Computer Science 330 Test 2004 Page 1 of 17

Computer Science 330 Language Implementation Test

6.20-8.00pm Thursday 8™ April 2004

Start reading 6.20p.m. Write your name on all sheets of your answer book. Start writing your answers at
6.30pm. Stop writing at 8.00p.m.

Remove the staple fastening the question sheets to the answer book, but do not remove the staples from the
answer book. Read the questions carefully. Hand in your answer book at the front of the class. Always
show your working - most marks are for showing you know what you are doing, rather than just getting the
right answer. Attempt all questions. Questions total 100 marks. The test counts for 20% of the total mark.

Question 1 15 Marks

Write JFlex rules to match the following tokens, and where appropriate return a value, or perform some
appropriate action.

(a) An octal integer. For example 077, 064, but not 0, 64, 069.

(2 marks)
(b) A hexadecimal integer. For example Oxff, OxFF, 0XFf, 0x123456789abcdef, but not ff, Off, xff.

(2 marks)
(c) An identifier, possibly including underscores. For example, x1, hello, banana_boat, but not 1x.

(2 marks)
(d) A Windows, Macintosh or UNIX line break, with an action to increment a line count. Do not return

a token.
(2 marks)

(e) Text enclosed in {:...:}. For example,

{:
RESULT = new NegateNode (expr);

:}
Add appropriate actions to increment the line count, when a line break occurs.

a terminal symbol ACTION.
(7 marks)

Computer Science 330

Question 2

Consider the following CUP grammar.

terminal IF,
terminal LEFT,

Test 2004

THEN, ELSE, WHILE, DO;
RIGHT,

terminal String NUMBER;
terminal String IDENT;

non
non
non
non
non

terminal
terminal
terminal
terminal
terminal

StmtList;
Stmt;
Expr;
Variable;
Constant;

start with StmtList;

StmtList::=

Stmt::

Expr::

Variable::

Constant::

’

’

’

/* Empty */

StmtList Stmt

Variable ASSIGN Expr SEMICOLON
Expr SEMICOLON

SEMICOLON

LEFTCURLY StmtList RIGHTCURLY
IF Expr THEN Stmt

IF Expr THEN Stmt ELSE Stmt

WHILE Expr DO Stmt

LEFT Expr RIGHT

Variable

Constant

IDENT

NUMBER

LEFTCURLY, RIGHTCURLY,

Page 2 of 17

65 marks

SEMICOLON, ASSIGN, ERROR;

The grammar has a shift/reduce conflict related to the if statements, that is resolved by shifting rather than
reducing.

Assume that
The terminal symbols IF, THEN, ELSE, WHILE, DO, LEFT, RIGHT, LEFTCURLY,

RIGHTCURLY, SEMICOLON, ASSIGN correspond to “i
do

(13

2

2

13

(

2

2

(13

)

2 13 2 13 2 (13 2 (13 2

B { > } b 7

f

2

, “then

2

’

(13

else

IDENT corresponds to an identifier, and NUMBER corresponds to a decimal integer.

2

2

(13

while”,

Computer Science 330 Test 2004

(a)

(b)
(©)

(d)

Page 3 of 17

Using the information provided in the appendix, perform a shift-reduce LALR(1) parse of the input

if a then while b do ¢ = 55 ; else d ;

Show both the symbols and states on the stack, the current token, and the action performed at each
stage.

Draw the full parse tree, showing all rules used in the above shift-reduce LALR(1) parse.

@) Note that StmtList is nullable.

(i1) Draw the first graph, and compute the first sets for this grammar.

(ii1)) Draw the follow graph, and compute the follow sets for this grammar.
State 1 is

lalr state [1]: |

}

[Constant = (*) NUMBER , {SEMICOLON }]
[Expr ::= (*) Variable , {SEMICOLON }]
[Stmt ::= (*) IF Expr THEN Stmt ELSE Stmt ,
{EOF IF WHILE LEFT LEFTCURLY SEMICOLON NUMBER
[StmtList ::= StmtList (*) Stmt ,

{EOF IF WHILE LEFT LEFTCURLY SEMICOLON NUMBER
[Stmt ::= (*) SEMICOLON ,
{EOF IF WHILE LEFT LEFTCURLY SEMICOLON NUMBER

[Variable ::= (*) IDENT , {SEMICOLON ASSIGN }]
[Expr ::= (*) LEFT Expr RIGHT , {SEMICOLON }]
[Stmt ::= (*) IF Expr THEN Stmt ,

{EOF IF WHILE LEFT LEFTCURLY SEMICOLON NUMBER
[Stmt ::= (*) Expr SEMICOLON ,

{EOF IF WHILE LEFT LEFTCURLY SEMICOLON NUMBER
[Expr ::= (*) Constant , {SEMICOLON }]
[Stmt ::= (*) WHILE Expr DO Stmt ,

{EOF IF WHILE LEFT LEFTCURLY SEMICOLON NUMBER
[Stmt ::= (*) LEFTCURLY StmtList RIGHTCURLY ,

{EOF IF WHILE LEFT LEFTCURLY SEMICOLON NUMBER
[SSTART ::= StmtList (*) EOF , {EOF }]
[Stmt ::= (*) Variable ASSIGN Expr SEMICOLON ,

{EOF IF WHILE LEFT LEFTCURLY SEMICOLON NUMBER

transition on LEFTCURLY to state [13]
transition on SEMICOLON to state [12]
transition on Stmt to state [11]
transition on IF to state [10]
transition on EOF to state [9]
transition on Constant to state [8]
transition on NUMBER to state [7]
transition on LEFT to state [6]
transition on Expr to state [5]
transition on IDENT to state [4]
transition on Variable to state [3]
transition on WHILE to state [2]

]

IDENT

IDENT

IDENT

IDENT

IDENT

IDENT

IDENT

IDENT

(20 marks)
(8 marks)

(27 marks)

Write down the set of items for goto(state 1, IF) (state 10). Make sure you take the closure.

(10 marks)

Computer Science 330 Test 2004 Page 4 of 17

Question 3 20 marks

When writing a CUP grammar rule, it is possible to write such things as:
Stmt::=
Variable:variable ASSIGN Expr:expr SEMICOLON
|
Expr:expr SEMICOLON
|
SEMICOLON

LEFTCURLY StmtList:stmtList RIGHTCURLY
IF Expr:cond THEN Stmt:stmtl
IF Expr:cond THEN Stmt:stmtl ELSE Stmt:stmt2

WHILE Expr:cond DO Stmt:stmtl
A grammar rule has an identifier on the left hand side, then “::=", then one or more alternative right hand
sides, then a “;”. Each alternative right hand side corresponds to zero or more symbols. A symbol is
represented by an identifier, with an optional “:” and a label identifier. In fact it is also possible to write
grammar rules such as

Expr::=

Expr:exprl MINUS Expr:expr?2

{:

RESULT = new MinusNode (exprl, expr2);

1}

MINUS Expr:expr

{:

RESULT = new NegateNode (expr);
:}

%$prec PREFIX

INCR Expr:expr

{:

RESULT = new PrelIncrNode(expr);
:}

%$prec PREFIX

’

with an optional action and precedence specification at the end of each alternative right hand side. (Don’t
allow actions in the middle of an alternative right hand side.)

Write a grammar to parse a CUP style grammar rule. You do not have to write any actions. Assume the
lexical analyser returns a single ACTION terminal symbol for an action such as

{:

RESULT = new MinusNode (exprl, expr2);

:}

and that you do not have to analyse the action.

Computer Science 330 Test 2004

Appendix
Tables for the CUP grammar

Grammar Rules (Productions)

14: Constant ::= NUMBER
13: Variable ::= IDENT
12: Expr ::= Constant
11: Expr ::= Variable
10: Expr = LEFT Expr RIGHT
9: Stmt ::= WHILE Expr DO Stmt
8: Stmt ::= IF Expr THEN Stmt ELSE Stmt
7: Stmt ::= IF Expr THEN Stmt
6: Stmt ::= LEFTCURLY StmtList RIGHTCURLY
5: Stmt ::= SEMICOLON
4: Stmt ::= Expr SEMICOLON
3: Stmt ::= Variable ASSIGN Expr SEMICOLON
2: StmtList ::= StmtList Stmt
1: StmtList ::=
0: S$START ::= StmtList EOF
Action Table

From state #0
EOF:REDUCE (1) IF:REDUCE (1) WHILE:REDUCE (1)

LEFT:REDUCE (1) LEFTCURLY:REDUCE (1) SEMICOLON:REDUCE (1)

NUMBER:REDUCE (1) IDENT:REDUCE (1)
From state #1
EOF:SHIFT(9) IF:SHIFT(10) WHILE:SHIFT (2)

LEFT:SHIFT(6) LEFTCURLY:SHIFT(13) SEMICOLON:SHIFT (12)

NUMBER:SHIFT (7) IDENT:SHIFT (4)
From state #2
LEFT:SHIFT (6) NUMBER:SHIFT (7) IDENT:SHIFT (4)
From state #3
SEMICOLON:REDUCE (11) ASSIGN:SHIFT (25)
From state #4
THEN:REDUCE (13) DO:REDUCE (13) RIGHT:REDUCE (13)
SEMICOLON:REDUCE (13) ASSIGN:REDUCE (13)
From state #5
SEMICOLON:SHIFT (24)
From state #6
LEFT:SHIFT (6) NUMBER:SHIFT(7) IDENT:SHIFT (4)
From state #7
THEN:REDUCE (14) DO:REDUCE (14) RIGHT:REDUCE (14)
SEMICOLON:REDUCE (14)
From state #8
THEN:REDUCE (12) DO:REDUCE (12) RIGHT:REDUCE (12)
SEMICOLON:REDUCE (12)
From state #9
EOF :REDUCE (0)
From state #10
LEFT:SHIFT (6) NUMBER:SHIFT (7) IDENT:SHIFT (4)
From state #11
EOF:REDUCE (2) IF:REDUCE (2) WHILE:REDUCE (2)

LEFT:REDUCE (2) LEFTCURLY:REDUCE (2) RIGHTCURLY:REDUCE (2)
SEMICOLON:REDUCE (2) NUMBER:REDUCE (2) IDENT:REDUCE (2)

From state #12
EOF:REDUCE (5) IF:REDUCE (5) ELSE:REDUCE (5)

WHILE :REDUCE (5) LEFT:REDUCE (5) LEFTCURLY :REDUCE (5)
RIGHTCURLY :REDUCE (5) SEMICOLON:REDUCE (5) NUMBER:REDUCE (5)

IDENT:REDUCE (5)

Page 5 of 17

Computer Science 330 Test 2004

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

state #13

IF:REDUCE (1) WHILE:REDUCE (1) LEFT:REDUCE (1)

LEFTCURLY :REDUCE (1) RIGHTCURLY:REDUCE (1) SEMICOLON:REDUCE (1)
NUMBER:REDUCE (1) IDENT:REDUCE (1)
state #14

IF:SHIFT (10) WHILE:SHIFT(2) LEFT:SHIFT(6)
LEFTCURLY:SHIFT (13) RIGHTCURLY:SHIFT (15) SEMICOLON:SHIFT (12)
NUMBER:SHIFT (7) IDENT:SHIFT (4)
state #15

EOF:REDUCE (6) IF:REDUCE (6) ELSE:REDUCE (6)

WHILE:REDUCE (6) LEFT:REDUCE (6) LEFTCURLY:REDUCE (6)
RIGHTCURLY :REDUCE (6) SEMICOLON:REDUCE (6) NUMBER:REDUCE (6)
IDENT :REDUCE (6)
state #16

THEN:REDUCE (11) DO:REDUCE (11) RIGHT:REDUCE (11)
SEMICOLON:REDUCE (11)
state #17

THEN:SHIFT (18)
state #18

IF:SHIFT (10) WHILE:SHIFT(2) LEFT:SHIFT(6)
LEFTCURLY:SHIFT (13) SEMICOLON:SHIFT (12) NUMBER:SHIFT (7)
IDENT:SHIFT (4)
state #19

EOF:REDUCE (7) IF:REDUCE(7) ELSE:SHIFT (20)

WHILE:REDUCE (7) LEFT:REDUCE (7) LEFTCURLY:REDUCE (7)
RIGHTCURLY :REDUCE (7) SEMICOLON:REDUCE (7) NUMBER:REDUCE (7)
IDENT :REDUCE (7)
state #20

IF:SHIFT(10) WHILE:SHIFT(2) LEFT:SHIFT(6)
LEFTCURLY:SHIFT (13) SEMICOLON:SHIFT (12) NUMBER:SHIFT (7)
IDENT:SHIFT (4)
state #21

EOF:REDUCE (8) IF:REDUCE (8) ELSE:REDUCE (8)

WHILE:REDUCE (8) LEFT:REDUCE (8) LEFTCURLY:REDUCE (8)
RIGHTCURLY :REDUCE (8) SEMICOLON:REDUCE (8) NUMBER:REDUCE (8)
IDENT :REDUCE (8)
state #22

RIGHT:SHIFT (23)
state #23

THEN:REDUCE (10) DO:REDUCE (10) RIGHT:REDUCE (10)
SEMICOLON:REDUCE (10)
state #24

EOF:REDUCE (4) IF:REDUCE (4) ELSE:REDUCE (4)

WHILE:REDUCE (4) LEFT:REDUCE (4) LEFTCURLY:REDUCE (4)
RIGHTCURLY :REDUCE (4) SEMICOLON:REDUCE (4) NUMBER:REDUCE (4)
IDENT :REDUCE (4)

state #25

LEFT:SHIFT (6) NUMBER:SHIFT(7) IDENT:SHIFT (4)
state #26

SEMICOLON:SHIFT (27)

state #27

EOF:REDUCE (3) IF:REDUCE (3) ELSE:REDUCE (3)

WHILE:REDUCE (3) LEFT:REDUCE (3) LEFTCURLY:REDUCE (3)
RIGHTCURLY :REDUCE (3) SEMICOLON:REDUCE (3) NUMBER:REDUCE (3)
IDENT :REDUCE (3)
state #28

DO:SHIFT (29)
state #29

IF:SHIFT(10) WHILE:SHIFT(2) LEFT:SHIFT(6)
LEFTCURLY:SHIFT (13) SEMICOLON:SHIFT (12) NUMBER:SHIFT (7)
IDENT:SHIFT (4)
state #30

EOF:REDUCE (9) IF:REDUCE (9) ELSE:REDUCE (9)

WHILE:REDUCE (9) LEFT:REDUCE (9) LEFTCURLY:REDUCE (9)
RIGHTCURLY :REDUCE (9) SEMICOLON:REDUCE (9) NUMBER:REDUCE (9)
IDENT :REDUCE (9)

Page 6 of 17

Computer Science 330 Test 2004

Reduce (GoTo) Table

From

From

From

From
From
From
From

From
From
From
From

From
From
From

From

From
From
From
From

From
From

From
From
From
From
From

From
From
From
From

From

state #0:
StmtList:GOTO (1)
state #1:
Stmt:GOTO(11)
Expr:GOTO (5)
Variable:GOTO (3)
Constant :GOTO (8)
state #2:

Expr:GOTO (28)
Variable:GOTO (16)
Constant :GOTO (8)

state #3:
state #4:
state #5:
state #6:
Expr:GOTO (22)
Variable:GOTO (16)
Constant :GOTO (8)
state #7:
state #8:
state #9:
state #10:
Expr:GOTO (17)
Variable:GOTO (16)
Constant :GOTO (8)
state #11:
state #12:
state #13:
StmtList:GOTO (14)
state #14:

Stmt :GOTO (11)
Expr:GOTO (5)
Variable:GOTO (3)
Constant:GOTO (8)
state #15:
state #16:
state #17:
state #18:

Stmt :GOTO (19)
Expr:GOTO (5)
Variable:GOTO (3)
Constant :GOTO (8)
state #19:

state #20:

Stmt :GOTO (21)
Expr:GOTO (5)
Variable:GOTO (3)
Constant :GOTO (8)
state #21:

state #22:

state #23:

state #24:

state #25:
Expr:GOTO (26)
Variable:GOTO (16)
Constant:GOTO (8)
state #26:

state #27:

state #28:

state #29:
Stmt : GOTO (30)
Expr:GOTO (5)
Variable:GOTO (3)
Constant:GOTO (8)
state #30:

Page 7 of 17

Computer Science 330 Test 2004 Page 8 of 17

This page left blank for formatting purposes

Computer Science 330 Test 2004

Computer Science 330
Language Implementation Test
Thursday 8™ April 2004

Answer Booklet

Page 9 of 17

Surname

Given Names

Student ID Number

Login Name

Normal Signature

1 /15
2(a) /20
2(b) /8
2(c) /27
2(d) 10
3 120

Total /100

Computer Science 330 Test 2004 Page 10 of 17

Do not write on this page.

It will not be returned to you.

Computer Science 330 Test 2004 Page 11 of 17

Print your login name

Question 1 15 Marks

Write JFlex rules to match the following tokens, and where appropriate return a value, or perform some
appropriate action.

(a) An octal integer. For example 077, 064, but not 0, 64, 069.

(2 marks)
(b) A hexadecimal integer. For example Oxff, OxFF, 0XFf, 0x123456789abcdef, but not ff, Off, xff.

(2 marks)

(©) An identifier, possibly including underscores. For example, x1, hello, banana_boat, but not 1x.

(2 marks)
(d) A Windows, Macintosh or UNIX line break, with an action to increment a line count. Do not return
a token.
(2 marks)
(e) Text enclosed in {:...:}, with actions to increment line breaks.

(7 marks)

Computer Science 330 Test 2004 Page 12 of 17

Question 2 65 marks

(a) Using the information provided in the appendix, perform a shift-reduce LALR(1) parse of the input
if a then while b do ¢ = 55 ; else d ;

Show both the symbols and states on the stack, the current token, and the action performed at each
stage. (20 marks)

Computer Science 330 Test 2004 Page 13 of 17

Print your login name

(b) Draw the full parse tree, showing all rules used in the above shift-reduce LALR(1) parse. (8 marks)

$Start ::=SL $

Computer Science 330

©

Draw the first graph for this grammar.

®

Draw the follow graph for this grammar.

D

Test 2004

D

D,

D

D

Indicate the first and follow sets for the grammar

D
>

D
>

Page 14 of 17

(27 marks)

Symbol

First Set

Follow Set

StmtList

Stmt

Expr

Variable

Constant

Computer Science 330 Test 2004 Page 15 of 17

Print your login name
(d) State 1is ... (10 marks)
Write down the set of items for goto(state 1, IF) (state 10).

Computer Science 330 Test 2004 Page 16 of 17

Print your login name

Question 3 20 marks

Write a grammar to parse a CUP style grammar rule. You do not have to write any actions.

Computer Science 330 Test 2004 Page 17 of 17

