
 Page 1 of 13

1. Bottom Up LALR(1) Parsing [24 Marks]
Consider the CUP grammar in the Appendix For Question 1. Note that some rules are left
recursive, while other rules are right recursive. Also note the rule for “ConcatExpr” that expands to
empty.
(a) Using the information provided in the appendix, perform a shift-reduce LALR(1) parse of the

input
 a[bc]|d

 Assume “a ”, “b ”, “c ”, “d”, match CHAR, and “[”, “]” and “|” match LEFTSQ, RIGHTSQ and
OR, respectively.

Stack Token Action
$0 CHAR a Reduce CE ::=
$0 CE 2 Shift CHAR 5

$0 CE 2 CH 5 [Reduce SE ::= CHAR

$0 CE 2 SE 4 Reduce CE ::= CE SE

$0 CE 2 Shift [6

$0 CE 2 [6 CHAR b Shift CHAR 9

$0 CE 2 [6 CH 9 CHAR c Reduce E ::= CHAR

$0 CE 2 [6 E 7 Shift CHAR 9

$0 CE 2 [6 E 7 CH 9] Reduce E ::= CHAR

$0 CE 2 [6 E 7 E 7 Reduce EL ::= E

$0 CE 2 [6 E 7 EL 13 Reduce EL ::= E EL

$0 CE 2 [6 EL 8 Shift] 12

$0 CE 2 [6 EL 8] 12 | Reduce SE ::= [EL]

$0 CE 2 SE 4 Reduce CE ::= CE SE

$0 CE 2 Reduce OE ::= CE

$0 OE 1 Shift OR 16

$0 OE 1 | 16 CHAR d Reduce CE ::=

$0 OE 1 | 16 CE 17 Shift CHAR 5

$0 OE 1 | 16 CE 17 CH 5 $ Reduce SE ::= CHAR

$0 OE 1 | 16 CE 17 SE 4 Reduce CE ::= CE SE

$0 OE 1 | 16 CE 17 Reduce OE ::= OE OR CE

$0 OE 1 Shift $18
$0 OE 1 $18 Reduce $START ::= OE $
$0 $start -1 Accept

 (14 marks)

 Page 2 of 13

(b) Draw the parse tree corresponding to the grammar rules used to parse this input

$start ::= OrExpr $

ConcatExpr ::= SimpleExpr ::= CHAR

ConcatExpr ::= ConcatExpr SimpleExpr

Element ::= CHAR ElementList ::= Element

ElementList ::= Element ElementList

SimpleExpr ::= [ElementList]

OrExpr ::= OrExpr | ConcatExpr

OrExpr ::= ConcatExpr

ConcatExpr ::= ConcatExpr SimpleExpr

ConcatExpr ::=

ConcatExpr ::= ConcatExpr SimpleExpr

SimpleExpr ::= CHAR

Element ::= CHAR

a

b

c

d

 (4 marks)

 Page 3 of 13

(c) State 2 is
 lalr_state [2]: {
 [SimpleExpr ::= (*) LEFTSQ ElementList RIGHTSQ ,
 {EOF OR LEFT RIGHT LEFTSQ CHAR }]
 [OrExpr ::= ConcatExpr (*) , {EOF OR RIGHT }]
 [SimpleExpr ::= (*) LEFT OrExpr RIGHT ,
 {EOF OR LEFT RIGHT LEFTSQ CHAR }]
 [ConcatExpr ::= ConcatExpr (*) SimpleExpr ,
 {EOF OR LEFT RIGHT LEFTSQ CHAR }]
 [SimpleExpr ::= (*) CHAR ,
 {EOF OR LEFT RIGHT LEFTSQ CHAR }]
 }

 Derive the sets of items of State 6 = GoTo(State 2, LEFTSQ). Remember to take the closure
to get the full set of items, and remember to compute the follow symbols.

lalr_state [6]: {
[SimpleExpr ::= LEFTSQ (*) ElementList RIGHTSQ , {EOF OR LEFT RIGHT LEFTSQ CHAR

}]
 [ElementList ::= (*) Element ElementList , {RIGHTSQ }]
 [ElementList ::= (*) Element , {RIGHTSQ }]
 [Element ::= (*) CHAR , {RIGHTSQ CHAR }]
 [Element ::= (*) CHAR MINUS CHAR , {RIGHTSQ CHAR }]
}
 (6 marks)

 Page 4 of 13

2. Write a grammar for variable declarations [14 Marks]
 A (simplified) Java variable declaration is composed of a type, followed by a “,” separated list

of declarators, then a “;”. A type is either a primitive type (“int”, “char”, etc), identifier (e.g.,
“String”), or an array type (a type followed by “[]”s, e.g., “int[]”, “String[][]”). A declarator
can be either uninitialised (just an identifier) or initialised (“identifier = initialiser”). An
initialiser can be either an expression, or an array initialiser. An array initialiser is an optional
“,” separated list of initialisers enclosed in “{...}”s.

 For example, the following represent variable declarations:
 int a, b, d = 3, e = 4, f;
 int[] g = { 1, 2, 3 }, h = new int[3], i;
 int[][] j = { { 1, 2, 3 }, new int[3], { 4, 5, 6 } };
 String[] k = { “yes”, “no”, “maybe” };

 Write a grammar for variable declarations in general. You do not have to define what a
primitive type or expression is (and note that array constructors such as “new int[3]” are
expressions). Unlike Java, you should not allow modifiers, “[]”s after the identifier being
declared, or an additional “,” after the last initialiser in an array initialiser. You do not have to
write actions.

VariableDecl ::= Type DeclrList “;”
Type ::= PrimitiveType | IDENT | Type “[“ “]”
DeclrList ::= Declr | DeclrList “,” Declr
Declr ::= IDENT | IDENT “=” Initialiser
Initialiser ::= Expr | “{“ InitialiserListOpt “}”
InitialiserListOpt ::= /* empty */ | InitialiserList
InitialiserList ::= Initialiser | InitialiserList “,” Initialiser
 (14 marks)

 Page 5 of 13

3. Interpretation [15 Marks]
 Consider the INTERP9/BHP language of Assignment 2.
(a) Describe the general structure of a runtime environment.

A hash table containing a mapping from names to variables. A variable then maps to a value.
 (1 mark)

 (b) Explain how var parameters can be implemented using this representation.

two different hash tables can map a name to the same variable.
 (2 marks)

(c) Explain how a runtime environment can be used to represent an array. Give an example of a
program with
• A function that takes a list of values as parameters, and creates an array with those

values as elements.
• A function that takes an array as a parameter, and loops printing the values of the

elements.
• Global code to invoke the functions to create the array and print out its elements.

 When invoke a function, creates a local environment that maps the parameter positions to
actual parameters, and # to number of parameters. A function can have more actual
parameters than formal parameters, so it is possible to pass an arbitrary number of parameters.
Moreover , it is possible return the local environment, by returning $this, and later use this
environment as an arrray.

function array()
 begin
 return $this;
 end

function printArray($a)
 begin
 for
 $i = 1;
 do
 break $i > $a[#];
 print("$a[$i] ");
 step
 $i++;
 end
 print("\n");
 end
$a = array(1, 2, 4, 8, 16, 32);
printArray($a);

 (6 marks)

(d) Draw a diagram showing the runtime environments that would be generated by the following
program, at the time when the function f is being invoked.

 function f($a, $b, &$c)
 begin
 // show at this point
 end
 $x = happy;
 $y = x;
 $z = $x;
 f(sad, $x, &$x, $y); // Note extra actual parameter

 Page 6 of 13

this

x

y

z

this

a

b

c

0

1

2

3

4

#

happy

x

f

sad

4

 (6 marks)

 Page 7 of 13

4. Show the run time stack for an INTERP7 program [15 Marks]
Use the program written in the Chapter 8 INTERP7 language in the Appendix For Question 4.
Complete the drawing of the data structure built for the global variables “source1”, “source2” and
“dest”.
Display the stack frames (activation records) for all methods in the process of being invoked when
the maximum level of nesting of method invocations occurs when the statement
merge(0, source1, source2, dest);

on line 47 is invoked, and the process is almost ready to return. At this stage the process should be
executing the method “merge” at line 33.
Indicate the appropriate values for each stack frame (activation record) you draw. The line numbers
on the left-hand side of the program should be used to represent the return address. Draw
appropriate arrows for the var parameters, and pointers to objects. For var parameters, make sure
you indicate the exact field pointed to in an object very clearly. Represent List nodes as shown in
the sample entries.
Also indicate the output generated by the complete execution of the program.

Output generated:
{ 1, 5 }
{ 2, 5, 7, 9 }
{ 1, 2, 5, 7, 9 }

 (3 marks)

 Page 8 of 13

value 2
next

value 7
next

value 1
next

value 5
next

source1

source2

dest

main program

level

source1

dest

merge

return address
line 48

value 9
next null

0

value 5
next

source2

value 2
next

value 1
next

value 5
next

level

source1

dest

merge

return address
line 24

1

source2

level

source1

dest

merge

return address
line 28

2

source2

level

source1

dest

merge

return address
line 32

3

source2

null

 (12 marks)

 Page 9 of 13

5. Implementation of object oriented languages [16 Marks]
 Use the Java program in the Appendix For Question 5.
(a) Draw a diagram showing the data structures (object, field table, method table, etc) created for

the variables a, b1, b2, c, within the method Main.main. Shared data structures should be
drawn only once.

Method table for A

a

b1

b2

Fields

Methods
1A.p

getClass() A.getClass()

Field table for a

Fields

Methods

Object

toString() A.toString()

equals(Object) Object.equals(Object)

Method table for B

4

9

Field table for b1

A.p

A.q

f(char) A.f(char)

f(double) A.f(double)

c

Fields

Methods
4

3000

Field table for c

A.p

A.q

A.q

p() A.p()

q() A.q()

1000

2000

8

B.p

B.q

getClass() B.getClass()

toString() B.toString()

equals(Object) Object.equals(Object)

f(char) A.f(char)

f(double) B.f(double)

p() A.p()

q() B.q()

f(int) B.f(int)

Method table for C

getClass() C.getClass()

toString() A.toString()

equals(Object) Object.equals(Object)

f(char) A.f(char)

f(double) A.f(double)

p() A.p()

q() A.q()
 (11 marks)

 Page 10 of 13

 (b) Indicate the output generated by the method Main.main.

A a.p = 1 a.q = 1000

B b1.p = 2000 b1.q = 8

B b2.p = 4 b2.q = 9

A c.p = 4 c.q = 3000

 b1.p() = 4 b1.q() = 8

 b2.p() = 4 b2.q() = 8

b1.f('A') = A.f('A')

b2.f('A') = A.f('A')

b1.f(65) = B.f(65)

b2.f(65) = B.f(65.0)

(5 marks)

 Page 11 of 13

6. Code generation [16 Marks]
Consider the program written in the assignment 3 OBJECT7 language in the Appendix For
Question 6.
(a) Explain why the lines
 y = a;
 z = list[i];

 are legal in the OBJECT7 language.

references to []type are converted to ^type, and references to a class are converted to ^class.
so the 3 assignments correspond to assignment of values of type ^int, ^List.
 (2 marks)

 Page 12 of 13

(b) Indicate the code likely to be generated to implement the following statements
Notes:
 An appendix is provided with common Alpha instructions.
 Addresses are represented using 8 bytes on the Alpha.
 Each statement should be translated independently, and not make use of values left in

registers from previous declarations or statements.
y = a;

ldiq $t0, a;
ldiq $t1, y;
stq $t0, 0($t1);
 (1 mark)
y = p;

ldiq $t0, p;
ldq $t0, 0($t0);
ldiq $t1, y;
stq $t0, 0($t1);
 (1 mark)
x = p^;

ldiq $t0, p;
ldq $t0, 0($t0);
ldq $t0, 0($t0);
ldiq $t1, x;
stq $t0, 0($t1);
 (2 marks)
x = a[i];

ldiq $t0, a;
ldiq $t1, i;
ldq $t1, 0($t1);
s8addq $t1, $t0, $t0;
ldq $t0, 0($t0);
ldiq $t1, x;
stq $t0, 0($t1);
 (2 marks)

 Page 13 of 13

y = &a[i];

ldiq $t1, a;
ldiq $t2, i;
ldq $t2, 0($t2);
s8addq $t2, $t1, $t1;
ldiq $t0, y;
stq $t0, 0($t1);
 (2 marks)
y = b[i];

ldiq $t0, b;
ldiq $t1, i;
ldq $t1, 0($t1);
mulq $t1, 40, $t1;
addq $t0, $t1, $t0;
ldiq $t1, y;
stq $t0, 0($t1);
 (2 marks)
z = list[i];

ldiq $t0, list;
ldiq $t1, i;
ldq $t1, 0($t1);
mulq $t1, 16, $t1;
addq $t0, $t1, $t0;
ldiq $t1, z;
stq $t0, 0($t1);
 (2 marks)
z++;

ldiq $t1, z;
ldq $t0, 0($t1);
addq $t0, 16, $t2;
stq $t2, 0($t1);
 (2 marks)

__________________End of Questions________________

