 | simpleExpr 
 ; 

We can follow a regular expression by “*”, to specify that we want to match zero or more 
repetitions of text matched by the regular expression.  For example [ab]* matches “”, “a”, “b”, “aa”, 
“ab”, “ba”, “bb”, “aaa”, “aba”, etc. 
We can follow a regular expression by “+”, to specify that we want to match one or more 
repetitions of text matched by the regular expression.  For example [ab]+ matches “a”, “b”, “aa”, 
“ab”, “ba”, “bb”, “aaa”, “aba”, etc. 
We can follow a regular expression by “?”, to specify that we want to match an optional occurrence 
of text matched by the regular expression.  For example [ab]? matches “”, “a”, “b”. 
We can follow a regular expression by “{ INTCONST }”, to specify that we want to match the 
specified number of repetitions of the regular expression.  For example, [ab]{3} matches “aaa”, 
“aab”, “aba”, “abb”, “baa”, “bab”, “bba”, or “bbb”. 
We can follow a regular expression by “{ INTCONST1, INTCONST2 }”, to specify that we want 
to match between INTCONST1 and INTCONST2 repetitions of the regular expression.  For 
example a{3,5} matches “aaa”, “aaaa”, or “aaaaa”. 



Chapter 1 Lexical Analysis Using JFlex Page 14 of 39 

simpleExpr::= 
  “(” regExpr “)” 
 | “{”IDENT“}” 
 | charSet 
 | predefinedCharSet 
 | CHAR 
 | STRING 
 | “.” 
 ; 

Regular expressions can be enclosed in parentheses, to avoid problems with precedences.  For 
example a(bc|de)f matches “abcf” or “adef”. 
Regular expressions that were named in the macro section can be referred to by enclosing the name 
in “{...}”.  For example, if we define  
zero   = 0 
octal  = 0[0-7]+ 
decimal  = [1-9][0-9]* 
hexadecimal = 0[xX][0-9a-fA-F]+ 

then we can write the pattern {zero}|{octal}|{decimal}|{hexadecimal} to match an integer constant. 
A character set “[...]” can be used to match any one of the characters in the character set. 
There are some predefined character sets, for matching letters, digits, etc. 
A single character can be used to match itself.  This is why something like “while” (without the 
quotes) can be used to match the text “while” (it is the concatenation of the individual characters 
“w”, “h”, “i”, “l”, “e”). 
It is also possible to escape characters, by putting a \ in front.  This needs to be done for characters 
that have special meanings, namely  

~ ! ? * + | ( ) ^ $ / . < > [ ] { } " \ 
Almost any character can be escaped in this manner, and this is useful if you are unsure whether a 
character is special.  However, like in C/java, some have a special meaning. 
 \b Backspace. 
 \n Linefeed (newline). 
 \t Tab. 
 \f Formfeed. 
 \r Carriage return. 
 \[0-3][0-7][0-7] 
 The character code corresponding to the number formed by the three octal digits. 
 \x[0-9a-fA-F][0-9a-fA-F] 
 The character code corresponding to the number formed by two hexadecimal digits. 
 \u[0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] 
 The character code corresponding to the number formed by four hexadecimal digits. 
 \c A backslash followed by any other character c matches itself. 
We can also eliminate the special meaning of text by enclosed it in double quotes ("...").  However, 
\ and “"” retain their special meaning.  Spaces and tabs represent characters to be matched if they 
occur inside strings.  A string can be used to match the text it contains. 



Chapter 1 Lexical Analysis Using JFlex Page 15 of 39 

A “.” matches any character except “\n”.  It would be better if it also didn’t match “\r”, to allow 
machine independence. 
Character sets 
charSet::= 
  “[” elementList “]” 
 | “[” “^” elementList “]” 
 ; 
 
elementList::= 
  elementList element 
 | /* Empty */ 
 ; 
element::= 
  CHAR “-” CHAR 
 | CHAR 
 | STRING 
 ; 

A character set is represented by enclosing characters inside “[...]”.  It matches any one of the 
characters specified inside the “[...]”.  For example [0123456789] matches any one decimal digit. 
The characters ^ [ ] { } " - and \ have a special meaning in character sets, and need to be escaped.  
Spaces and tabs represent characters to be matched inside character sets. 
The symbol “^” means “any character except the characters listed in the character set”.  For 
example [^0123456789] matches any one character except a decimal digit. 
A range of characters can be represented by writing lowerBound-upperBound.  For example [A-Za-
z] matches any one alphabetical character. 
Characters inside a character set can be escaped using \, or double quotes. 
predefinedCharSet::= 
  “[:jletter:]” 
 | “[:jletterdigit:]” 
 | “[:letter:]” 
 | “[:digit:]” 
 | “[:upper:]” 
 | “[:lower:]” 
 ; 

There are predefined character sets for letters, digits, upper and lower case characters, etc.  They all 
involve enclosing a name inside “[:...:]”. 

Adding Java Code to the Lexical analyser 
Adding Java code outside the class declaration 
To add Java code outside the class declaration to the Java file generated by JFlex, place the code 
before the first “%%”.  The code is transferred across to the generated Java file, without any 
analysis by JFlex. If it is not valid Java, the errors will not be detected until the Java compiler is run 
on the generated Java program.  
The purpose of this code is to specify the package, and import other packages.  It is possible to 
declare helper classes in the user code section, but it is generally considered bad taste to do so.  
Other classes should be declared in their own files. 
Adding Java code inside the class declaration 
It is possible to add Java code to the class declaration, by enclosing it in %{ ... %} in the directives 
section.  For example, you can declare your own fields and methods in this section. 



Chapter 1 Lexical Analysis Using JFlex Page 16 of 39 

Adding Java code to the constructor 
It is possible to add Java code inside the constructor, by enclosing it in %init{ ... %init} in the 
directives section.  For example, you might specify the initial start state for the lexical analyser. 
Adding Java code to the actions 
A rule is followed by Java code enclosed in {...}.  This code becomes part of the lexical analyser 
method, and is executed when the rule is matched. 

Directives in JFlex 
Customising the class 
%class ClassName 
The %class directive changes the the name of the class generated from Yylex to ClassName, and 
changes the file generated from Yylex.java to ClassName.java.  The file is saved in the same 
directory as the JFlex specification, unless it is altered by the -d option to the JFlex command. 
%public 
The %public directive makes the class public.  Otherwise it has package access. 
%include Filename 
The %include directive includes the specified file (like in C).  The file name is not enclosed in 
quotes. 
Customising the lexical analyser method 
%function MethodName 
The %function directive changes the name of the lexical analyser method from yylex to 
MethodName. 
%int 
The return type of the lexical analyser method is changed from Yytoken to int. 
%type TypeName 
The return type of the lexical analyser method is changed from Yytoken to TypeName. 
Character sets 
%unicode 
The %unicode directive makes the lexical analyser use full UNICODE characters.  It is 
recommended that you always use this option.  The single byte default is only provided for 
compatibility with JLex. 
%ignorecase 
The %ignorecase directive causes the lexical analyser to ignore case. 
Line, character and column counting 
%char 
%line 
%column 



Chapter 1 Lexical Analysis Using JFlex Page 17 of 39 

These directives cause the lexical analyser to compute the character count (number of characters 
from the beginning of input to the start of the token), line count (number of line breaks from the 
beginning of input to the start of the token), and column count (number of characters from the 
beginning of line to the start of the token) for the token matched.  (All start at 0). 
The values of the variables yychar, yyline, yycolumn are set to the relevant information. 
Compatibility 
%cup 
This directive sets a number of options, which makes the class suitable for use with CUP.  The class 
implements java_cup.runtime.Scanner, names the lexical analyser method next_token, makes the 
return type java_cup.runtime.Symbol, makes the  lexical analyser method return new Symbol( 
sym.EOF ) on end of file,  etc. 
%byacc 
This directive sets a number of options, which makes the class suitable for use with Byacc/J, a Java 
based parser generator, based on Yacc, and similar to CUP. 
State directives 
%state state0, state1, state2, ... 
%xstate state0, state1, state2, ... 
The %state directive declares the states specified in the comma separated list of identifiers. 
The lexical analyser can match different rules depending on which state it is in.  The %state and 
%xstate directives name the possible states.  The initial state is YYINITIAL.  The current state (an 
int value) can be obtained by the method yystate(), and can be altered by the method 
yybegin( int newState ). 
If a rule is preceded by a list of states, then it can only be matched if the lexical analyser is in one of 
these states. 
States can be declared as inclusive (using the %state directive) or exclusive (using the %xstate 
directive).  The only difference is that if a rule is not preceded by any states, then it is matched if the 
lexical analyser is in one of the inclusive states. 

Macro definitions 
Regular expressions may be named, by writing  
Ident = RegExpr 
The regular expression may be referred to later by enclosing the name in {...}. 
Named regular expressions cannot be used recursively.  They only provide a way of abbreviating 
regular expressions. 

Built in fields and methods 
int yychar  

represents the number of characters processed since the start of input. 
int yyline  

represents the number of line breaks processed since the start of input. 
int yycolumn   

represents the number of characters processed since the start of the current line. 



Chapter 1 Lexical Analysis Using JFlex Page 18 of 39 

String yytext()  

returns the text matched by the current rule. 
int yylength()  

returns the length of the text matched by the current rule. 
int yystate()  

returns the current state. 
void yybegin( int lexicalState )  

sets the current state. 
void yypushback( int number )  

deletes the specified number of characters from the end of the text matched, and pushes them back 
into the input, so that they can be re-read.  After this, yylength() and yytext() will not include the 
characters pushed back. 
void yyreset( Reader reader )  
void yypushStream( Reader reader ) 
void yypopStream()  
boolean yymoreStreams()  

These methods can be used to implement include files.  They are used to change where input is 
obtained from. 

The structure of the Java Source Generated by JFlex 
The JFlex program is translated into Java.  A lot of the Java program is made up of tables to drive 
the lexical analyser finite state automaton, and we don’t want to try and understand that part, but it 
is useful to see where the portions of the JFlex program turn up in the Java program, since it makes 
it clearer to us what is going on. 
 
// Code from the user section before the first %% 
package grammar; 
 
import java.io.*; 
 
public class Sentence { 
 
... 
/** lexical states */ 
  final public static int YYINITIAL = 0; 
  final public static int FIRST = 1; 
  final public static int REST = 2; 
 
... 
// code from %{ ... %}  
  static String capitalize( String s ) { 
  return Character.toUpperCase( s.charAt( 0 ) ) + s.substring( 1 ); 
  } 
 
// The two kinds of public constructor, with the name from %class 
  public Sentence(java.io.Reader in) { 
      yybegin( FIRST ); 
    this.yy_reader = in; 
  } 
 
  public Sentence(java.io.InputStream in) { 
    this(new java.io.InputStreamReader(in)); 
  } 
... 



Chapter 1 Lexical Analysis Using JFlex Page 19 of 39 

// Provided methods 
  final public void yybegin(int newState) { 
    yy_lexical_state = newState; 
  } 
 
  final public String yytext() { 
    return new String( yy_buffer, yy_startRead, yy_markedPos-yy_startRead ); 
  } 
 
... 
// The yylex method 
  public Void yylex() throws java.io.IOException { 
... 
    while (true) { 
... 
      switch (yy_action) { 
 
        case 8:  
          {  
    System.out.print( yytext() ); 
    } 
        case 10: break; 
        case 7:  
          {  
    System.out.println( yytext() ); 
    yybegin( FIRST ); 
    } 
        case 11: break; 
        case 6:  
          {  
    System.out.print( " " + yytext() ); 
    } 
        case 12: break; 
        case 4:  
          {  
    } 
        case 13: break; 
        case 3:  
          {  
    System.out.println( "Invalid character \"" + yytext() + "\"" ); 
    } 
        case 14: break; 
        case 5:  
          {  
    System.out.print( capitalize( yytext() ) ); 
    yybegin( REST ); 
        } 
        case 15: break; 
        default:  
          if (yy_input == YYEOF && yy_startRead == yy_currentPos) { 
            yy_atEOF = true; 
            return null; 
          }  
          else { 
            yy_ScanError(YY_NO_MATCH); 
          } 
      } 
    } 
  } 
 
 



Chapter 1 Lexical Analysis Using JFlex Page 20 of 39 

} 

Looking at this code makes the whole idea of what JFlex is doing much more concrete. 

Running Java, Javac and Jar 
Look on the department web pages, looking under References, then Java, Tool Reference, etc., for 
more information on running java and javac. 
The UNIX Java interpreter is called java, and the Java compiler is called javac.  On Windows, they 
are called java.exe and javac.exe.  These files are in a directory with a name like /usr/local/java/bin 
on our UNIX machines, and in /cygdrive/c/jdk/bin when using cygwin (i.e., C:\jdk\bin in DOS) on 
our undergraduate laboratory Windows machines.  As well as bin, there is also a subdirectory 
jre/lib, within the main java directory, containing jar files rt.jar and i18n.jar for the Java runtime 
environment (i.e., files containing the standard Java and internationalisation libraries). 
Both java and javac expect source and class files to be stored with a directory structure that matches 
the package structure.  Javac stores the created class files in the same manner. 
Class files may also be packed together in a zip or jar file.  The jar command can be used to create a 
jar file. 
To run the java interpreter, type 
 java [options] <mainClassName> <parameters> 
 java -jar <jarFile.jar> <parameters> 

In the second case, the jar file must include manifest information of the form “Main–Class: 
mainClassName” that specifies the name of the main class.  The jar file must contain all the 
required user classes. 
Java executes the main method in the main class and then exits unless main creates one or more 
threads. If any threads are created by main then java doesn't exit until the last thread exits. 
Any parameters that appear after the main class name on the command line are passed to the main 
method of the class, as an array of Strings. 
On many systems, it is also possible to execute the code in a jar file containing appropriate manifest 
information by double clicking on it. 
Options for java include 
-classpath path 
 Specifies the path java uses to look up classes. It overrides the default or the CLASSPATH 

environment variable, if it is set. Directories containing class files and names of zip/jar files 
are separated by colons (“:”) on UNIX machines, and semicolons (“;”) on windows machines.  
The subdirectory structure of a classpath directories must match the package structure. 

 When looking for classes, java first looks in the jre/lib directory for “bootstrap” classes (the 
standard libraries), then jre/lib/ext for local “extension” classes, then in the directories or files 
listed in the class path (in order from left to right).  If there is no classpath option, the value of 
the CLASSPATH variable is used instead.  If the CLASSPATH variable is also not defined, 
the class path is just the current directory. 

Note that it is a good idea to specify the classpath as an option for each command, rather than 
placing commonly used libraries in some place like javaXXX/jre/lib/ext, or setting the 
CLASSPATH shell variable.  On shared machines, you do not have the ability to place jar files in 
public places (unless you are superuser), and doing so might cause conflicts for other users.  It is a 
bad idea to set the CLASSPATH variable in your .bash_profile file, because that assumes that you 



Chapter 1 Lexical Analysis Using JFlex Page 21 of 39 

want the same classpath under all circumstances.  Maybe different courses use different class 
libraries, and they conflict with each other (for example, because they refer to different versions of 
the same package).  This problem actually occurred a couple of years ago. 
To run the java compiler, type 
 javac [options] <sourceFiles> 

The java command expects the binary representation of the class ClassName to be in a file called 
ClassName.class.  This class file is generated by compiling the corresponding source file with 
javac. All Java class files end with the filename extension .class which the compiler automatically 
adds when the class is compiled. The main class must contain a main() method defined as follows: 
 class ClassName { 
  public static void main( String[] argv ) { 
   ... 
   } 
  } 

Options for javac include 
-classpath path 
 Specifies the path javac uses to look up compiled classes being referenced by other classes 

you are compiling.  If sourcepath is not specified, the class path is searched for source code as 
well. 

-sourcepath path 
 Specifies the path javac uses to look up java source files being referenced by other classes you 

are compiling. 
-d directory 
 Specifies the destination directory in which to place the class files.  The subdirectory structure 

of  the destination directory will match the package structure. 
The compiler reads only from the class and source path directories, and writes to the destination 
directory.  If a class occurs in both the class path and the source path, the modification dates are 
checked, to determine whether the source file needs to be recompiled. 
-deprecation 
 Indicate any use or overriding of a deprecated member or class. Without –deprecation, javac 

shows the names of source files that use or override deprecated members or classes.  
-nowarn  
 Disable warning messages. 
-g  
 Generate full debugging information at run time, including the values of variables. 
To run jar and create a jar archive, type 
 jar [options] <manifestFile> <destFile> <classFiles> 

For example, we could write 
 cd Classes 
 jar cvmf ../manifest ../run.jar `find . -name "*.class"` 

The order for the manifest file and destination file must agree with the order of m and f in the 
options. 
We can run the resultant program using the java command, with the classpath including this jar file. 



Chapter 1 Lexical Analysis Using JFlex Page 22 of 39 

If the manifest file specifies the name of the main class by a line of the form “Main–Class: 
mainClassName”, then we can run the program as 
 java -jar run.jar <parameters> 

Options for jar include 
c Create a jar file (as opposed to extract or list files) 
t List the contents of the jar file. 
x Extract the files from the jar file, into the current directory. 
v Generate verbose output. 
m <manifestFile> 
 Specifies the name of the manifest file to include. 
f <destFile> 
 Specifies the name of the jar file to create. 

Using JFlex and CUP to implement an interpreter or compiler 

JFlex Program
Yylex.jflex

CUP Program
parser.cup

Java Source File
Yylex.java

Java Source File
parser.java
sym.java

Other Java Source Files
Main.java
node/*.java

JFlex CUP

Java Class File
Yylex.class

Java Class File
parser.class
sym.class

Other Java Class File
Main.class
node/*.class

javac

java

Program in language 
want to interpret
program.in

Input for 
program

Output for 
program

Compilation of interpreter

Execution of program

Implementing an Interpreter

jflex.error cup.error

javac.error

 



Chapter 1 Lexical Analysis Using JFlex Page 23 of 39 

Suppose we want to implement an interpreter.  We can write the interpreter in a combination of 
JFlex, CUP, and java.  We run the JFlex and CUP compilers on the JFlex and CUP programs to 
generate Java.  We run the Java compiler to generate class files. 
Then, for every input for every program we wish to execute, we run the Java interpreter, to interpret 
the Java class files, which analyse the program we want to interpret, written in the language we 
have implemented, and then interpret this program, and process the input, and generate output. 
 

JFlex Program
Yylex.jflex

CUP Program
parser.cup

Java Source File
Yylex.java

Java Source File
parser.java
sym.java

Other Java Source Files
Main.java
node/*.java

JFlex

Java Class File
Yylex.class

Java Class File
parser.class
sym.class

Other Java Class File
Main.class
node/*.class

javac

java
Program in language 
want to compile
program.in

program.s

Assembler

Relocatable Object File

Executable Code File

Linker

Input for 
program

Output for 
program

Compilation of compiler

Compilation of program

Execution of program

Implementing a Compiler

CUP

javac.error

cup.errorjflex.error

 
 
Suppose we want to implement a compiler.  We can write the compiler in a combination of JFlex, 
CUP, and java.  We run the JFlex and CUP compilers on the JFlex and CUP programs to generate 
Java.  We run the Java compiler to generate class files. 



Chapter 1 Lexical Analysis Using JFlex Page 24 of 39 

Then, for every program we wish to compile, we run the Java interpreter, to interpret the Java class 
files, which analyse the program we want to compile, written in the language we have implemented, 
and generate assembly language. 
Then we run an assembler to assemble the assembly language and generate a relocatable object file.  
Then we run a linker to combine the relocatable object file with library relocatable object files, and 
generate an executable code file. 
Then, for every input for every program we wish to execute, we run the executable code file to 
process the input, and generate output. 

Running JFlex and CUP 
JFlex and CUP are written in Java.  The class files that make up these programs can be packed into 
jar files, JFlex.jar and java_cup.jar.  The manifests in these jar files specify the main class, so they 
can be run without specifying the main class.  Moreover, because JFlex can be run without any 
parameters, it is often possible to run it by double clicking on it.  The parser generated by CUP 
makes use of a sub-package of the java_cup package.  These files are packed into a jar file 
java_cup_runtime.jar.  They perform the parsing, using the tables generated by CUP. Install these 
jar files on your system, by obtaining the directory LIB330 from the 330 resources web page, 
containing JFlex.jar, java_cup.jar, and java_cup_runtime.jar (if you have not already done so by 
obtaining the gzipped tar file COPYTOHOME.tar.gz, which includes LIB330).  If not already done, 
set a shell variable, LIB330, in your .bash_profile file to the path for this directory.  For example, 
 LIB330=$HOME/LIB330 

To run JFlex on UNIX, we could write 
 java -jar "$LIB330/JFlex.jar" Source/grammar/Yylex.jflex 

To run CUP on UNIX, we could write 
 java -jar "$LIB330/java_cup.jar" \ 
 -expect 0 –progress -source "Source/grammar" \ 
 -input "parser.cup" 

To compile the resultant Java source, together with Java source we wrote ourselves on UNIX, 
we could write  
 javac -d Classes -classpath "$LIB330/java_cup_runtime.jar" \ 
  -sourcepath "Source" Source/Main.java 

This causes the compiled class files to be saved in the directory Classes. 
To run the resultant program on UNIX, we could write 
 java -classpath "Classes:$LIB330/java_cup_runtime.jar" \ 
  Main -dir Programs/exampleDir 

To create a jar file (excluding the java_cup runtime), we could write 
 cd Classes 
 jar cvf ../run.jar `find . -name "*.class"` 

To run the resultant program on UNIX, using the jar file, we could write 
 java -classpath "run.jar:$LIB330/java_cup_runtime.jar" \ 
  Main -dir Programs/exampleDir 

Parameters for the JFlex command 
JFlex can be run without any parameters.  In this case it generates a GUI window.  The GUI 
window prompts for a JFlex file to analyse, and an output directory in which to create the Java file. 



Chapter 1 Lexical Analysis Using JFlex Page 25 of 39 

 
JFlex can also be run with a list of parameters specifying options and input files to analyse.  The 
parameters are placed after specification of the jar file or class path and main class. 
Options for JFlex include 
-d <directory> 
 Specifies the directory to place the generated files in.  The default is the same directory as the 

input file. 

Using Cygwin in the Laboratory 
Start up Cygwin by selecting “Cygwin Bash Shell” from the start menu at the bottom left of the 
screen. 
When you start up Cygwin in the undergraduate laboratory, it should start in your home directory, 
and execute your .bash_profile file, which should be in this directory.  Exactly where your home 
directory is specified to be depends on the way the lab has been set up by the technical staff.  You 
should have a personal directory on a server mounted as your “H:” drive.  I think your home 
directory is currently the sfac_apps/cyghome subdirectory within your “H:” drive.  You can refer to 
this as “/home/sfac_apps/cyghome” or “/cygdrive/h/sfac_apps/cyghome” in Cygwin, or 
“H:\sfac_apps\cyghome” in DOS. 
Setting up your home directory for Cygwin 
The value of the shell variable HOME indicates the name of your home directory. Start up Cygwin, 
and type  
echo $HOME 

to determine the name of your home directory.  In the undergraduate lab, it should be 
“/home/sfac_apps/cyghome”.  It will be different on your own machine, where it will be 
“/home/YourLoginName”. 
Obtain the file COPYTOHOME.tar.gz from the resources web page for CompSci 210. 
Save it somewhere.  Change into this directory by typing 
cd dirName 

Untar the file COPYTOHOME.tar.gz using the command 
tar -x -z -f COPYTOHOME.tar.gz 



Chapter 1 Lexical Analysis Using JFlex Page 26 of 39 

in Cygwin, when in the directory containing COPYTOHOME.tar.gz.  This creates a subdirectory 
called COPYTOHOME.  This directory contains: a suitable .bash_profile file for Bash setup; a 
.exrc file for vi editor setup; a bin directory with suitable files for running the Alpha simulator, 
converting between Windows and UNIX filenames, printing the pathname of commands, etc.; a 
directory with useful shell scripts for converting file between different formats, the jar files needed 
to run JFlex and CUP, etc. 
Quit from Cygwin.  Move the contents of COPYTOHOME (including .bash_profile and .exrc) into 
your actual home directory (/home/sfac_apps/cyghome).  When you start up Cygwin later, so long 
as the disk containing your home directory is mounted, you should automatically start up in your 
home directory and run your .bash_profile file. 
Changing the notion of home directory for Cygwin 
If the network is down, you might need to temporarily change the directory you consider to be your 
home directory.  You might even want to have a different home directory for each course, with a 
different setup for each. 
First, ensure that a copy of .bash_profile exists in the directory you want to be your home directory. 
To change where your home directory is, change to the appropriate directory.  Then type 
HOME=`pwd` 
source .bash_profile 

The first line sets the shell variable HOME to the appropriate place.  The second line runs your 
.bash_profile file. You will have to do this every time you start up Cygwin, if you want a different 
notion of home directory from the standard one. 
Copying and Pasting in Cygwin 
When executing commands in UNIX, and hence also in Cygwin, it is possible to use file redirection 
to save the output as a file. 
It is also possible to copy a rectangular area of the Cygwin “terminal” window then insert the text 
into a Windows application.  Similarly, text can be pasted into the Cygwin “terminal” window.  A 
menu associated with the Cygwin “terminal” window can be used to perform the copy or paste.  
When copying, you have to select the complete rectangular area you want to copy (including the 
right hand side), not just the lines you want.  Select Edit/Mark, then drag across the rectangle, then 
type return. 



Chapter 1 Lexical Analysis Using JFlex Page 27 of 39 

 

Running Windows programs from Cygwin 
There are additional problems when running Windows programs from Cygwin.  Cygwin is 
essentially a version of UNIX built on top of Windows, and it uses UNIX style pathnames.  
However, Java and Javac are Windows commands, and hence they require Windows pathnames.  It 
is possible to run Windows commands from Cygwin, but the pathnames have to be converted to 
Windows format. In Cygwin, we refer to drives such as the C drive by “/cygdrive/c”, while in 
Windows we write “C:”.  In Cygwin, we use “/” as a path separator, while in Windows we use “\”.  
So “/cygdrive/h/sfac_apps/cyghome/330PROGRAMS/LEX” in Cygwin becomes 
“H:\sfac_apps\cyghome\330PROGRAMS\LEX” in Windows. Fortunately, there is a conversion 
command, cygpath, provided to perform the conversion. 
 cygpath -w pathName 

converts a UNIX pathname to Windows format, and 
 cygpath -u pathName 

converts a Windows pathname to UNIX format.  If you don’t enclose the file name in '...', you will 
have to escape \ for it to work. 
Another minor requirement for Cygwin shell scripts is that they have to start with a specification of 
the shell command to execute.  For example, if the path for bash is /bin/bash we might have a first 
line 
 #! /bin/bash 

If your machine does not have the bash command in this directory, and you have administrator 
access, create a link in /bin, that links to the actual bash executable file (bash.exe). 
If we want shell scripts that work on both UNIX and Cygwin, we could have a toNative.bash 
command that just echoes its arguments on UNIX, but converts its argument pathnames to 
Windows format on Windows.  It is necessary to avoid file names with spaces in them, because the 
quoting of file names is lost.  Alternatively, set IFS=$'\n' in the shell script that uses it, so that it 
only uses line breaks as word separators. 



Chapter 1 Lexical Analysis Using JFlex Page 28 of 39 

#! /bin/bash 
 
while (( $# > 0 )) 
do 
 if [[ "$OSTYPE" == "cygwin" ]] 
 then 
  cygpath -w "$1" 
 else 
  echo "$1" 
 fi 
 shift 
done 

Shell scripts to run JFlex, CUP, javac, etc 
To decrease the amount of typing, and allow machine independent commands, we can use Bash 
shell scripts to run JFlex, CUP, javac, and java. 
To run JFlex, we could have the command createlexer.bash 
#! /bin/bash 
 
rm -f Source/grammar/Yylex.java jflex.error 
 
CJFLEXJAR=`toNative.bash "$LIB330/JFlex.jar"` 
CYYLEX=`toNative.bash "Source/grammar/Yylex.jflex"` 
java -jar "$CJFLEXJAR" "$CYYLEX" &> jflex.error 

Error messages and summary information will be placed in the file jflex.error, which you should 
view, to make sure that everything worked. 
To run CUP, we could have the command createparser.bash 
#! /bin/bash 
rm -f Source/grammar/parser.java Source/grammar/sym.java Source/grammar/*.states 
cup.error 
 
SOURCEDIR=`toNative.bash "Source/grammar"` 
CCUPJAR=`toNative.bash "$LIB330/java_cup.jar"` 
 
java -jar "$CCUPJAR" -nonterms \ 
-expect 0 -progress -source "$SOURCEDIR" \ 
-dump -dumpto "parser.states" \ 
-input "parser.cup" &> cup.error 

Error messages and summary information will be placed in the file cup.error, which you should 
view, to make sure that everything worked. 
To compile the resultant Java source, together with Java source we wrote ourselves, we could 
have the command createclass.bash 
#! /bin/bash 
 
rm -rf Classes/* 
if [ ! -e Classes ] 
then  
    mkdir Classes 
fi   
 
CCUPJAR=`toNative.bash "$LIB330/java_cup_runtime.jar"` 
CMAIN=`toNative.bash "Source/Main.java"` 
javac -d Classes -classpath "$CCUPJAR" -sourcepath "Source" "$CMAIN" \ 
 &> javac.error 



Chapter 1 Lexical Analysis Using JFlex Page 29 of 39 

Error messages and summary information will be placed in the file javac.error, which you should 
view, to make sure that everything worked. 
To create a jar file containing the contents of Classes we could have the command 
createjar.bash 
#! /bin/bash 
rm -f run.jar 
cd Classes 
MANIFEST=`toNative.bash ../manifest` 
JARFILE=`toNative.bash ../run.jar` 
UNIXCLASSES=`find . -name "*.class"` 
NATIVECLASSES=`toNative.bash $UNIXCLASSES` 
jar cmf $MANIFEST $JARFILE $NATIVECLASSES 

To perform all of these tasks together, we could have the command createcompiler.bash 
#! /bin/bash 
 
createlexer.bash 
createparser.bash 
createclass.bash 
createjar.bash 

To run the resultant program, specifying a directory containing the input, error, and output 
file, we could have the command run.bash 
#! /bin/bash 
 
# ulimit -t 10 
 
DIR="$1" 
echo "$DIR" 
CCUPJAR=`toNative.bash "$LIB330/java_cup_runtime.jar"` 
NATIVEDIR=`toNative.bash "$DIR"` 
rm -f "$DIR/program.err" "$DIR/program.print" "$DIR/program.out" 
java -classpath "run.jar$CPSEP$CCUPJAR" Main -dir "$NATIVEDIR" 

The command ulimit is used to limit the total resources the command can use (in this case it limits 
the CPU usage to 10 seconds).  In fact it doesn’t work on Cygwin, because the -t option is not 
supported. 
The shell variable $CPSEP is set to the class path separator, “:” on UNIX, or “;” on Windows. 
To run the resultant program, on all subdirectories of the Programs directory, we could have 
the command runall.bash 
#! /bin/bash 
 
COMMAND="run.bash" 
DIR="$1" 
if [ "${DIR}" == "" ] 
then 
 DIR=Programs 
fi 
for subDir in "${DIR}"/* 
do 
 "${COMMAND}" ${subDir} 
done 

Error messages and output will be placed in files of the form program.err and program.out, within 
the subdirectory, which you should view, to make sure that everything worked. 



Chapter 1 Lexical Analysis Using JFlex Page 30 of 39 

Matching comments using JFlex (Refer STRIP1) 
I often use JFlex to clean up a text file in some way.  For example, I remove the bodies of methods, 
remove comments, etc.  I wanted to extract the grammar from a Java CUP grammar definition.  
This involved deleting text enclosed within {:...:}, deleting comments, and deleting empty lines.  
The following JFlex program achieves this. 
package grammar; 
 
import java.io.*; 
 
%% 
 
%{ 
 boolean printed = false; 
  
 void echo( String text ) { 
  System.out.print( text ); 
  printed = true; 
  } 
%} 
 
%init{ 
 yybegin( NORMAL ); 
%init} 
 
%public 
%type Void 
 
%state NORMAL COMMENT CODESTRING 
 
newline  = (\r|\n|\r\n) 
%% 
<NORMAL> { 
 "/*"   { yybegin( COMMENT ); } 
 "{:"   { yybegin( CODESTRING ); } 
 {newline}  { 
    if ( printed ) { 
     System.out.println(); 
     printed = false; 
     } 
    } 
 :[A-Za-z0-9]+ { } 
 .   { echo( yytext() ); } 
 } 
<COMMENT> { 
 "*/"   { yybegin( NORMAL ); } 
 {newline}  { } 
 .   { } 
 } 
<CODESTRING> { 
 ":}"   { yybegin( NORMAL ); } 
 {newline}  { } 
 .   { } 
 } 

Matching comments is difficult in many lexical analyser generators, because of the way the lexical 
analyser generated matches text when there are several alternative ways of matching it.  The lexical 
analyser matches the longest possible text.  This is exactly what is wanted for numbers and 
identifiers, but the opposite of what is wanted for string constants and comments, where it is the 
shortest possible match that is wanted. 



Chapter 1 Lexical Analysis Using JFlex Page 31 of 39 

Ideally, we would like to describe a C/Java comment as  
"/*"(.|\n)*"*/" 
However, this would match from the beginning of the first comment to the end of the last comment. 
The way to match comments is to match the beginning of the comment, namely “/*” as a token, 
then change into a comment state.  In the comment state, if we match “*/”, we change back to our 
normal state.  Otherwise, we match a single character and do nothing.  Again, because we match the 
longest pattern, we will match “*/” in preference to matching “*” and “/” as separate tokens. 
In fact JFlex does have a special construct to support the matching of comments, but Lex and JLex 
do not have this feature.  
We can precede a pattern by “~” (pronounced “up to”), to specify that we want to match all text up 
to the first occurrence of the pattern.  For example "/*"~"*/" can be used to match a C/Java 
comment.  This is one of the little features that make JFlex just a little better than its competitors.  
(Refer STRIP2) 
package grammar; 
 
import java.io.*; 
 
%% 
 
%{ 
 boolean printed = false; 
  
 void echo( String text ) { 
  System.out.print( text ); 
  printed = true; 
  } 
%} 
 
%public 
%type Void 
 
newline  = (\r|\n|\r\n) 
%% 
"/*"~"*/"  { } 
"{:"~":}"  { } 
{newline}  { 
    if ( printed ) { 
        System.out.println(); 
        printed = false; 
        } 
    } 
:[A-Za-z0-9]+ { } 
.    { echo( yytext() ); } 

However, this feature is not as useful as it might appear.  It does not cope with such things as nested 
comments (where we have to keep an indication of the nesting level, so that we know when to go 
back to normal processing).  It also does not allow us to count line breaks (although the number of 
line breaks can be obtained from the yyline variable).  (Refer STRIP3) 
package grammar; 
 
import java.io.*; 
 
%% 
 
%{ 



Chapter 1 Lexical Analysis Using JFlex Page 32 of 39 

 int commentNest = 0; 
 
 int lineCount =1; 
  
 boolean printed = false; 
  
 void echo( String text ) { 
  System.out.print( text ); 
  printed = true; 
  } 
%} 
 
%init{ 
 yybegin( NORMAL ); 
%init} 
 
%public 
%type Void 
 
%state NORMAL COMMENT CODESTRING 
 
newline  = \r|\n|\r\n 
%% 
 
<NORMAL> { 
 "/*"   { 
    yybegin( COMMENT ); 
    commentNest++; 
    } 
 "{:"   { yybegin( CODESTRING ); } 
 {newline}  { 
    if ( printed ) { 
     System.out.println(); 
     printed = false; 
     } 
    lineCount++; 
    } 
 :[A-Za-z0-9]+ { } 
 .   { echo( yytext() ); } 
 } 
  
<COMMENT> { 
 "/*"   { commentNest++; } 
 "*/"   { 
    --commentNest; 
    if ( commentNest == 0 ) 
     yybegin( NORMAL ); 
    } 
 {newline}  { lineCount++; } 
 .   { } 
 } 
  
<CODESTRING> { 
 ":}"   { yybegin( NORMAL ); } 
 {newline}  { lineCount++; } 
 .   { } 
 } 



Chapter 1 Lexical Analysis Using JFlex Page 33 of 39 

Matching Identifiers and Reserved Words  and Interfacing JFlex with CUP  
(Refer INTERP3) 
Of course, lexical analysers are not normally used by themselves. 
JFlex is normally used as part of a compiler.  Usually the parser invokes yylex() whenever it needs 
the next token, and yylex() returns a single token, rather than consuming all the input.  The standard 
way of using JFlex, is to put a return statement in the action for those tokens that are syntactically 
important (namely those other than white space, newlines, comments, etc).  Tokens that are ignored 
by the parser, have an action that does not return.  In our previous examples, there are no return 
statements, so yylex() consumes all tokens, and performs an action for each one. 
The following code represents the lexical analyser portion of a program that analyses a simple 
language.  The parser is written using Java CUP, a parser generator.  CUP assumes that the lexical 
analyser returns a value of type Symbol.  Symbol is a class with fields 
 sym An integer representing the symbol type of the token. 
 value The value of the token, of type Object.  (The actual value can be of any type that 

extends Object, and hence any class). 
 left The left position of the token in the original input file. 
 right The right position of the token in the original input file. 
We can return the value as a String, since String extends Object.  If we want to return an int, char or 
double, we have to package it in a wrapper class such as Integer, Character or Double. 
The symbol type is an integer constant.  A class called sym is generated by CUP, with definitions of 
constants for each kind of token.  (The designer of CUP obviously doesn’t follow the Java 
conventions of upper case for the start of a class name.) 
Reserved words are lexically the same as identifiers.  One way of doing lexical analysis is to put the 
reserved words in a table, match everything as an identifier, and search the table to determine 
whether the token is really a reserved word.  The action for an identifier can then return a token 
type that indicates the kind of reserved word, or IDENT if the token is an identifier.  So long as we 
do not have an excessive number of reserved words, it is also possible to use JFlex to perform the 
separation. 
The lexical analyser generated by JFlex resolves conflicts by matching the longest possible text.  
This is needed to guarantee that if we have the text for an identifier, the JFlex lexical analyser 
matches the whole text, and not just a portion of the text.  It resolves conflicts between matches of 
the same length, by preferring the first rule.  We do not want reserved words to be treated as 
identifiers.  We can use JFlex’s conflict resolution policy to do what we want, so long as we put the 
rules for the reserved words before the rules for identifiers.  Thus “while” will be treated as a 
reserved word, rather than an identifier.  The preference for the longest match also means that 
“integral” is interpreted as an identifier, rather than the reserved word “int” and the identifier 
“egral”. 
Note that the JFlex program has to import java_cup.runtime.*, since that is where the Symbol class 
is declared. 
package grammar; 
 
import java.io.*; 
import java_cup.runtime.*; 
import text.*; 
 
%% 



Chapter 1 Lexical Analysis Using JFlex Page 34 of 39 

 
%public 
%type  Symbol 
%char 
 
%{ 
 private int lineNumber = 1; 
 public int lineNumber() { return lineNumber; } 
  
 public Symbol token( int tokenType ) { 
  Print.error().println( "Obtain token "  
   + sym.terminal_name( tokenType )  
   + " \"" + yytext() + "\"" ); 
  return new Symbol( tokenType, yychar,  
   yychar + yytext().length(), yytext() ); 
  } 
 
%} 
 
number  = [0-9]+ 
ident  = [A-Za-z][A-Za-z0-9]* 
space  = [\ \t] 
newline  = \r|\n|\r\n 
 
%% 
 
"="   { return token( sym.ASSIGN ); } 
"+"   { return token( sym.PLUS ); } 
"-"   { return token( sym.MINUS ); } 
"*"   { return token( sym.TIMES ); } 
"/"   { return token( sym.DIVIDE ); } 
"("   { return token( sym.LEFT ); } 
")"   { return token( sym.RIGHT ); } 
"<"   { return token( sym.LT ); } 
"<="   { return token( sym.LE ); } 
">"   { return token( sym.GT ); } 
">="   { return token( sym.GE ); } 
"=="   { return token( sym.EQ ); } 
"!="   { return token( sym.NE ); } 
"if"   { return token( sym.IF ); } 
"then"  { return token( sym.THEN ); } 
"else"  { return token( sym.ELSE ); } 
"while"  { return token( sym.WHILE ); } 
"do"   { return token( sym.DO ); } 
"{"   { return token( sym.LEFTCURLY ); } 
"}"   { return token( sym.RIGHTCURLY ); } 
";"   { return token( sym.SEMICOLON ); } 
{newline}  { lineNumber++; } 
{space}  { } 
 
{number}  { return token( sym.NUMBER ); } 
{ident}  { return token( sym.IDENT ); } 
 
<<EOF>>  { return token( sym.EOF ); } 
 
.   { return token( sym.error ); } 
 

Note how the rules corresponding to syntactically significant tokens have return statement, while 
the rules corresponding to comments and white space do not return.  The lexical analyser loops until 
it gets a syntactically significant token, then returns that token. 



Chapter 1 Lexical Analysis Using JFlex Page 35 of 39 

<<EOF>> is a notation used to represent end of file.  The default action generated by JFlex is to 
return a null value.  However, CUP wants a Symbol returned, with the token kind of sym.EOF.  
CUP generates the class sym, automatically.  It invents numbers for the token kind.  We can use the 
symbolic values in our lexical analyser. 
package Parser; 
 
/** CUP generated class containing symbol constants. */ 
public class sym { 
 /* terminals */ 
 public static final int TIMES = 6; 
 public static final int LT = 10; 
 public static final int NE = 15; 
 public static final int IDENT = 24; 
 public static final int ELSE = 18; 
 public static final int SEMICOLON = 9; 
 public static final int PLUS = 4; 
 public static final int THEN = 17; 
 public static final int WHILE = 19; 
 public static final int IF = 16; 
 public static final int GT = 12; 
 public static final int LE = 11; 
 public static final int DO = 20; 
 public static final int RIGHT = 3; 
 public static final int LEFT = 2; 
 public static final int NUMBER = 23; 
 public static final int EOF = 0; 
 public static final int DIVIDE = 7; 
 public static final int GE = 13; 
 public static final int MINUS = 5; 
 public static final int error = 1; 
 public static final int ASSIGN = 8; 
 public static final int EQ = 14; 
 public static final int RIGHTCURLY = 22; 
 public static final int LEFTCURLY = 21; 
 
 /* nonterminals */ 
 static final int Program = 1; 
 static final int Factor = 7; 
 static final int Term = 6; 
 static final int Stmt = 3; 
 static final int Expr = 5; 
 static final int BoolExpr = 4; 
 static final int $START = 0; 
 static final int StmtList = 2; 
 ... 
} 

The main program to go with this parser is as follows.  It creates an instance of the parser.  I have 
extended the parser, by adding a constructor that takes the input file as a parameter.  I get the parser 
to perform parsing, by invoking the parse method. 
import java.io.*; 
import java_cup.runtime.*; 
import runEnv.*; 
import node.*; 
import node.stmtNode.*; 
import grammar.*; 
import text.*; 
 
public class Main { 
 



Chapter 1 Lexical Analysis Using JFlex Page 36 of 39 

 public static void main( String[] argv ) { 
  String dirName = null; 
 
  try { 
   for ( int i = 0; i < argv.length; i++ ) { 
    if ( argv[ i ].equals( "-debug" ) ) { 
     Print.DEBUG = true; 
     } 
    else if ( argv[ i ].equals( "-dir" ) ) { 
     i++; 
     if ( i >= argv.length ) 
      throw new Error( "Missing directory name" ); 
     dirName = argv[ i ]; 
     } 
    else { 
     throw new Error(  
      "Usage: java Main [-debug] -dir directory" ); 
     } 
    } 
 
   if ( dirName == null ) 
    throw new Error( "Directory not specified" ); 
 
   System.setErr( new PrintStream( new FileOutputStream(  
    new File( dirName, "program.parse" ) ) ) ); 
   Print.setError( new File( dirName, "program.err" ) ); 
   Print.setReprint( new File( dirName, "program.print" ) ); 
   Print.setInterp( new File( dirName, "program.out" ) ); 
 
   parser p = new parser( new File( dirName, "program.in" ) ); 
   StmtListNode program = ( StmtListNode ) p.parse().value; 
   Print.error().println( "Reprinting ... " ); 
   Print.reprint().println( program ); 
   Print.error().println( "Evaluate ... " ); 
   program.eval( new RunEnv() ); 
    
   } 
  catch ( Exception e ) { 
   Print.error().println( "Exception at " ); 
   e.printStackTrace(); 
   } 
  } 
 } 

The parser is defined using CUP.  The CUP compiler is used to translate the grammar definition 
into a Java program.  The lexical analyser is invoked by the parser, every time it needs a new token.  
The connection between the parser and lexical analyser is in the lines 
scan with 
 {: 
 return  lexer.yylex(); 
 :}; 

below, that specify that whenever the parser needs a new token, it should invoke the yylex() method 
of the lexical analyser.  This occurs somewhere in the depths of the CUP runtime library code for 
the parser. 
I open the input file once for the lexical analyser, and once for use when generating error messages, 
and wanting to reprint the text surrounding the error token. 
package grammar; 
 
import node.*; 



Chapter 1 Lexical Analysis Using JFlex Page 37 of 39 

import node.stmtNode.*; 
import node.exprNode.*; 
import node.exprNode.prefixNode.*; 
import node.exprNode.valueNode.*; 
import node.exprNode.binaryNode.*; 
import node.exprNode.binaryNode.arithNode.*; 
import node.exprNode.binaryNode.relationNode.*; 
import text.*; 
 
import java.io.*; 
import java_cup.runtime.*; 
 
parser code 
 {: 
 private Yylex lexer; 
 private File file; 
 
 public parser( File file ) { 
  this(); 
  this.file = file; 
  try { 
   lexer = new Yylex( new FileReader( file ) ); 
   } 
  catch ( IOException exception ) { 
   throw new Error( "Unable to open file \"" + file + "\"" ); 
   } 
  } 
... 
scan with 
 {: 
 return  lexer.yylex(); 
 :}; 
 
terminal LEFT, RIGHT, PLUS, MINUS, TIMES, DIVIDE, ASSIGN, SEMICOLON; 
terminal LT, LE, GT, GE, EQ, NE, IF, THEN, ELSE, WHILE, DO, LEFTCURLY, 
RIGHTCURLY; 
terminal String NUMBER; 
terminal String IDENT; 
 
nonterminal StmtListNode StmtList; 
nonterminal StmtNode Stmt; 
nonterminal ExprNode BoolExpr, Expr, Term, Factor; 
 
start with StmtList; 
 
StmtList::= 
  {: 
  RESULT = new StmtListNode(); 
  :} 
 | 
  StmtList:stmtList Stmt:stmt  
  {: 
  stmtList.addElement( stmt ); 
  RESULT = stmtList; 
  :} 
 ; 
 
Stmt::= 
  IDENT:ident ASSIGN Expr:expr SEMICOLON 
  {: 
  RESULT = new AssignStmtNode( ident, expr ); 



Chapter 1 Lexical Analysis Using JFlex Page 38 of 39 

  :} 
 | 
  IF BoolExpr:expr THEN Stmt:stmt1 ELSE Stmt:stmt2 
  {: 
  RESULT = new IfThenElseStmtNode( expr, stmt1, stmt2 ); 
  :} 
 | 
  IF BoolExpr:expr THEN Stmt:stmt1  
  {: 
  RESULT = new IfThenStmtNode( expr, stmt1 ); 
  :} 
 | 
  WHILE BoolExpr:expr DO Stmt:stmt1  
  {: 
  RESULT = new WhileStmtNode( expr, stmt1 ); 
  :} 
 | 
  LEFTCURLY StmtList:stmtList RIGHTCURLY 
  {: 
  RESULT = new CompoundStmtNode( stmtList ); 
  :} 
 | 
  error SEMICOLON 
  {: 
  RESULT = new ErrorStmtNode(); 
  :} 
 | 
  error RIGHTCURLY 
  {: 
  RESULT = new ErrorStmtNode(); 
  :} 
 ; 
 
BoolExpr::= 
  Expr:expr1 LT Expr:expr2 
  {: 
  RESULT = new LessThanNode( expr1, expr2 ); 
  :} 
 | 
  Expr:expr1 LE Expr:expr2 
  {: 
  RESULT = new LessEqualNode( expr1, expr2 ); 
  :} 
 | 
  Expr:expr1 GT Expr:expr2 
  {: 
  RESULT = new GreaterThanNode( expr1, expr2 ); 
  :} 
 | 
  Expr:expr1 GE Expr:expr2 
  {: 
  RESULT = new GreaterEqualNode( expr1, expr2 ); 
  :} 
 | 
  Expr:expr1 EQ Expr:expr2 
  {: 
  RESULT = new EqualNode( expr1, expr2 ); 
  :} 
 | 
  Expr:expr1 NE Expr:expr2 
  {: 



Chapter 1 Lexical Analysis Using JFlex Page 39 of 39 

  RESULT = new NotEqualNode( expr1, expr2 ); 
  :} 
 ; 
 
Expr::= 
  Expr:expr PLUS Term:term 
  {: 
  RESULT = new PlusNode( expr, term ); 
  :} 
 | 
  Expr:expr MINUS Term:term 
  {: 
  RESULT = new MinusNode( expr, term ); 
  :} 
 | 
  MINUS Term:term 
  {: 
  RESULT = new NegateNode( term ); 
  :} 
 | 
  Term:term 
  {: 
  RESULT = term; 
  :} 
 ; 
 
Term::= 
  Term:term TIMES Factor:factor 
  {: 
  RESULT = new TimesNode( term, factor ); 
  :} 
 | 
  Term:term DIVIDE Factor:factor 
  {: 
  RESULT = new DivideNode( term, factor ); 
  :} 
 | 
  Factor:factor 
  {: 
  RESULT = factor; 
  :} 
 ; 
 
Factor::= 
  LEFT Expr:expr RIGHT 
  {: 
  RESULT = expr; 
  :} 
 | 
  NUMBER:value 
  {: 
  RESULT = new NumberNode( new Integer( value ) ); 
  :} 
 | 
  IDENT:ident 
  {: 
  RESULT = new IdentNode( ident ); 
  :} 
 ; 


