Computer Science 330 Test 2006 Page 1 of 16

Computer Science 330 Language Implementation Test

6.20-8.00pm Thursday 6th April 2006

Course Compsci 330/Compsci 601

Surname

Given Names

Student ID Number

Login Name

Normal Signature

1 /25
2(a) /20
2(b) /5
2(c) /20
2(d) /5
2(e) /5
3 /20
Total /100

Start reading 6.20p.m. Write your name on all sheets of your answer book. Start writing your answers at
6.30pm. Stop writing at 8.00p.m.

Remove the staple fastening the appendices to the answer book, but do not remove the staples from the
answer book. Read the questions carefully. Hand in your answer book at the front of the class. Attempt
all questions. Questions total 100 marks. The test counts for 20% of the total mark.

Computer Science 330 Test 2006 Page 2 of 16

Question 1 25 Marks

Write JFlex regular expressions to match the following tokens. You may declare support regular
expressions if you need them.

(a) An identifier, composed of an upper case letter, followed by O or more letters or digits. For
example, Happy2, but not sad1.

(2 marks)

(b) An identifier, composed of a sequence of one or more letters, followed by O or more digits. For
example, base, basel16, but not basel6Number.

(2 marks)

(©) An identifier, composed of a single alphabetic letter, followed by an optional single digit. For
example, 1, U2, but not Eye, You2, U24, UB40.

(2 marks)

(d) A hexadecimal integer, with a prefix of 0x or 0x, where all digits have to agree with the case of
the prefix. For example, 0x123456789%abcdef, Or 0X123456789ABCDEF, but not
0x123456789AbCAETE, OF 0x123456789ABCDEF.

(2 marks)

(I

(e) An identifier, composed of one or more words, with “ " characters in between, where a word is an
upper case letter, followed by O or more lower case letters. For example, The Cat Is Hungry,
but not The Cat Is ,Or The cat, Of TheCat IsHungry.

(6 marks)

Computer Science 330 Test 2006 Page 3 of 16

Print your login name

) A decimal integer, between 0 and 255, without unnecessary leading “0”’s. For example, 0, 1, 98,
128, 254, 255, butnot 01, 256, 330.
(6 marks)
(2) Indicate five different kinds of errors in the following fragment of JFlex code. (*...” just means
omitted code). Assume spaces and line breaks are not syntactically important.
newline = \r|\n|\r\n
space = [\ \t]
ident = Ce
%state NORMAL, COMMENT
<NORMAL> {
{ident} { return token(sym.IDENT); }
if { return token(sym.IF); }
else { return token(sym.ELSE); }
/* { yybegin(NORMAL); }
{space} { return token(sym.SPACE); }
{newline} { linecount++; }
. {1}
}
<COMMENT> {
*/ { yybegin(NORMAL); }
. {1}
{newline} { linecount++; }
}
1
2
3
4
5

(5 marks)

Computer Science 330 Test 2006 Page 4 of 16

Question 2 55 marks

Consider the CUP grammar in the appendices. The terminal symbols LEFTBRACE, RIGHTBRACE,
ASSIGN, SEMICOLON, COMMA correspond to “{”, “}”, “=”, ;> “,” and IDENT corresponds to an
identifier.

(a) Using the information provided in the appendices, perform a shift-reduce LALR(1) parse of the
valid input
int a = { b, ¢}, d;

Show both the symbols and states on the stack, the current token, and the action performed at each
stage. (Consider “int” to be an IDENT).

Note that some grammar rules are left recursive, while others are right recursive. (20 marks)
Stack Input Action

$0 ID int | Shift ID 4

$0 1D 4 IDa | Reduce | Type ::=ID

$0 Type 2 Shift ID 8

$0 Type?2 | ID 8 = Shift =14

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0 Decl 5 Reduce | Prog ::=Decl

$0 Prog 1 Shift $25

$0 Prog1 | $25 $ Reduce | $Start ::=Prog $

$0 $Start -1 Accept

Computer Science 330 Test 2006 Page 5 of 16

Print your login name

(b) Draw the full parse tree, showing all rules used in the above shift-reduce LALR(1) parse.

(5 marks)
@Start::ZProgﬂD inta={b,c},d;

Prog ::= Decl

Computer Science 330

Test 2006

Page 6 of 16

(©) Using the information provided in the appendices, perform a shift-reduce LALR(1) parse of the
invalid input
int a { b,
giving a clear indication of how CUP processes the input in the event of an error.
Assume error_sync_size() returns 1, so you do not need to first parse and check three tokens can
be consumed without generating an error, before reparsing and performing the actions. (20 marks)
Stack Input Action
$0 ID int | Shift 1D 4
$0 1D 4 IDa | Reduce | Type ::=1ID
$0 Type 2 Shift ID 8
$0 Type2 |ID38 { Error
$0
$0
$0
$0
$0
$0
$0
$0
$0
$0
$0
$0
$0
$0
$0
$0
$0 Decl 5 Reduce | Prog ::=Decl
$0 Prog 1 Shift $25
$0 Prog 1 $25 $ Reduce | $Start ::=Prog $
$0 $Start -1 Accept

Computer Science 330 Test 2006 Page 7 of 16

Print your login name

(d) Draw the abstract syntax tree, as specified by the actions associated with the rules.

Assume DeclrListNode is composed of a vector, containing all the children.

GrogramNode > inta{b,c,d};

(5 marks)

GariableDeclNo@

Computer Science 330 Test 2006 Page 8 of 16

(e)

Write Java code to implement an ExprListNode, with a toString() method to reprint the list, taking
into account that the tail might be null.

Assume ExprListNode is used to create a right recursive linked list, with the same structure as the
grammar rule.

(5 marks)

package node.exprNode;
import node.*;

public class ExprListNode extends [| {

public ExprListNode (

}

public String toString() {

Computer Science 330 Test 2006 Page 9 of 16

Print your login name

Question 3 20 marks

Suppose we have a language for writing down expressions involving integer constants, simple variables
and function invocations (in a C or Java style, with 0 or more comma separated actual parameters,
enclosed in parentheses, even if there are 0 parameters). For example, we can write expressions of the
form:

a(3, b(), ¢, d(4, 5), eC £, g(6)))
Moreover, we can follow the expression by an optional “where declaration list”, which defines the

meaning of some of the variables and functions, in a comma separated sequence of declarations. For
example, we may define:

a(3, b(), ¢, d(4, 5), e(C £, g(6)))
where
b() = 4,
c =17,
da(x, y) = x,
e(x, y) = d(Y X),
g(x) =h(x, 1, d(x, x))

The left hand side of a declaration represents the variable or function being defined, together with its
formal parameters, in the case of a function, and the right hand side represents its value, in terms of other
variables and functions, and the formal parameters of the function being declared. Note that the variables
and formal parameters are identifiers, not expressions.

Presumably a “compiler” will “simplify” the above “program” into:
a(3, 4, 7, 4, h(6, 1, 6))
by performing as many substitutions as possible.

Write a CUP grammar definition to parse input for the above language. You do not have to write any
actions.

(20 Marks)

Computer Science 330 Test 2006 Page 10 of 16

Computer Science 330 Test 2006 Page 11 of 16

Print your login name

Computer Science 330 Test 2006 Page 12 of 16

Computer Science 330

Appendices

Test 2006

The CUP grammar

terminal ERR
terminal Str

nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal
nonterminal

start with P

Program: :=

Decl::=

Type::=

DeclrlList::=

OR, LEFTBRACE, RIGHTBRACE, ASSIGN, SEMICOLON, COMMA;

ing IDENT;

ProgramNode Program;
DeclNode Decl;

TypeNode Type;
DeclrListNode DeclrList;
DeclrNode Declr;
ExprNode Expr;
ExprListNode ExprList;

rogram;

Decl:decl

{:

RESULT = new ProgramNode(decl);
2}

Type:type DeclrlList:declrList SEMICOLON

{:

RESULT = new VariableDeclNode(type, declrList);
2}

error SEMICOLON

{:

RESULT = new ErrorDeclNode("DeclError...;");
2}

IDENT:ident

{:

RESULT = new TypelIdentNode(ident);
1}

Declr:declr

{:

RESULT = new DeclrListNode (declr);
2}

DeclrList:declrList COMMA Declr:declr
{:

declrlList.addElement (declr);

RESULT = declrlist;

:}

Page 13 of 16

Computer Science 330 Test 2006

Declr::=
IDENT:ident ASSIGN Expr:expr
{:

RESULT = new InitDeclrNode (ident,

:}

IDENT:ident
{:
RESULT
2}

error

{:

new UninitDeclrNode (ident

expr);

)7

RESULT = new ErrorDeclrNode("DeclrError..."

:}

)7

Expr::=
LEFTBRACE ExprList:exprList RIGHTBRACE
{:
RESULT = new CompoundExprNode (exprList);
1}
LEFTBRACE error RIGHTBRACE
{:
RESULT = new ErrorExprNode("{ ExprListError
1}
IDENT:ident
{:
RESULT = new VariableExprNode (ident
1}
ExprList::=

Expr:expr

{:

RESULT = new ExprListNode (expr,
1}

Expr:expr COMMA ExprList:exprList
{:
RESULT = new ExprListNode(expr,
1}

;Tables for the CUP grammar

Grammar Rules (Productions)

[0] SSTART ::= Program EOF

[1] Program ::= Decl

[2] Decl = Type DeclrList SEMICOLON
[3] Decl ::= error SEMICOLON

[4] Type ::= IDENT

[5] DeclrlList ::= Declr

[6] DeclrList ::= DeclrList COMMA Declr
[7] Declr ::= IDENT ASSIGN Expr

[8] Declr ::= IDENT

[9] Declr ::= error

[10] Expr ::= LEFTBRACE ExprList RIGHTBRACE
[11] Expr ::= LEFTBRACE error RIGHTBRACE
[12] Expr ::= IDENT

[13] ExprList ::= Expr

[14] ExprList ::= Expr COMMA ExprList

null);

exprList);

}H

Page 14 of 16

Computer Science 330

Action Table

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

state #0

error:SHIFT (state 3) I

state #1

EOF:SHIFT (state 25)

state #2

error:SHIFT (state 7) I

state #3

Test 2006

DENT:SHIFT (state 4)

DENT:SHIFT (state 8)

SEMICOLON:SHIFT (state 6)

state #4

error:REDUCE (rule 4) I

state #5

EOF:REDUCE (rule 1)

state #6

EOF:REDUCE (rule 3)

state #7

SEMICOLON:REDUCE (rule 9)

state #8

ASSIGN:SHIFT (state 14)

state #9

SEMICOLON:SHIFT (state 12)

state #10

SEMICOLON:REDUCE (rule 5)

state #11

error:SHIFT (state 7) I

state #12

EOF:REDUCE (rule 2)

state #13

SEMICOLON:REDUCE (rule

state #14

LEFTBRACE:SHIFT (state

state #15

error:SHIFT (state 19)

state #16

SEMICOLON:REDUCE (rule

state #17
RIGHTBRACE
state #18

RIGHTBRACE:

state #19

RIGHTBRACE:

state #20

RIGHTBRACE:

state #21

LEFTBRACE:SHIFT (state 15)

State #22

:REDUCE (rule

SHIFT (state

SHIFT (state

REDUCE (rule

DENT :REDUCE (rule 4)

COMMA :REDUCE (rule 9)
SEMICOLON:REDUCE (rule 8)
COMMA:SHIFT (state 11)
COMMA :REDUCE (rule 5)
DENT:SHIFT (state 8)

6) COMMA:REDUCE (rule 6)
15)

IDENT:SHIFT (state 17)

LEFTBRACE:SHIFT (state 15)

7) COMMA:REDUCE (rule 7)
12) SEMICOLON:REDUCE (rule
24)

23)
13) COMMA:SHIFT (state 21)

IDENT:SHIFT (state 17)

RIGHTBRACE:REDUCE (rule 14)

state #23

RIGHTBRACE:REDUCE (rule 11)

state #24

RIGHTBRACE:REDUCE (rule 10)

state #25

EOF:REDUCE (rule 0)

SEMICOLON:REDUCE (rule

SEMICOLON:REDUCE (rule

Page 15 of 16

COMMA :REDUCE (rule 8)

IDENT:SHIFT (state 17)

12)

11)

10)

COMMA :REDUCE (rule 12)

COMMA :REDUCE (rule 11)

COMMA : REDUCE (rule 10)

Computer Science 330 Test 2006

Reduce (GoTo) Table

From state #0:
Program:GOTO (1)
Decl:GOTO (5)
Type:GOTO (2)

From state #1:

From state #2:
DeclrList:GOTO(9)
Declr:GOTO(10)

From state #3:

From state #4:

From state #5:

From state #6:

From state #7:

From state #8:

From state #9:

From state #10:

From state #11:
Declr:GOTO (13)

From state #12:

From state #13:

From state #14:
Expr:GOTO (16)

From state #15:
Expr:GOTO (20)
ExprList:GOTO (18)

From state #16:

From state #17:

From state #18:

From state #19:

From state #20:

From state #21:
Expr:GOTO (20)
ExprList:GOTO (22)

From state #22:

From state #23:

From state #24:

From state #25:

Page 16 of 16

