Computer Science 330 Test 2007 Page 1 of 16

Computer Science 330 Language Implementation Test
6.20-8.00pm Thursday Sth April 2007

Course Compsci 330/Compsci 601

Surname

Given Names

Student ID Number

Login Name

Normal Signature

1 /31
2(a) /25
2(b) /8
2(c) /8
2(d) /8
3 /20
Total /100

Start reading 6.20p.m. Write your name on all sheets of your answer book. Start writing your answers at
6.30pm. Stop writing at 8.00p.m.

Remove the staple fastening the appendices to the answer book, but do not remove the staples from the
answer book. Read the questions carefully. Hand in your answer book at the front of the class. Attempt
all questions. Questions total 100 marks. The test counts for 20% of the total mark.

Computer Science 330 Test 2007 Page 2 of 16

Question 1 31 Marks

(a) Write JFlex regular expressions to match the following tokens. You may declare support regular
expressions if you need them.

(1) A word composed of an upper case alphabetic character, followed by zero or more lower case
alphabetic characters. For example, Ronny or Sarah or B but not Tien-Wei Or MacDonald Or B2.

(i1) A binary integer, with a prefix of 0b or 0B, followed by one or more binary digits. For example,
0p1010111 Oor 0B1010111 but not 00123456789 or 0b.

(iii)) A floating point number, with an integer part, fractional part, and an exponent with an explicit
sign for the exponent. For example, 123.456e+23 or 123.456e-23 but not 1.23e5 or -1.23e-5
or 123e-50r 3.14159.

(iv) A decimal number with exactly three digits. The leading digit may be 0. For example, 012 or 120
but not 1234 or 12.

v) A decimal number, with the first digit nonzero, and at most three digits. For example, 123 or 12
but not 012 or 1234.

(vi) A sequence of one or more single decimal digits, with *,” characters between each digit. For
example, 1,2,3 0or 2butnot1,,2 or 12,34 or , 4.

(vil) A nonzero decimal number, and commas grouping the digits into blocks of three, as is normally

done when writing numbers in English. For example, 1,200,001 or 12,345,678 or 12 but not
012,333 0r 1234.

(3 marks each)

Computer Science 330

Print your login name

Test 2007

Page 3 of 16

(b) Find and correct at least five different kinds of errors in the following fragment of JFlex code.
(““...” just means omitted code). Assume spaces and line breaks are not syntactically important.
Assume comments cannot be nested.
newline \r|\n|\r\n
space = [\ I\t]
ident = [A-Za-z] [A-Za-z0-9]+
$state NORMAL, COMMENT
$init{
yybegin (COMMENT) ;

$init}

<NORMAL> {
{ident} { return token(sym.IDENT); }
if { return token(sym.IF); }
else { return token(sym.ELSE); }
/* { yybegin(COMMENT); }
. { return token(sym.error); }
{space} {1}
{newline} { linecount++; }
}

<COMMENT> {
*/ { yyend(COMMENT); }
{newline} { linecount++; }
. { return token(sym.error); }
}

<<EQOF>> { return token(sym.EOF); }

1

2

3

4

5

(10 marks)

Computer Science 330 Test 2007 Page 4 of 16

Question 2 41 marks

Consider the CUP grammar in the appendices. The terminal symbols COMMA, LEFT, RIGHT,
LEFTSQ, RIGHTSQ, BAR correspond to “,”, “(”, “)”, “1”, “17, “1”, and IDENT corresponds to an
identifier.

(a) Using the information provided in the appendices, perform a shift-reduce LALR(1) parse of the
valid input
fCrx 1 ylJ, [X, Y1)
Show both the symbols and states on the stack, the current token, and the action performed at each
stage.

Note that some grammar rules are left recursive, while others are right recursive. (25 marks)
Stack Input Action

$0 ID f Shift ID 4

$0 | 1D 4 (Shift (14

$0 | 1D 4 (14 [Shift[5

$0 | ID 4 (14 [[s ID X Shift ID 4

$0 | ID 4 (14 [5 1D 4 | Reduce E ::=1D

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0 | S1 Reduce E ::=S Shift E 3

$0 | E3 Shift § 20

$0 | E3 $20 $ Reduce $St ::=E $ | Shift $St-1

$0 | $St-1 Accept

Computer Science 330 Test 2007 Page 5 of 16

Print your login name

(b) Draw the full parse tree, showing all rules used in the above shift-reduce LALR(1) parse.

(8 marks)
$Start ::= Exp $

f(IXIYLIX, Y])

Gtr ::=1ID (PList D

/

Computer Science 330 Test 2007 Page 6 of 16

(©) Draw the abstract syntax tree, as specified by the actions associated with the rules.
Assume ParamListNode is composed of a vector, containing all the children.
(8 marks)

StructureNode f(IXIYLIXY])

Computer Science 330 Test 2007 Page 7 of 16

Print your login name

Question 3 8 marks

In assignment 1, question 2, you had to implement a simple compiler that generated assembly language
for constructs such as if statements.

Write Java code to complete the implementation of an IfThenElseStmtNode.
package node.stmtNode;
import env.*;
import code.*;
import node.exprNode.*;

public class IfThenElseStmtNode extends StmtNode ({

private ExprNode cond;
private StmtNode thenPart;
private StmtNode elsePart;

public IfThenElseStmtNode (
ExprNode cond,
StmtNode thenPart,
StmtNode elsePart) {
this.cond = cond;
this.thenPart = thenPart;
this.elsePart = elsePart;

}

public String toString() {

}

public void genDeclCode(Env env) {
thenPart.genDeclCode (env);
elsePart.genDeclCode (env);

}

public void genCode () {
Code.enter () ;
Code.labelDefn("1f");

Code.instrn("blbc", "$t0", "else");
Code.labelDefn("then");

Code.instrn("br", "end");

elsePart.genCode () ;
Code.labelDefn("end");
Code.exit () ;

}

Computer Science 330 Test 2007 Page 8 of 16

Question 4 20 marks

A typical “switch” statement in some computer language is:
switch (Expr) |

case -1, +3, 5 .. +8, 10:
Stmt

case -2, -4, 12 .. 14, +20, 30:
Stmt

default:
Stmt

}

In general, a “switch” statement includes a list of one or more “case” statements, then an optional
“default” statement. The “default” statement, if it exists, must occur at the end.

A “case” statement such as
case -2, -4, 12 .. 14, 20, 30:
Stmt

includes a comma separated “case expression list” containing one or more alternative “case expression’s,

for example
-2, -4, 12 .. 14, +20, 30

Each “case expression” in the “case expression list” can be either a “signed integer”, such as
-4

or a “range” of signed integers, such as
12 .. 14

9 (I

A “signed integer” is an “integer constant”, optionally preceded by a “+” or
+20 or 30.

sign, for example -2 or

A default statement is of the form
default:
Stmt

Write a CUP grammar definition for a “switch” statement for the language. You do not have to write any
actions.

You do not have to write the grammar for statements or expressions. You should assume an ““integer
constant” is a terminal symbol.

Computer Science 330 Test 2007 Page 9 of 16

Print your login name

Computer Science 330 Test 2007 Page 10 of 16

Computer Science 330 Test 2007 Page 11 of 16

Print your login name

Computer Science 330 Test 2007 Page 12 of 16

Computer Science 330 Test 2007

Appendices

The CUP grammar
terminal
LEXERROR,
COMMA, LEFT, RIGHT, LEFTSQ, RIGHTSOQ,
// ’ () []
terminal String IDENT; // [A-Za-z] [A-Za-z0-9]*
nonterminal ParamListNode

nonter

start

Expr::

ParamList;
minal ExprNode
Expr, List, ElementListOpt, ElementlList, Structure;

with Expr;

IDENT:ident

{:

RESULT = new NameNode (ident);
2}

Structure:structure
{:
RESULT = structure;
2}

List:list

{:

RESULT = list;
2}

Structure::=

IDENT:ident LEFT ParamList:paramList RIGHT
{:

RESULT = new StructureNode(ident, paramList);

:}

ParamList::=

List::

Expr:expr

{:

RESULT = new ParamListNode (expr);
2}

ParamList:paramList COMMA Expr:expr
{:

paramList.addElement (expr);
RESULT = paramList;

1}

LEFTSQ ElementListOpt:elementList RIGHTSQ
{:

RESULT = elementList;

1}

BAR;

Page 13 of 16

Computer Science 330 Test 2007 Page 14 of 16

ElementListOpt::=
ElementList:elementList
{:
RESULT = elementList;
2}

/* Empty */

{:

RESULT = new EmptyListNode() ;
1}

’

ElementList::=
Expr:expr
{:
RESULT = new NonEmptyListNode (expr, new EmptyListNode());
1}

Expr:expr COMMA ElementList:elementList

;éSULT = new NonEmptyListNode (expr, elementList);
1}

Expr:expr BAR Expr:tail

;éSULT = new NonEmptyListNode (expr, tail);

1}

Tables for the CUP grammar

Grammar Rules (Productions)

[0] $START ::= Expr EOF

[1] Expr ::= IDENT

[2] Expr ::= Structure

[3] Expr ::= List

[4] Structure ::= IDENT LEFT ParamList RIGHT
[5] ParamList ::= Expr

[6] ParamList ::= ParamList COMMA Expr

[7] List ::= LEFTSQ ElementListOpt RIGHTSQ
[8] ElementListOpt ::= ElementList

[9] ElementListOpt ::=

[10] ElementlList ::= Expr

[11] ElementList = Expr COMMA ElementList
[12] ElementList ::= Expr BAR Expr

Computer Science 330 Test 2007

Action Table

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

state #0

LEFTSQ:SHIFT (state 5) IDENT:SHIFT (state 4)

state #1

EOF:REDUCE (rule 2) COMMA:REDUCE (rule 2) RIGHT:REDUCE (rule 2)
RIGHTSQ:REDUCE (rule 2) BAR:REDUCE (rule 2)

state #2

EOF:REDUCE (rule 3) COMMA:REDUCE (rule 3) RIGHT:REDUCE (rule 3)
RIGHTSQ:REDUCE (rule 3) BAR:REDUCE (rule 3)

state #3

EOF:SHIFT (state 20)

state #4

EOF:REDUCE (rule 1) COMMA:REDUCE (rule 1) LEFT:SHIFT (state 14)
RIGHT:REDUCE (rule 1) RIGHTSQ:REDUCE (rule 1) BAR:REDUCE (rule 1)
state #5

LEFTSQ:SHIFT (state 5) RIGHTSQ:REDUCE (rule 9) IDENT:SHIFT (state 4)
state #6

COMMA :SHIFT (state 10) RIGHTSQ:REDUCE (rule 10) BAR:SHIFT (state 11)
state #7

RIGHTSQ:REDUCE (rule 8)

state #8

RIGHTSQ:SHIFT (state 9)

state #9

EOF:REDUCE (rule 7) COMMA:REDUCE (rule 7) RIGHT:REDUCE (rule 7)
RIGHTSQ:REDUCE (rule 7) BAR:REDUCE (rule 7)
state #10

LEFTSQ:SHIFT (state 5) IDENT:SHIFT (state 4)
state #11

LEFTSQ:SHIFT (state 5) IDENT:SHIFT (state 4)
state #12

RIGHTSQ:REDUCE (rule 12)

state #13

RIGHTSQ:REDUCE (rule 11)

state #14

LEFTSQ:SHIFT (state 5) IDENT:SHIFT (state 4)
state #15

COMMA :SHIFT (state 17) RIGHT:SHIFT (state 18)
state #16

COMMA :REDUCE (rule 5) RIGHT:REDUCE (rule 5)
state #17

LEFTSQ:SHIFT (state 5) IDENT:SHIFT (state 4)
state #18

EOF:REDUCE (rule 4) COMMA:REDUCE (rule 4) RIGHT:REDUCE (rule 4)
RIGHTSQ:REDUCE (rule 4) BAR:REDUCE (rule 4)
state #19

COMMA :REDUCE (rule 6) RIGHT:REDUCE (rule 6)
state #20

EOF:REDUCE (rule 0)

Page 15 of 16

Computer Science 330 Test 2007

Reduce (GoTo) Table

From

From
From
From
From
From

From
From
From
From
From

From

From
From
From

From
From
From

From
From
From

state #0:
Expr:GOTO (3)
List:GOTO(2)
Structure:GOTO (1)

state #1:

Sstate #2:

state #3:

state #4:

state #5:
Expr:GOTO (6)
List:GOTO (2)
ElementListOpt:GOTO (8)
ElementList:GOTO (7)
Structure:GOTO (1)

state #6:

state #7:

state #8:

state #9:

state #10:
Expr:GOTO (6)
List:GOTO(2)
ElementList:GOTO (13)
Structure:GOTO (1)

state #11:
Expr:GOTO (12)
List:GOTO(2)
Structure:GOTO (1)

state #12:

state #13:

state #14:
ParamList :GOTO (15)
Expr:GOTO (16)
List:GOTO(2)
Structure:GOTO (1)

state #15:

state #16:

state #17:
Expr:GOTO (19)
List:GOTO(2)
Structure:GOTO (1)

state #18:

state #19:

state #20:

Page 16 of 16

