Question and Answer Booklet COMPSCI 330

THE UNIVERSITY OF AUCKLAND

First Semester, 2005
City Campus

Computer Science

Language Implementation
(Time allowed TWO hours)

FAMILY NAME:

PERSONAL NAMES:

STUDENT ID NUMBER:

LOGIN NAME:

SIGNATURE:

This Examination is out of 100 Marks. Attempt ALL questions. Write your answers
in the spaces provided in this question and answer booklet. Do not remove the
staples from the question and answer booklet. However, you may detach and remove
the staples from the appendices.

1 24
2 14
3 15
4 15
5 16
6 16
Total 100

Continued ...

Question and Answer Booklet -2- COMPSCI 330

Print Name
1. Bottom Up LALR(1) Parsing [24 Marks]

Consider the CUP grammar in the Appendix For Question 1. Note that some rules are left
recursive, while other rules are right recursive. Also note the rule for “ConcatExpr” that expands to
empty.

(a) Using the information provided in the appendix, perform a shift-reduce LALR(1) parse of the
input
albc] |d

[9 < 9 ¢ ba) e .9

Assume “a”, “b”, “c ”, “d”, match cHAR, and
OR, respectively.
Stack Token Action
$0 CHAR a | Reduce | CE ::=

“r”,“1” and “|” match LEFTSQ, RIGHTSQ and

$0 | CE2 Shift CHAR 5

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0

$0 | OE 1 $18 Reduce | $START ::=OE $

$0 | $start -1 Accept

(14 marks)

Continued ...

Question and Answer Booklet -3- COMPSCI 330

Print Name

(b) Draw the parse tree corresponding to the grammar rules used to parse this input

@start ::= OrExpr $)

@rExpr ::= OrExpr | ConcatExpr)

(4 marks)

Continued ...

Question and Answer Booklet -4 - COMPSCI 330

Print Name

(c) State2is
lalr state [2]: {

[SimpleExpr ::= (*) LEFTSQ ElementList RIGHTSQ ,
{EOF OR LEFT RIGHT LEFTSQ CHAR 1}]
[OrExpr ::= ConcatExpr (*) , {EOF OR RIGHT }]
[SimpleExpr ::= (*) LEFT OrExpr RIGHT ,
{EOF OR LEFT RIGHT LEFTSQ CHAR 1}]
[ConcatExpr ::= ConcatExpr (*) SimpleExpr ,
{EOF OR LEFT RIGHT LEFTSQ CHAR 1}]
[SimpleExpr ::= (*) CHAR ,

{EOF OR LEFT RIGHT LEFTSQ CHAR }]
}

Derive the set of items of State 6 = GoTo(State 2, LEFTSQ). Remember to take the closure
to get the full set of items, and remember to compute the follow symbols.

(6 marks)

Continued ...

Question and Answer Booklet -5- COMPSCI 330

Print Name

2.

Write a grammar for variable declarations [14 Marks]

(T34

A (simplified) Java variable declaration is composed of a type, followed by a “,” separated list
of declarators, then a “;”. A type is either a primitive type (“int”, “char”, etc), identifier (e.g.,
“String”), or an array type (a type followed by “[]”s, e.g., “int[]”, “String[][]”). A declarator
can be either uninitialised (just an identifier) or initialised (“identifier = initialiser”). An
initialiser can be either an expression, or an array initialiser. An array initialiser is an optional
“” separated list of initialisers enclosed in “{...}”s.

For example, the following represent variable declarations:

int a, b, d 3, e =4, £;

int[] 9 ={1, 2, 3}, h = new int[3 1, 1i;
int(10] 3 = ({1, 2, 3}, new int[3], { 4, 5, 6 } };
String[] k = { “yes”, “no”, “maybe” };

Write a grammar for variable declarations in general. You do not have to define what a
primitive type or expression is (and note that array constructors such as “new int[3 |” are
expressions). Unlike Java, you should not allow modifiers, “[]”s after the identifier being
declared, or an additional “,” after the last initialiser in an array initialiser. You do not have to
write actions.

Continued ...

Question and Answer Booklet -6- COMPSCI 330

Print Name

(14 marks)

Continued ...

Question and Answer Booklet -7- COMPSCI 330

Print Name
3. Interpretation [15 Marks]
Consider the INTERP9/BHP language of Assignment 2.

(a) Describe the general structure of a runtime environment.

(1 mark)

(b) Explain how var parameters can be implemented using this representation.

(2 marks)

Continued ...

Question and Answer Booklet -8- COMPSCI 330

Print Name

(c)

Explain how a runtime environment can be used to represent an array. Give an example of a
program with

. A function that takes a list of values as parameters, and creates an array with those
values as elements.
. A function that takes an array as a parameter, and loops printing the values of the
elements.
. Global code to invoke the functions to create the array and print out its elements.
(6 marks)

(d)

Draw a diagram showing the runtime environments that would be generated by the following
program, at the time when the function f is being invoked.
function f($a, $b, &$c)
begin
// show at this point

end
$x = happy;
Sy = x;
Sz = $x;

f(sad, $x, &$x, Sy);

Continued ...

Question and Answer Booklet -9- COMPSCI 330

Print Name

(6 marks)

Continued ...

Question and Answer Booklet - 10 - COMPSCI 330

Print Name

4. Show the run time stack for an INTERP7 program [15 Marks]

Use the program written in the Chapter 8 INTERP7 language in the Appendix For Question 4.

Complete the drawing of the data structure built for the global variables “sourcel”, “source2” and
“dest”.

Display the stack frames (activation records) for all methods in the process of being invoked when

the maximum level of nesting of method invocations occurs when the statement
merge (0, sourcel, source?2, dest);

on line 47 is invoked, and the process is almost ready to return. At this stage the process should be
executing the method “merge” at line 33.

Indicate the appropriate values for each stack frame (activation record) you draw. The line numbers
on the left-hand side of the program should be used to represent the return address. Draw
appropriate arrows for the var parameters, and pointers to objects. For var parameters, make sure
you indicate the exact field pointed to in an object very clearly. Represent List nodes as shown in
the sample entries.

Also indicate the output generated by the complete execution of the program.

Output generated:

(3 marks)

Continued ...

Question and Answer Booklet -11- COMPSCI 330
Print Name
main program
sourcel
source?

merge dest

return address

line 48

level 0

sourcel

source?2

dest
value 1
next Y
value 5
next
value 2
next Y
value 5
next Yz
value 7
next Y

value 9
next null
(12 marks)

Continued ...

Question and Answer Booklet

Print Name

COMPSCI 330

5. Implementation of object oriented languages

Use the Java program in the Appendix For Question 5.

[16 Marks]

(a) Draw a diagram showing the data structures (object, field table, method table, etc) created for
the variables a, b1, b2, ¢, within the method Main.main.

drawn only once.

Shared data structures should be

a Object
Field table for a
Fields
Ap 1
Methods
Aq | 1000
Method table for A
getClass() | A.getClass()
toString() | A.toString()
equals(Object) | Object.equals(Object)
f(double) | A.f(double)
f(char) | A.f(char)
pO | ApO
q0 | A.q0

Continued ...

Question and Answer Booklet - 13- COMPSCI 330

Print Name

(11 marks)

(b) Indicate the output generated by the method Main.main.

A a.p =1 a.g = 1000
bl.p = bl.g =
b2.p = b2.q =
c.p = c.g =
bl.p() = bl.qg() =
b2.p() = b2.q() =

bl.f('A'") =

pb2.£('A') =

bl.f(65) =

b2.f(65) =

(5 marks)

Continued ...

Question and Answer Booklet - 14 - COMPSCI 330

Print Name

6. Code generation [16 Marks]

Consider the program written in the assignment 3 OBJECT7 language in the Appendix For
Question 6.

(a) Explain why the lines
y = ay
z list[1 1;

are legal in the OBJECT7 language.

(2 marks)

(b) Indicate the code likely to be generated to implement the following statements
Notes:

An appendix is provided with common Alpha instructions.

Addresses are represented using 8 bytes on the Alpha.

Each statement should be translated independently, and not make use of values left in
registers from previous declarations or statements.
y = a;

(1 mark)

(1 mark)

Continued ...

Question and Answer Booklet -15- COMPSCI 330

Print Name
X = p";

(2 marks)
x = al 1]

(2 marks)
y = &al[1]

(2 marks)

Continued ...

Question and Answer Booklet - 16 - COMPSCI 330

Print Name
y = bl 1 1;

(2 marks)
z = list[1 1;

(2 marks)
zZ++;

(2 marks)

End of Questions

Continued ...

Question and Answer Booklet -17 - COMPSCI 330

Print Name

This Page is left blank for questions that overflow

Continued ...

Question and Answer Booklet - 18 - COMPSCI 330

Print Name

This Page is left blank for questions that overflow

End of Questions, Appendices follow

Appendices -19 - COMPSCI 330

Appendix For Question 1

Grammar
terminal String
OR, LEFT, RIGHT, LEFTSQ, RIGHTSQ, MINUS, CHAR;
// | () [] - Any other char

non terminal OrExpr, ConcatExpr, SimpleExpr, ElementList, Element;
start with OrExpr;

OrExpr: :=
OrExpr OR ConcatExpr
|

ConcatExpr

’

ConcatExpr::=
/* Empty*/
|
ConcatExpr SimpleExpr

’

SimpleExpr::=
LEFTSQ ElementList RIGHTSQ

|
CHAR

|
LEFT OrExpr RIGHT

’

ElementList::=
Element

Element ElementList

’

Element::=
CHAR

CHAR MINUS CHAR

Appendix For Question 1 Continued On Next Page

Appendices Continued ...

Appendices

-20 -

Appendix For Question 1 Continued ...

Rules

11:
10:
9:

O R N WD 1oy J

Element
Element
ElementList

ElementList :

SimpleExpr
SimpleExpr
SimpleExpr
ConcatExpr
ConcatExpr
OrExpr ::=
OrExpr ::=
$START ::=

Action Table

From state #0

EOF:REDUCE (3)
LEFTSQ:REDUCE (3)

From state #1

EOF:SHIFT

From state #2

EOF:REDUCE (2)
RIGHT:REDUCE (2)

From state #3

OR:REDUCE

LEFTSQ:REDUCE (3)

From state #4

EOF:REDUCE (4)
RIGHT:REDUCE (4)

From state #5

EOF:REDUCE (6)
RIGHT:REDUCE (6)

From state #6
CHAR:SHIFT (9)
From state #7

RIGHTSQ:REDUCE (8)

From state #8
RIGHTSQ:SHIFT (12)
From state #9

RIGHTSQ:REDUCE (10) MINUS:SHIFT (10)

From state #10
CHAR:SHIFT (11)

Appendix For Question 1 Continued On Next Page

= CHAR MINUS CHAR

:= CHAR

::= Element ElementList

:= Element

= LEFT OrExpr RIGHT

CHAR

: LEFTSQ ElementList RIGHTSQ
::= ConcatExpr SimpleExpr

ConcatExpr
OrExpr OR ConcatExpr
OrExpr EOF

OR:REDUCE (3) LEFT:REDUCE (3)
CHAR:REDUCE (3)

(18) OR:SHIFT(16)

OR:REDUCE (2) LEFT:SHIFT (3)
LEFTSQ:SHIFT (6) CHAR:SHIFT (5)

(3) LEFT:REDUCE (3) RIGHT:REDUCE (3)
CHAR:REDUCE (3)

OR:REDUCE (4) LEFT:REDUCE (4)
LEFTSQ:REDUCE (4) CHAR:REDUCE (4)

OR:REDUCE (6) LEFT:REDUCE (6)
LEFTSQ:REDUCE (6) CHAR:REDUCE (6)

CHAR:SHIFT (9)

CHAR:REDUCE (10)

COMPSCI 330

Appendices Continued ...

Appendices -21 -

Appendix For Question 1 Continued ...
From state #11
RIGHTSQ:REDUCE (11) CHAR:REDUCE (11)
From state #12
EOF:REDUCE (5) OR:REDUCE (5) LEFT:REDUCE (5)
RIGHT:REDUCE (5) LEFTSQ:REDUCE (5) CHAR:REDUCE (5)
From state #13
RIGHTSQ:REDUCE (9)
From state #14
OR:SHIFT(16) RIGHT:SHIFT(15)
From state #15
EOF:REDUCE (7) OR:REDUCE (7) LEFT:REDUCE (7)
RIGHT:REDUCE (7) LEFTSQ:REDUCE (7) CHAR:REDUCE (7)
From state #16
EOF:REDUCE (3) OR:REDUCE (3) LEFT:REDUCE (3)
RIGHT:REDUCE (3) LEFTSQ:REDUCE (3) CHAR:REDUCE (3)
From state #17
EOF:REDUCE (1) OR:REDUCE (1) LEFT:SHIFT (3)
RIGHT:REDUCE (1) LEFTSQ:SHIFT (6) CHAR:SHIFT (5)
From state #18
EOF :REDUCE (0)

Reduce (Go To) Table

From state #0:
OrExpr:GOTO (1)
ConcatExpr:GOTO (2)

From state #1:

From state #2:
SimpleExpr:GOTO (4)

From state #3:
OrExpr:GOTO (14)
ConcatExpr:GOTO (2)

From state #4:

From state #5:

From state #6:
ElementList:GOTO (8)
Element :GOTO (7)

From state #7:
ElementList:GOTO (13)
Element :GOTO (7)

From state #8:

From state #9:

From state #10:

From state #11:

From state #12:

From state #13:

From state #14:

From state #15:

From state #16:
ConcatExpr:GOTO(17)

From state #17:
SimpleExpr:GOTO (4)

From state #18:

COMPSCI 330

Appendices Continued ...

Appendices -22- COMPSCI 330
Appendix For Question 4

1 class List(int wvalue; List next;);

2

3 void printList(List source;) {

4 print("{ ");

5 while (source != null) {

6 print (source.value);

7 source = source.next;

8 if (source != null)

9 print(", ")

10 }

11 println(" }");

12 }

13

14 void merge(int level; List sourcel, source2; var List dest;) {

15 if (sourcel == null) {

16 dest = source2;

17 }

18 else if (source2 == null) {

19 dest = sourcel;

20 }

21 else if (sourcel.value < source2.value) {

22 dest = new List{ sourcel.value, null };

23 merge (level + 1, sourcel.next, source2, dest.next);

24 }

25 else if (sourcel.value > source2.value) {

26 dest = new List{ source2.value, null };

27 merge (level + 1, sourcel, source2.next, dest.next);

28 }

29 else if (sourcel.value == source2.value) {

30 dest = new List{ sourcel.value, null };

31 merge (level + 1, sourcel.next, source2.next, dest.next);

32 }

33 // Show state at this point

34 }

35

36 List sourcel =

37 new List{ 1,

38 new List{ 5,

39 null } };

40 List source2 =

41 new List{ 2,

42 new List{ 5,

43 new List{ 7,

44 new List{ 9,

45 null } } } };

46 List dest = null;

47 merge(0, sourcel, source2, dest); // Inside this invocation

48 printList(sourcel);

49 printList(source2);

50 printList(dest);

51

Appendices Continued ...

Appendices -23- COMPSCI 330

Appendix For Question 5

class A {
public int p =1, g = 2;

public A(int g) { this.qg = g; }
public A() { p = 4; }

public String toString () { return "A"; }

public String f(double x) { return "A.f(" + x + ")"; }
public String f£(char ¢) { return "A.f('"" + c + "')"; }
public int p() { return p; }

public int g() { return qg; }

}

class B extends A {
public int p = 5, g = 6;

public B(int p) { this.p = p; }
public B() {}

public String toString() { return "B"; }

public int g() { return qg; }

public String f£(int i) { return "B.f(" + 1 + ")"; }
public String f(double x) { return "B.f(" + x + ")"; }
}

class C extends A
public C() {
}

{
q = 3000; }

Appendix For Question 5 Continued On Next Page

Appendices Continued ...

Appendices

-4 -

Appendix For Question 5 Continued From Previous page ...

class Main {

public static void main (

A a =

A b2 = bl;

.out.
.out.
.out
.out.
.out.

.out.
.out.
.out.

(

(
.println(b2

(

(

new A(1000);
= new

B(2000);

new C();
= 8;
= 9;

a
bl

println
println

println(c
println();

+ + + +

String[] args

"\ta.p
"\tbl.p
"\tb2.p
"\tc.p

println("\tbl.p() ="

println("\tb2.p()

println();

is ASCII 65
println("bl.
println("b2.

.out.
.out.
.out.

.out.
.out
.out.

println();

println("bl.

println();

.println("b2.

1]

)

—_n

—l

+ bl.p()
+ b2.p()

1]

—1l

{

+ + + +

+ bl.f(
+ b2.f(

+ bl.f(
+ b2.f(

+ + + +

COMPSCI 330
"\ta.g ="+ a.q);
"\tbl.g =" + bl.qg);
"\tb2.g = " + b2.9);
"\tc.g ="+ c.q);
"\tbl.g() =" + bl.g());
"\tb2.9() =" + b2.g9());

'A')
'A')

65
65

Appendices Continued ...

Appendices -25-

Appendix For Question 6

[10 lint a;
~int p;
[10 1[5]int b;

int 1 = 4;
int x;
~int y;

class List
begin
int value;
"List next;
end

[10 JList 1list;

~"List z;

y = ay

Yy = ps

x = p";

x =al i 1;

y = &al 1 1;

y =bl i1;

z = list[i 1;
zZ++;

COMPSCI 330

Appendices Continued ...

Appendices -26 -

Commonly used Alpha instructions

Integer operate instructions
Opcode $regA, S$regB, S$SregC
intReg|[regC] = intReg[regA] op intReg[regB]

Opcode S$regA, constantB, S$regC
The constant is an 8 bit unsigned constant.
intReg|[regC] = intReg[regA] op constantB

Arithmetic integer operate instructions

COMPSCI 330

addq add +
subq subtract -
mulq multiply *
divg/divqu divide, signed/unsigned /
modg/modqu modulo, signed/unsigned %
s8addq scaled 8 add 8*operandA+operandB
Shift integer operate instructions
sl shift left logical <<
srl shift right logical >>>
sra shift right arithmetic >>
Compare integer operate instructions
cmpeq compare equal ==
cmplt/cmpult compare less than | <
signed/unsigned
cmple/cmpule compare less than or equal | <=
signed/unsigned
Logical integer operate instructions
and and &
bic bit clear & ~
bis/or bit set/or I
eqv/xornot equivalent/exclusive or not A~
ornot or not | ~
Xor exclusive or A

Appendices Continued ...

Appendices -27 - COMPSCI 330

Memory instructions

Opcode S$regA, displacement (SregB)
Opcode $reghA, (SregB)

Opcode S$regA, constant

The displacement or constant is a 16 bit signed constant.
Load address instruction
intReg| regA] = displacement + intReg| regB]

‘ lda ‘ load address

Load memory instructions

intReg|[regA] = Memory|[displacement + intReg|[regB]]

1dq load quadword
1d1 load longword
ldbu load byte unsigned

Store memory instructions

Memory[displacement + intReg[regB]] = intReg[regA]

stq store quadword
stl store longword
stb store byte

Branch instructions

Conditional branch instructions
Opcode $regA, destination

if (condition holds for intReg[regA])
programCounter = destination

beq branch equal

bne branch not equal

blt branch less than

ble branch less than or equal
bgt branch greater than

bge branch greater than or equal
blbs branch low bit set

blbc branch low bit clear

Unconditional branch instructions
Opcode destination;

programCounter = destination /I br
intReg[ra | = programCounter /l bsr
programCounter = destination

br branch

bsr branch to subroutime

Appendices Continued ...

Appendix -28 -
Jump instruction

Opcode ($regh);

programCounter = intReg[regA] /[jmp
intReg[ra | = programCounter Il jsr
programCounter = intReg[regA]

jmp jump

jsr jump to subroutine

Return instruction

programCounter = intReg| ra]

ret ‘ return

Callpal instruction
call pal constant;

The constant is a 26 bit constant.

call_pal ‘ call PALcode

Pseudoinstructions

Load immediate
ldig SregA, constant

The constant is a 64 bit constant.
intReg| regA] = constant

1diq load immediate quadword
Clear
clr $regA
intReg[regA] =0
‘ clr clear

Unary pseudoinstructions
Opcode $regB, S$regC
intReg|[regC] = op intReg| regB]

Opcode constantB, S$regC
The constant is an 8 bit unsigned constant.
intReg| regC] = op constantB

mov move

negq negate

End of Appendices

COMPSCI 330

End of Appendices

