Question and Answer Booklet COMPSCI 330

THE UNIVERSITY OF AUCKLAND

First Semester, 2007
City Campus

Computer Science

Language Implementation
(Time allowed TWO hours)

FAMILY NAME:

PERSONAL NAMES:

STUDENT ID NUMBER:

LOGIN NAME:

SIGNATURE:

This Examination is out of 100 Marks. Attempt ALL questions. Write your answers
in the spaces provided in this question and answer booklet. Do not remove the
staples from the question and answer booklet. However, you may detach and remove
the staples from the appendices.

1 10
2(a) 15
2(b) 5
3(a) 15
3(b) 5

4 17
5 18
6 15
Total 100

Continued ...

Question and Answer Booklet -2- COMPSCI 330
Print Name and Student ID
1. JFlex [10 Marks]
Indicate at least 10 different kinds of errors in the following fragment of JFlex code. (*...”
Jjust means omitted code). Give a reason or appropriate correction for each one. Assume line
breaks and spaces are not syntactically important. Assume comments can be nested.
5 {
int commentNest = 0;
int lineCount = 0;
5}
Sinit({
yybegin (NORMAL) ;
%init}
newline = \r|\n|\r\n
space = [\ 1\t]
ident = [A-Za-z] [A-Za-z0-9]+
number = [1-9]1[0-9]+
%state NORMAL, COMMENT
<NORMAL> {
ident { return token(sym.IDENT); }
if { return token(sym.IF); }
else { return token(sym.ELSE); }
(" { return token(sym.LEFT); }
" { return token(sym.RIGHT); }
{ return token(sym.DOT); 1}
"/ { commentNest++; return token(sym.COMMENT); }
{number} { return token(sym.NUMBER); 1}
{1}
{space} {1}
{

{newline}

}
<COMMENT> {

!l/*"

!l*/"

{newline}

}
<<EOF>>

lineCount++; }

commentNest++; }

—-—commentNest; if (commentNest ==)

}

return token (

yyend (COMMENT

e e TSN

sym.LEXERROR); }

{ return token(sym.EOF); 1}

)7}

Continued ...

Question and Answer Booklet -3- COMPSCI 330

Print Name and Student ID

(10 marks)

Continued ...

Question and Answer Booklet -4 - COMPSCI 330

Print Name and Student ID
2. Bottom Up LALR(1) Parsing [20 Marks]

Consider the CUP grammar in the Appendix For Question 2. Note that the rules for RHSList are
left recursive, while the rules for symbolList are right recursive. Also, SymbolList can expand to
empty.

(a) Using the information provided in the appendix, perform a shift-reduce LALR(1) parse of the
input
Body ::= BEGIN StmtList:stmtList END | ;

bb) [ba) [

Assume “Body”, “BEGIN”, “StmtList”, “stmtList”, and “END” match IDENT, and “::=",
“:”, %17 and ;7 match EXPANDSTO, COLON, OR and SEMICOLON, respectively.
Stack Token Reduce Shift

$0 ID Body Shift 2

$0 | ID2 i= Shift 3

$0 | ID2 u=3 ID BGN Shift 7

$0 | ID2 x=3 | ID7 ID StmtL. | Sym ::=1D Shift

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0 | Rulel Shift 14

$0 | Rulel $14 $ $start ::= Rule $ | Shift -1

$0 | $strt -1 Accept

(15 marks)

Continued ...

Question and Answer Booklet -5- COMPSCI 330

Print Name and Student ID

(b) Draw the parse tree corresponding to the grammar rules used to parse this input

@start ::=Rule $>

@ule w=1D ;= RHSLD

(3

t5)

ody

(5 marks)

Continued ...

Question and Answer Booklet -6- COMPSCI 330

Print Name and Student ID

3.
(a)

Write a grammar for component invocation statements, etc [20 Marks]
Consider the language of assignment 2, used to specify logic circuits.

Some typical component invocation statements in this language are
input ("opd", 10, 100, base, n) { out opd };

{ in result } output("result", 10, 200, base, n);

{ in opdl opd2 } xor(2) { out sum };

{ in valuel, value2, carryIn } add(n) { out result, carryOut };
{ in clkOpdl resultl } or(2).not(1) { out result2 };

{ in opdl[i 1, opd2[i], carry[i] } fullAdder
{ out sum[i], carryl 1 + 1 1 };

{ in opdl[n / 2 @ 0], opd2[n / 2 @ 0] }
compare(n / 2)
{ out lesslLow, equallow, greaterLow };

{ in cond, opd[n - p @ 0] zero opd } select(1, n) { out result };

The “.” separated list of “IDENT (ExprList)” represents a “pipelined” list of invocations,
where the output paths from a preceding invocation become the input paths of the following
invocation. Normally there is only one invocation.

The input path parameters “{ in ... }”, value parameters “(...)”, and output path parameters
“{ out ... }” are omitted if there are no parameters of the appropriate type.

The actual value parameters are a “,” separated list of one or more value expressions
(“Expr’s).

The actual input and output parameters are a “,” separated list of one or more path array
expressions.

A path array expression is a list of zero or more path names, side by side, with nothing in
between.

A path name is a simple path name (“IDENT”), indexed path name (“IDENT[Expr]”), or
subarray path name (“IDENT[Expr @ Expr]”).

Write a grammar for component invocation statements in general.
You do not have to define the grammar for a value expression (“Expr”).

You do not have to include any actions (““{...}”) or attribute names (“:ident”). You may write
terminal symbols such as keywords (“in”, “out”, etc), and special symbols (*,”, “(”, ©)”, etc)

directly by enclosing them in double quotes (*...”).

Continued ...

Question and Answer Booklet -7- COMPSCI 330

Print Name and Student ID

Continued ...

Question and Answer Booklet -8- COMPSCI 330

Print Name and Student ID

(15 marks)

Continued ...

Question and Answer Booklet -9- COMPSCI 330

Print Name and Student ID

(b) Write a component declaration
component { in opdl, opd2 } compareBit { out less, equal, greater }
begin

end

9 <6

to set the value of the paths “less”, “equal”, and “greater” to indicate whether “opdl < opd2”,
“opdl == opd2”, and “opdl > opd2”.

(5 marks)

Continued ...

Question and Answer Booklet - 10 - COMPSCI 330

Print Name and Student ID

4. Show the run time stack for a B-- program [17 Marks]
Use the program written in the B-- language in the Appendix For Question 4.

Complete the drawing of the data structure built for the global variables “sourcel”, “source2” and
“dest”.

Use multiple colours (other than red) for arrows, etc., to make your diagram clearer.

Display the activation records (stack frames) for all methods in the process of being invoked when

the maximum level of nesting of method invocations occurs when the statement
merge(O, sourcel, source2, &dest); // Inside this invocation

on line 74 is invoked, and the process is almost ready to return. At this stage the process should be
executing the method “merge” at line 58.

Indicate the appropriate values for each activation record (stack frame) you draw. The line numbers
on the left-hand side of the program should be used to represent the return address. Draw
appropriate arrows for the var parameters, and pointers to objects. For var parameters, make sure
you indicate the exact variable pointed to in an object very clearly. Represent List nodes as shown
in the sample entries.

Also indicate the output generated by the complete execution of the program.

Output generated:

(2 marks)

Continued ...

Question and Answer Booklet -11- COMPSCI 330
Print Name and Student ID
main program
sourcel
source2
merge dest

return address
line 75

Tevel 0
sourcel
source2
dest

value 1
next /

B

value 5
next Y

B

value 8
next /

B

value 9
next

value 1
next Y

B

value 6
next null
(15 marks)

Continued ...

Question and Answer Booklet

Print Name and Student ID

COMPSCI 330

5. Implementation of object oriented languages [18 Marks]
Use the Java program in the Appendix For Question 5.

(a) Draw a diagram showing the data structures (variable, field table, method table, etc) created
for the variables a1, a2, c, a, within the method Main.main. Shared data structures should be
drawn only once.

Aal

Methods

getClass() Object.getClass()
class [A.class i

toString() [A.toString()
Ax [123 .

equals(Object) Object.equals(Object)
xO | Ax0
f(int) Af(mt)
(12 marks)

Continued ...

Question and Answer Booklet - 13- COMPSCI 330

Print Name and Student ID

(b) Indicate the output generated by the method Main.main.

Constructor A(123)

al.getClass () class A

az.getClass () =

a.getClass()
c.getClass () =
al = A.toString()
a2 =

a =

c =

al.x = 123

123

o)
—
X

Il

o)
N
X

Il

(6 marks)

Continued ...

Question and Answer Booklet - 14 - COMPSCI 330

Print Name and Student ID

6. Code generation [15 Marks]
(a) Consider the the B-- language.
What action has to be performed at run time to initialise an object?
(2 marks)
What are the $pv, $ra, $fp, $ip, and $nip registers used for, and when are they used?
$pv
$ra
$fp
$ip
$nip
(5 marks)
(b) Consider the following program written in the B-- language.

void inc(“int dest; int change;)

begin
dest” = dest” + change;

end

int b = 5;

int ¢ = 3;

inc(&b, c);

printf ("%d\n", b);

Continued ...

Question and Answer Booklet -15- COMPSCI 330

Print Name and Student ID

Indicate the Alpha assembly language likely to be generated for the lines
dest” = dest” + change;

(3 marks)

and
inc(&b, c);

(5 marks)

An appendix is provided describing common Alpha instructions.

End of Questions

Continued ...

Question and Answer Booklet - 16 - COMPSCI 330

Print Name and Student ID

This Page is left blank for questions that overflow

Continued ...

Question and Answer Booklet -17 - COMPSCI 330

Print Name and Student ID

This Page is left blank for questions that overflow

Continued ...

Question and Answer Booklet - 18 - COMPSCI 330

Print Name and Student ID

This Page is left blank for questions that overflow

End of Questions, Appendices follow

Appendices -19 - COMPSCI 330

Appendices

This Page is left blank for formatting purposes

Appendices Continued ...

Appendices -20 -

Appendix For Question 2

Grammar
terminal String
IDENT, EXPANDSTO, SEMICOLON, OR,
// ti= ; |
non terminal Rule, RHSList, SymbolList, Symbol;

start with Rule;

Rule::=
IDENT EXPANDSTO RHSList SEMICOLON
RHSList::=
SymbolList
|
RHSList OR SymbolList
SymbolList::=
/* Empty */
|
Symbol SymbolList
Symbol::=

IDENT

|
IDENT COLON IDENT

’

COMPSCI 330

COLON, ERROR;

//

//

//

//

//

//

//

Appendix For Question 2 Continued On Next Page

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

Rule 7

Appendices Continued ...

Appendices

-21 - COMPSCI 330

Appendix For Question 2 Continued ...

Action Table

From state #0
IDENT:SHIFT (2)
state #1
EOF:SHIFT (14)
state #2
EXPANDSTO:SHIFT (3)
state #3
IDENT:SHIFT (7)
state #4
SEMICOLON:SHIFT (11)
state #5
SEMICOLON:REDUCE (2)
state #6
IDENT:SHIFT (7)
state #7

IDENT :REDUCE (6)
COLON:SHIFT (8)
state #8
IDENT:SHIFT (9)
state #9

IDENT :REDUCE (7)
state #10
SEMICOLON:REDUCE (5)
state #11

EOF :REDUCE (1)
state #12
IDENT:SHIFT (7)
state #13
SEMICOLON:REDUCE (3)
state #14

EOF :REDUCE (0)

Reduce (Go To) Table

From state #0:
Rule:GOTO (1)

state #1:

state #2:

state #3:
RHSList:GOTO (4)
SymbolList:GOTO (5)
Symbol :GOTO (6)
state #4:

state #5:

state #6:
SymbolList:GOTO(10)
Symbol :GOTO (6)
state #7:

state #8:

state #9:

state #10:

state #11:

state #12:
SymbolList:GOTO (13)
Symbol :GOTO (6)
state #13:

state #14:

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From
From
From

From
From
From

From
From
From
From
From
From

From
From

SEMICOLON:REDUCE (4)

SEMICOLON:REDUCE (4)

SEMICOLON:REDUCE (6)

SEMICOLON:REDUCE (7)

SEMICOLON:REDUCE (4)

OR:REDUCE (4)
OR:SHIFT (12)
OR:REDUCE (2)
OR:REDUCE (4)

OR:REDUCE (6)

OR:REDUCE (7)

OR:REDUCE (5)

OR:REDUCE (4)

OR:REDUCE (3)

Appendices Continued ...

Appendices -22- COMPSCI 330

Appendix For Question 4

1 class List
2 begin

3 int value;

4 ~"List next;

5 end

6

7 int freeNode = 0;

8 [20]List nodeHeap;

9

10 "List new(int wvalue; "“List next;)
11 begin

12 ~“List node = nodeHeap[freeNode++];
13 node.value = value;

14 node.next = next;

15 return node;

16 end

17

18 void printList("List a;)

19 begin

20 printf("{ ");

21 while a != null do

22 printf ("%d", a.value);
23 a = a.next;

24 if a !'= null then
25 printf(", ");
26 end

27 end

28 printf("™ }");

29 end

30

31 void printlnList(~List a;)

32 begin

33 printList(a);

34 printf ("\n");

35 end

36

Appendix For Question 4 Continued On Next Page

Appendices Continued ...

Appendices

-3 -

Appendix For Question 4 Continued ...

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

COMPSCI 330

""List dest;)

&dest”.next);

source?2,

&dest”.next);

source?2.next,

&dest”.next);

source?2.next,

void merge(int level; "List sourcel, source2;
begin
if sourcel == null then
dest” = source?2;
elif source2 == null then
dest” = sourcel;
elif sourcel.value < source2.value then
dest” = new(sourcel.value, null);
merge (level + 1, sourcel.next,
elif sourcel.value > source2.value then
dest” = new(source2.value, null);
merge (level + 1, sourcel,
elif sourcel.value == source2.value then
dest” = new(sourcel.value, null);
merge (level + 1, sourcel.next,
end
end

“"List sourcel =

new(1,
new(5,
new(8,
new(9,
null))));

"List source2 =

new(1,
new(6,
null));
"List dest = null;
merge(0, sourcel, source2, &dest); //
printlnList (sourcel);
printlnList (source2);

printlnList (dest);

Inside this invocation

Appendices Continued ...

Appendices -24 -

Appendix For Question 5

class A {
public int x = 111;

public A() { System.out.println("Constructor A()"

public A(int x) {

System.out.println("Constructor A(" + x + "
this.x = x;
}
public int x() { return x; }
public String toString () { return "A.toString()";
public String f£(int z) { return "A.f(" + z + "

}

class B extends A {
public int x = 222;

public B() { System.out.println("Constructor B()"

public B(int x) {

System.out.println("Constructor B(" + x + "

this.x = x;

}
public String toString () { return "B.toString()";
public String f£(int z) { return "B.f(" + z + "
public int x() { return x; }

}

class C extends B {
public int x = 333;

public C() { System.out.println("Constructor C()"

public C(int x) |

System.out.println("Constructor C(" + x + "

this.x = x;

}
public String f£(char z) { return "C.f(\'" + z
}

Appendix For Question 5 Continued On Next Page

COMPSCI 330

}

}

)7

)"}

Appendices Continued ...

Appendices -25- COMPSCI 330

Appendix For Question 5 Continued ...
public class Main {
public final static void main(String[] arg) {
A al = new A(123);
A a2 = new B(456);
C c = new C(789);
A a = c;

System.out.println
System.out.println
System.out.println
System.out.println

"al.getClass () = " + al.getClass(
"a2.getClass () " + a2.getClass(
"a.getClass() = " + a.getClass()
"c.getClass() = " + c.getClass()

)7
)7

(
(
(
(

—_— — — —

System.out.println("al = " + al);
System.out.println("a2 = " + a2);
(
(

System.out.println("a =" + a);
System.out.println("c =" + ¢);
System.out.println("al.x = " + al.x);
System.out.println("a2.x = " + a2.x);

(

(
System.out.println("a.x =" + a.x);

(

System.out.println("c.x = " + c.x);

System.out.println("al.x() "+ oal.x())

System.out.println("az2.x() = " + a2.x());

System.out.println("a.x() =" + a.x());

System.out.println("c.x() =" + c.x());

// "A' is 65

System.out.println("al.f(N4 TAY 4 M\t) =" + al.f('A'"));
System.out.println("a.f(\'" + 'A' + "\') =" + a.f('A'));
System.out.println("c.£(\'" + 'A' + "\') =" + c.£('A'));

}

Appendices Continued ...

Appendices -26 -

Commonly used Alpha instructions

Integer operate instructions
Opcode $regA, S$regB, S$SregC
intReg|[regC] = intReg[regA] op intReg[regB]

Opcode S$regA, constantB, S$regC
The constant is an 8 bit unsigned constant.
intReg|[regC] = intReg[regA] op constantB

Arithmetic integer operate instructions

COMPSCI 330

addq add +
subq subtract -
mulq multiply *
divg/divqu divide, signed/unsigned /
modg/modqu modulo, signed/unsigned %
s8addq scaled 8 add 8*operandA+operandB
Shift integer operate instructions
sl shift left logical <<
srl shift right logical >>>
sra shift right arithmetic >>
Compare integer operate instructions
cmpeq compare equal ==
cmplt/cmpult compare less than | <
signed/unsigned
cmple/cmpule compare less than or equal | <=
signed/unsigned
Logical integer operate instructions
and and &
bic bit clear & ~
bis/or bit set/or I
eqv/xornot equivalent/exclusive or not A~
ornot or not | ~
Xor exclusive or A

Appendices Continued ...

Appendices -27 - COMPSCI 330

Memory instructions

Opcode S$regA, displacement (SregB)
Opcode $reghA, (SregB)

Opcode S$regA, constant

The displacement or constant is a 16 bit signed constant.
Load address instruction
intReg| regA] = displacement + intReg| regB]

‘ lda ‘ load address

Load memory instructions

intReg|[regA] = Memory|[displacement + intReg|[regB]]

1dq load quadword
1d1 load longword
ldbu load byte unsigned

Store memory instructions

Memory|[displacement + intReg[regB]] = intReg[regA]

stq store quadword
stl store longword
stb store byte

Branch instructions

Conditional branch instructions
Opcode $regA, destination

if (condition holds for intReg[regA])
programCounter = destination

beq branch equal

bne branch not equal

blt branch less than

ble branch less than or equal
bgt branch greater than

bge branch greater than or equal
blbs branch low bit set

blbc branch low bit clear

Unconditional branch instructions
Opcode destination;

programCounter = destination /1 br
intReg[ra | = programCounter /I bsr
programCounter = destination

br branch

bsr branch to subroutime

Appendices Continued ...

Appendices -28 -
Jump instruction

Opcode ($regh);

programCounter = intReg[regA] /[jmp
intReg[ra | = programCounter Il jsr
programCounter = intReg[regA]

jmp jump

jsr jump to subroutine

Return instruction

programCounter = intReg| ra]

ret ‘ return

Callpal instruction
call pal constant;

The constant is a 26 bit constant.

call_pal ‘ call PALcode

Pseudoinstructions

Load immediate
ldig SregA, constant

The constant is a 64 bit constant.
intReg| regA] = constant

1diq load immediate quadword
Clear
clr $regA
intReg[regA] =0
‘ clr clear

Unary pseudoinstructions
Opcode $regB, S$regC
intReg|[regC] = op intReg| regB]

Opcode constantB, S$regC
The constant is an 8 bit unsigned constant.
intReg| regC] = op constantB

mov move

negq negate

End of Appendices

COMPSCI 330

End of Appendices

