Computer Science 330 Test 2003 Page 1 of 18

Computer Science 330 Language Implementation Test

6.30-8.00pm Thursday 10™ April 2003

Start reading 6.20p.m. Write your name on all sheets of your answer book. Start writing your answers at
6.30pm. Stop writing at 8.00p.m.

Remove the staple fastening the question sheets to the answer book, but do not remove the staples from the
answer book. Read the questions carefully. Hand in your answer book at the front of the class. Always
show your working - most marks are for showing you know what you are doing, rather than just getting the
right answer. Attempt all questions. Questions total 100 marks. The test counts for 20% of the total mark.

Question 1 15 Marks

Write regular expressions to match the following tokens. Read the specifications carefully! They are
not necessarily the same as in the assignment or lecture notes.

(a) A character literal, where a character literal is composed of a single char literal character surrounded
by single quotes; a char literal character is any character (except a single quote or backslash), or a \
followed by any character other than the letter u, or a unicode escape; and a unicode escape is \u
followed by exactly four hexadecimal digits. For example 'a', '\'', "\\"', "\u5b09'. You might
like to declare and use named regular expressions.

(5 marks)

(b) A floating point literal. For example, 3.141592654,2.99792458e8, 6.6262e-34. Assume either
the fractional part or the exponent may be omitted, but not both. So 123 and e63 are not floating
point literals. Similarly, the integral part in front of the decimal point may not be omitted, so . 6e5 is
not a floating point literal.

(5 marks)
(c) A possibly multi-line Java style comment, where a comment represents text enclosed in “/*...%/”,
and line breaks can be in UNIX, Windows, or Macintosh style. For example
/* Line 1
Line 2 /* and a nested comment */
Line 3 */

Assume nested comments are permitted. You will need multiple rules, states and actions to perform
the match.

(5 marks)

Computer Science 330 Test 2003 Page 2 of 18

Question 2 65 marks
Consider the following CUP grammar.

terminal LEFT, RIGHT, NEWLINE, MINUS, INC, TIMES, ASSIGN, ERROR;

terminal String NUMBER;

terminal String IDENT;

non terminal StmtList, Stmt;

non terminal Integer Expr, Term, Factor;

non terminal String Variable;

start with StmtList;

StmtList::=

StmtList Stmt

Variable ASSIGN Expr NEWLINE
Expr NEWLINE

NEWLINE

Expr MINUS Term

Term

Term TIMES Factor

Factor

LEFT Expr RIGHT
NUMBER

Variable

INC Variable
Variable INC

MINUS Factor

’

Variable::
IDENT

Assume that
o The terminal symbols LEFT, RIGHT, NEWLINE, MINUS, INC, TIMES, ASSIGN correspond to

(13 2 13 2 3 2 13 ba) 13 bh) 13 2 13 2
- ++ * =
(b) b \ n 2 M

b b b

. IDENT corresponds to an identifier, and NUMBER corresponds to a decimal integer.

Computer Science 330 Test 2003 Page 3 of 18

(a) Using the information provided in the appendix, perform a shift-reduce LALR(1) parse of the input
b = 100 \n
a = ++ Db * - 200 \n

Show both the symbols and states on the stack, the current token, and the action performed at each

stage.
(20 marks)

(b) Draw the full parse tree, showing all rules used in the above shift-reduce LALR(1) parse. (7 marks)
(©) 6 Note that StmtList is nullable.

(i)) Draw the first graph, and compute the first sets for this grammar.

(iii) Draw the follow graph, and compute the follow sets for this grammar. (20 marks)

(d) Suppose we are writing a parser that does not build a parse tree, but (like the INTERP1 example)
evaluates the construct corresponding to a rule when it reduces by that rule.

Indicate an appropriate action to evaluate the rule
Factor::= Variable:name INC ;

and return the value of the Factor. Assume Variable returns the name (identifier) of the variable, and
that the values of variables are stored in a Hashtable. (8 marks)

(e) State 1 is

lalr state [1]: |
[Factor ::= (*) Variable INC , {NEWLINE MINUS TIMES }]
[Factor ::= (*) NUMBER , {NEWLINE MINUS TIMES }]
[Term ::= (*) Term TIMES Factor , {NEWLINE MINUS TIMES }]
[StmtList = StmtList (*) Stmt , {EOF LEFT NEWLINE MINUS INC NUMBER IDENT }]
[Stmt ::= (*) NEWLINE , {EOF LEFT NEWLINE MINUS INC NUMBER IDENT }]
[Variable = (*) IDENT , {NEWLINE MINUS INC TIMES ASSIGN }]
[Factor = (*) INC Variable , {NEWLINE MINUS TIMES }]
[Factor := (*) LEFT Expr RIGHT , {NEWLINE MINUS TIMES }]
[Expr (*) Term , {NEWLINE MINUS }]
[Stmt = (*) Expr NEWLINE , {EOF LEFT NEWLINE MINUS INC NUMBER IDENT }]
[Factor := (*) MINUS Factor , {NEWLINE MINUS TIMES }]
[Factor := (*) Variable , {NEWLINE MINUS TIMES }]
[Term ::= (*) Factor , {NEWLINE MINUS TIMES }]
[Expr ::= (*) Expr MINUS Term , {NEWLINE MINUS }]
[SSTART := StmtList (*) EOF , {EOF }]
[Stmt ::= (*) Variable ASSIGN Expr NEWLINE , {EOF LEFT NEWLINE MINUS INC
]

NUMBER IDENT }
}

transition on NEWLINE to state [13]
transition on INC to state [12]
transition on Factor to state [11]
transition on Term to state [10]
transition on Stmt to state [9]
transition on EOF to state [8]
transition on NUMBER to state [
transition on LEFT to state [6]
transition on Expr to state [5]
transition on IDENT to state [4]
transition on Variable to state [3]
transition on MINUS to state [2]

7]

1) Write down the set of items for goto(state 1, Variable) (state 3).

(i1) Write down the set of items for goto(state 1, INC) (a variant of state 12, without merging it with
other variants with the same core). Make sure you take the closure.

(10 marks)

Computer Science 330 Test 2003 Page 4 of 18

Question 3 20 marks

Suppose that we have a computer language, with method declarations in the style of the following example:
int £(int[] a, b; char ¢, d) {

The method starts with the return type (which can be either a Type or “void”), then the name of the method,

then the parameter declarations enclosed in “(...)”. It is possible to declare several parameters of the same

Type, by writing the Type, then a “,” separated list of the parameters being declared. Parameter declarations

of different Types should be separated by “;”’s. If the method has no parameters, it still has the “()”’s, with

nothing inside.

Write a grammar to parse a (general) method declaration, with the specified syntax. You may assume that
grammar rules have been provided for Types and BlockStatements. You do not have to write any actions.

Computer Science 330 Test 2003 Page 5 of 18

Appendix
Tables for the CUP grammar

Grammar Rules (Productions)

16: Variable ::= IDENT

15: Factor ::= MINUS Factor

14: Factor ::= Variable INC

13: Factor ::= INC Variable

12: Factor ::= Variable

11: Factor ::= NUMBER

10: Factor ::= LEFT Expr RIGHT

9: Term ::= Factor

8: Term ::= Term TIMES Factor

7: Expr ::= Term

6: Expr ::= Expr MINUS Term

5: Stmt ::= NEWLINE

4: Stmt ::= Expr NEWLINE

3: Stmt ::= Variable ASSIGN Expr NEWLINE

2: StmtList ::= StmtList Stmt

1: StmtList ::=

0: S$START ::= StmtList EOF
Action Table

From state #0
EOF:REDUCE (1) LEFT:REDUCE (1) NEWLINE:REDUCE (1)
MINUS:REDUCE (1) INC:REDUCE (1) NUMBER:REDUCE (1)
IDENT :REDUCE (1)

From state #1
EOF:SHIFT(8) LEFT:SHIFT(6) NEWLINE:SHIFT (13)
MINUS:SHIFT (2) INC:SHIFT(12) NUMBER:SHIFT (7)
IDENT:SHIFT (4)

From state #2
LEFT:SHIFT (6) MINUS:SHIFT(2) INC:SHIFT (12)
NUMBER:SHIFT (7) IDENT:SHIFT (4)

From state #3
NEWLINE:REDUCE (12) MINUS:REDUCE (12) INC:SHIFT(18)
TIMES:REDUCE (12) ASSIGN:SHIFT (24)

From state #4
RIGHT:REDUCE (16) NEWLINE:REDUCE (16) MINUS:REDUCE (16)
INC:REDUCE (16) TIMES:REDUCE (16) ASSIGN:REDUCE (16)

From state #5
NEWLINE:SHIFT (23) MINUS:SHIFT (21)

From state #6
LEFT:SHIFT (6) MINUS:SHIFT(2) INC:SHIFT(12)
NUMBER:SHIFT (7) IDENT:SHIFT (4)

From state #7
RIGHT:REDUCE (11) NEWLINE:REDUCE (11) MINUS:REDUCE (11)
TIMES:REDUCE (11)

From state #8
EOF:REDUCE (0)

From state #9
EOF:REDUCE (2) LEFT:REDUCE (2) NEWLINE:REDUCE (2)
MINUS:REDUCE (2) INC:REDUCE (2) NUMBER:REDUCE (2)
IDENT:REDUCE (2)

From state #10
RIGHT:REDUCE (7) NEWLINE:REDUCE (7) MINUS:REDUCE (7)
TIMES:SHIFT (15)

From state #11
RIGHT:REDUCE (9) NEWLINE:REDUCE (9) MINUS:REDUCE (9)
TIMES :REDUCE (9)

Computer Science 330 Test 2003 Page 6 of 18

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

state #12

IDENT :SHIFT (4)
state #13

EOF:REDUCE (5) LEFT:REDUCE (5) NEWLINE:REDUCE (5)
MINUS:REDUCE (5) INC:REDUCE (5) NUMBER:REDUCE (5)

IDENT :REDUCE (5)
state #14

RIGHT:REDUCE (13) NEWLINE:REDUCE (13) MINUS:REDUCE (13)
TIMES:REDUCE (13)
state #15

LEFT:SHIFT (6) MINUS:SHIFT(2) INC:SHIFT (12)
NUMBER:SHIFT (7) IDENT:SHIFT (4)
state #16

RIGHT:REDUCE (8) NEWLINE:REDUCE (8) MINUS:REDUCE (8)
TIMES :REDUCE (8)
state #17

RIGHT:REDUCE (12) NEWLINE:REDUCE (12) MINUS:REDUCE (12)
INC:SHIFT (18) TIMES:REDUCE (12)
state #18

RIGHT:REDUCE (14) NEWLINE:REDUCE (14) MINUS:REDUCE (14)
TIMES:REDUCE (14)
state #19

RIGHT:SHIFT (20) MINUS:SHIFT (21)
state #20

RIGHT:REDUCE (10) NEWLINE:REDUCE (10) MINUS:REDUCE (10)
TIMES:REDUCE (10)

state #21

LEFT:SHIFT (6) MINUS:SHIFT(2) INC:SHIFT(12)
NUMBER:SHIFT (7) IDENT:SHIFT (4)

state #22

RIGHT:REDUCE (6) NEWLINE:REDUCE (6) MINUS:REDUCE (6)
TIMES:SHIFT (15)

state #23

EOF:REDUCE (4) LEFT:REDUCE (4) NEWLINE:REDUCE (4)
MINUS:REDUCE (4) INC:REDUCE (4) NUMBER:REDUCE (4)

IDENT :REDUCE (4)

state #24

LEFT:SHIFT (6) MINUS:SHIFT(2) INC:SHIFT(12)
NUMBER:SHIFT (7) IDENT:SHIFT (4)

state #25

NEWLINE:SHIFT (26) MINUS:SHIFT (21)

state #26

EOF:REDUCE (3) LEFT:REDUCE (3) NEWLINE:REDUCE (3)
MINUS:REDUCE (3) INC:REDUCE (3) NUMBER:REDUCE (3)
IDENT:REDUCE (3)

state #27

RIGHT:REDUCE (15) NEWLINE:REDUCE (15) MINUS:REDUCE (15)
TIMES:REDUCE (15)

Computer Science 330

Reduce (GoTo) Table

From

From

From

From
From
From
From

From
From
From
From
From
From

From
From
From

From
From
From
From
From
From

From
From
From

From
From
From

state #0:
StmtList:GOTO (1)
state #1:
Stmt : GOTO (9)
Expr:GOTO (5)
Term:GOTO (10)
Factor:GOTO (11)
Variable:GOTO (3)
state #2:
Factor:GOTO(27)
Variable:GOTO (17)
state #3:

state #4:

state #5:

state #6:
Expr:GOTO (19)
Term:GOTO (10)
Factor:GOTO (11)
Variable:GOTO (17)
state #7:

state #8:

state #9:

state #10:

state #11:

state #12:
Variable:GOTO (14)
state #13:

state #14:

state #15:
Factor:GOTO (16)
Variable:GOTO (17)
state #16:

state #17:

state #18:

state #19:

state #20:

state #21:
Term:GOTO (22)
Factor:GOTO(11)
Variable:GOTO (17)
state #22:

state #23:

state #24:
Expr:GOTO (25)
Term:GOTO (10)
Factor:GOTO(11)
Variable:GOTO (17)
state #25:

state #26:

state #27:

Test 2003

Page 7 of 18

Computer Science 330 Test 2003 Page 8 of 18

This page left blank for formatting purposes

Computer Science 330 Test 2003

Computer Science 330
Language Implementation Test
Thursday 10" April 2003

Answer Booklet

Page 9 of 18

Surname

Given Names

Student ID Number

Login Name

Normal Signature

1 /15
2(a) 120
2(b) /7
2(c) 120
2(d) /8
2(e) /10
3 120

Total /100

Computer Science 330 Test 2003 Page 10 of 18

Do not write on this page.

It will not be returned to you.

Computer Science 330 Test 2003 Page 11 of 18

Print your login name

Question 1 15 Marks

Write regular expressions to match the following tokens. Read the specifications carefully! They are
not necessarily the same as in the assignment or lecture notes.

(a) A character literal.

(5 marks)
(b) A floating point literal.

(5 marks)
(d) A possibly multi-line Java style comment.

(5 marks)

Computer Science 330 Test 2003 Page 12 of 18

Question 2 65 marks

(a)

Using the information provided in the appendix, perform a shift-reduce LALR(1) parse of the input
b 100 \n
a ++ b * - 200 \n

Show both the symbols and states on the stack, the current token, and the action performed at each
stage.

Stack Input Action
$0 IDb |Red SL ->¢
$0 SL 1 Shift ID 4
$0 SL1 (ID4 =

$0 SL 1

$0 SL 1 100

$0 SL 1 \n

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1 ID a

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1

$0 SL 1 $

$0 SL 1

$0 SL 1 Shift $ 8
$0 SL1 [$8 $ Red $Start -> SL $
$0 $Start |-1 Accept

(20 marks)

Computer Science 330 Test 2003 Page 13 of 18

Print your login name

(b) Draw the full parse tree, showing all rules used in the above shift-reduce LALR(1) parse. (7 marks)

($Start -> SL $>

SL ->SL S

Computer Science 330 Test 2003 Page 14 of 18

(©) (20 marks)

Draw the first graph for this grammar.

D
D
D
@
D
D

Draw the follow graph for this grammar.

D
D
D
D

Computer Science 330 Test 2003 Page 15 of 18

Print your login name

Indicate the first and follow sets for the grammar

Symbol First Set Follow Set

StmtList

Stmt

Expr

Term

Factor

Variable

(d) Indicate an appropriate action to evaluate the rule
Factor::= Variable:name INC ;

and return the value of the Factor. Assume Variable returns the name (identifier) of the variable, and
that the values of variables are stored in a Hashtable. (8 marks)

Computer Science 330 Test 2003 Page 16 of 18

(e) State 11is ...
@) Write down the set of items for goto(state 1, Variable). (5 marks)

(i1) Write down the set of items for goto(state 1, INC). (5 marks)

Computer Science 330 Test 2003 Page 17 of 18

Print your login name

Question 3 20 marks

Write a grammar to parse a (general) method declaration, with the specified syntax. You may assume that
grammar rules have been provided for Types and BlockStatements. You do not have to write any actions.

Computer Science 330 Test 2003 Page 18 of 18

