Question and Answer Booklet COMPSCI 330

THE UNIVERSITY OF AUCKLAND

First Semester, 2004
City Campus

Computer Science

Language Implementation
(Time allowed TWO hours)

FAMILY NAME:

PERSONAL NAMES:

STUDENT ID NUMBER:

LOGIN NAME:

SIGNATURE:

This Examination is out of 100 Marks. Attempt ALL questions. Write your answers
in the spaces provided in this question and answer booklet. Do not remove the staples
from the question and answer booklet. However, you may detach and remove the
staples from the appendices.

1 24
2 16
3 13
4 16
5 16
6 15
Total 100

Continued ...

Question and Answer Booklet -2- COMPSCI 330

Print Name
1. Bottom Up LALR(1) Parsing [24 Marks]

Consider the CUP grammar in the Appendix For Question 1. Note that the rules for RHSList are
left recursive, while the rules for symbol1List are right recursive.

(a) Using the information provided in the appendix, perform a shift-reduce LALR(1) parse of the

input
Expr ::= MINUS Expr:expr | INTCONST:value ;
Assume “Expr 7, “MINUS 7, “expr 7, “INTCONST”, and “value” match IDENT, and
“::=",%1” and “;” match ExPANDSTO, OR and SEMICOLON, respectively.
Stack Token Action
30 ID Expr Shift 2
$0|ID 2 = Shift 3
$O[ID 2 =3 ID MINUS |Shift 7
$0[ID 2 ==3|ID7 ID Expr JReduce [Sym ::=1D
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$0|ID 2 =3
$SO|ID 2 =3 |RHSL 4 |; 11 $ IReduce |[Rule ::= ID ::= RHSL
$SO[Rulel Shift 14
$O[Rulel [$14 $ IReduce [$start ::= Rule $
$0|$start -1 Accept

(12 marks)

Continued ...

Question and Answer Booklet -3- COMPSCI 330

Print Name

(b) Draw the parse tree corresponding to the grammar rules used to parse this input

@start ::= Rule @

@ule =1ID ::= RHSD
“gxpr”

(4 marks)

Continued ...

Question and Answer Booklet -4 - COMPSCI 330

Print Name

(c) State 4is
lalr state [4]: |
[Rule ::= IDENT EXPANDSTO RHSList (*) SEMICOLON , {EOF }]
[RHSList ::= RHSList (*) OR SymbolList , {SEMICOLON OR }]

}
Derive the kernel sets of items of State 12 = GoTo(State 4, OR), then take its closure to get the
full set of items.

(8 marks)

Continued ...

Question and Answer Booklet -5- COMPSCI 330

Print Name

2.

Write a grammar for interface declarations [16 Marks]

A typical interface declaration in the Assignment 4 OBJECT6 language is
interface X
begin
int £([lint x, y; var [lint z;);
int g(int a; int b,c;);
end

The body of an interface declaration is composed of a list of 0 or more abstract method
declarations. There are no constant declarations.

An abstract method declaration has a return type, name, and a list of O or more formal parameter
declarations.

6,9
9 o

An abstract method declaration has no body, which is replaced by a

Formal parameter declarations have an optional “var” (for var parameters), a type, a comma

6,9

separated list of identifiers, then a *;”.

Write a grammar for interface declarations. You do NOT have to write grammar rules for
64Type”s.

Continued ...

Question and Answer Booklet -6- COMPSCI 330

Print Name

(16 marks)

Continued ...

Question and Answer Booklet -7 - COMPSCI 330

Print Name
3. Interpretation [13 Marks]

(a) Suppose we implement an infinite loop, as in the Assignment 3 INTERPS8 language, by a

construct of the form
for SimpleDeclStmtList do DeclStmtList end

and a conditional break statement of the form
while Expr;

that causes the innermost loop to be exited if the condition is false.

Also assume if statements are of the form
if Expr then DeclStmtList ElseOpt end

Translate the Java statements

int max = 0;
for (int 1 = 0; 1 < n; 1i++)
if (al i] > max)
max = a[i1 1;

into this syntax.

(1 mark)

(b) Indicate the code to implement the node class for a for statement of this form (pseudocode or
precise English is satisfactory).

package node.stmtNode;

import ...;

public class ForStmtNode extends StmtNode {

private DeclStmtListNode initial;
private DeclStmtListNode loopBody;
private Env initEnv;
private Env loopEnv;

public ForStmtNode (
DeclStmtListNode initial,
DeclStmtListNode loopBody) {
this.initial = initial;
this.loopBody = loopBody;
}

public String toString() {

(2 marks)

Continued ...

Question and Answer Booklet -8-

Print Name

COMPSCI 330

public void genEnv(Env env) {

(3 marks)

}

public void setType() {
initial.setType();
loopBody.setType () ;
}

public void checkType () {
initial.checkType () ;
loopBody.checkType () ;
}

public void eval(RunEnv runkEnv) throws UserException ({

(5 marks)

Continued ...

Question and Answer Booklet -9- COMPSCI 330

Print Name

(¢) Indicate the code to implement the node class for a while statement of this form (pseudocode or
precise English is satisfactory).

package node.stmtNode;

import ...;

public class WhileStmtNode extends StmtNode {
private ExprNode cond;

public WhileStmtNode (ExprNode cond) {
this.cond = cond;

}

public String toString() {
return "%$-while " 4+ cond + ";%+";

}

public void genEnv(Env env) {
cond.genEnv (env);

}

public void setType () {
}

public void checkType () {
Type condType = cond.checkType();
cond = cond.castTo(BoolType.type);

}

public void eval(RunEnv runkEnv) throws UserException ({

(2 marks)

Continued ...

Question and Answer Booklet - 10 - COMPSCI 330

Print Name
4. Show the run time stack. [16 Marks]
Use the program written in the Chapter 8 INTERP7 language in the Appendix For Question 4.

Complete the drawing of the data structure built for the global variables “source” and “dest”.

Display the stack frames (activation records) for all methods in the process of being invoked when the
maximum level of nesting of method invocations occurs when the statement “deleteNode (0,
source, dest, 6); online 40 is invoked, and the process is almost ready to return. At this stage
the process should be executing the method “deleteNode” at line 24.

Indicate the appropriate values for each stack frame (activation record) you draw. The line numbers on
the left-hand side of the program should be used to represent the return address. Draw appropriate
arrows for the var parameters, and pointers to objects. For var parameters, make sure you indicate the
exact field pointed to in an object very clearly. Represent List nodes as shown in the sample entries.

Also indicate the output generated by the complete execution of the program.

Output generated:

(3 marks)

Continued ...

Question and Answer Booklet - 11 - COMPSCI 330

Print Name

main program

source
a2
a4
a6
deleteNode a8
return address al0
I Y
source
dest value 2
value next Y
e
value 4
next /

.

value 6
next /

L

value 8
next /

L

value 10
next null
(13 marks)

Continued ...

Question and Answer Booklet -12 - COMPSCI 330

Print Name

5. Implementation of object oriented languages [16 Marks]
Use the Java program in the Appendix For Question 5.

(a) Draw adiagram showing the data structures (object, field table, method table, etc) created for the
static fields for Classes A and B, and the variables a1, a2, b1, b2, within the method Main.main.
Shared data structures should be drawn only once.

Object Static Fields for A
Field table for al
al | »! Fields Aq
Ap | 888
Methods Ar
Method table for A

getClass() | A.getClass()

toString() | A.toString()

equals(Object) | Object.equals(Object)

e(char) | A.e(char)
e(double) | A.e(double)

(11 marks)

Continued ...

Question and Answer Booklet -13 - COMPSCI 330

Print Name

(b) Indicate the output generated by the method Main.main.

A.gq =

A.r =

B.g =

al.p =

az.p =

bl.p =

b2.p =

al =

az =

bl =

b2 =

al.e('"A') =

bl.e('"A'") =

b2.e('A'") =

al.e(65) =

bl.e(65) =

b2.e(65) =

al.e(65.0) =

bl.e(65.0) =

b2.e(65.0) =
(5 marks)

Continued ...

Question and Answer Booklet -14 - COMPSCI 330

Print Name
6. Code generation [15 Marks]
Use the Assignment 4 OBJECT®6 program in the Appendix For Question 6.

(a) Draw a diagram in the style of question 5, to show the data structure generated for the variables
SGa’7 and “X”.
You are required to put explicit numerical values in for the offsets stored in the interface table.

You may assume the method table for the object class contains exactly 3 entries (getClass (),
toString (), equals (Object)).

new B() object)
Field table
Fields
ADb 0
Methods
B.c 4
Method table

getClass() B.getClass()

toString() Object.toString()

equals(Object) Object.equals(Object)

(7 marks)

Continued ...

Question and Answer Booklet -15- COMPSCI 330

Print Name

(b)

Indicate the Alpha assembly language likely to be generated by the line
x.set(4);

Use the symbolic name “x”, for the address of the global variable “x”, and “set” for the offset
of the entry for “set” in the interface mapping table. Add comments to explain the purpose of
your code.

Assume objects are stored in a manner compatible with the diagram displayed in question 5.
Assume the current object is pointed to by the “$ip” register, the current stack frame (activation
record) is pointed to by “$fp”, and the top of stack is pointed to “$sp”. Assume that the
actual parameters are passed on the stack.

Note: An appendix is provided with common Alpha instructions.

Note: Addresses are represented using 8 bytes on the Alpha.

(8 marks)

End of Questions

Continued ...

Question and Answer Booklet - 16 - COMPSCI 330

Print Name

This Page is left blank for questions that overflow

End of Questions, Appendices follow

Appendices -17 - COMPSCI 330

Appendix For Question 1

Grammar

terminal String
IDENT, EXPANDSTO, SEMICOLON, OR, COLON, ERROR;
// 1= . |)

non terminal Rule, RHSList, SymbolList, Symbol;

start with Rule;

Rule::=
IDENT EXPANDSTO RHSList SEMICOLON // Rule 1
RHSList::=
SymbolList // Rule 2
|
RHSList OR SymbolList // Rule 3
SymbolList::=
/* Empty */ // Rule 4
|
Symbol SymbolList // Rule 5
Symbol: :=
IDENT // Rule 6
|
IDENT COLON IDENT // Rule 7

’

Appendix For Question 1 Continued On Next Page

Appendices Continued ...

Appendices

- 18- COMPSCI 330

Appendix For Question 1 Continued ...

Action Table

From state #0
IDENT:SHIFT (2)
state #1
EOF:SHIFT (14)
state #2
EXPANDSTO:SHIFT (3)
state #3
IDENT:SHIFT (7)
state #4
SEMICOLON:SHIFT (11)
state #5
SEMICOLON:REDUCE (2)
state #6
IDENT:SHIFT (7)
state #7

IDENT :REDUCE (6)
COLON:SHIFT (8)
state #8
IDENT:SHIFT (9)
state #9

IDENT :REDUCE (7)
state #10
SEMICOLON :REDUCE (5)
state #11
EOF:REDUCE (1)
state #12
IDENT :SHIFT (7)
state #13
SEMICOLON:REDUCE (3)
state #14
EOF:REDUCE (0)

Reduce (Go To) Table

From state #0:
Rule:GOTO (1)

state #1:

state #2:

state #3:
RHSList:GOTO (4)
SymbolList:GOTO (5)
Symbol :GOTO (6)
state #4:

state #5:

state #6:
SymbolList:GOTO (10)
Symbol:GOTO (6)
state #7:

state #8:

state #9:

state #10:

state #11:

state #12:
SymbolList:GOTO (13)
Symbol :GOTO (6)
state #13:

state #14:

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From
From
From

From
From
From

From
From
From
From
From
From

From
From

SEMICOLON:REDUCE (4)

SEMICOLON:REDUCE (4)

SEMICOLON:REDUCE (6)

SEMICOLON:REDUCE (7)

SEMICOLON:REDUCE (4)

OR:REDUCE (4)
OR:SHIFT (12)
OR:REDUCE (2)
OR:REDUCE (4)

OR:REDUCE (6)

OR:REDUCE (7)

OR:REDUCE (5)

OR:REDUCE (4)

OR:REDUCE (3)

Appendices Continued ...

Appendices -19 - COMPSCI 330

Appendix For Question 4

1 type List = struct(int value; List next);

2

3 void printList(List source) {

4 print("{ ");

5 while (source != null) {

6 print (source.value);

7 source = source.next;

8 if (source != null)

9 print(", ")

10 }i

11 println("™ }");

12 }s

13

14 void createNode(int level; var List dest; int value; List next) {
15 dest = new List{ wvalue, next };

16 }:

17

18 void deleteNode(int level; List source; var List dest; int value) {
19 if (source == null || value < source.value) {

20 dest = source;

21 }

22 else if (value == source.value) {

23 dest = source.next;

24 // Show state at this point

25 }

26 else {

27 createNode (level + 1, dest, source.value, null);
28 deleteNode (level + 1, source.next, dest.next, value);
29 // Inside the above invocation

30 }

31 I

32

33 List source, a2, a4, a6, a8, all0, dest;
34 al0 = new List{ 10, null };

35 a8 = new List{ 8, all };

36 a6 new List{ 6, a8 };

37 a4 = new List{ 4, a6 };

38 a2 = new List{ 2, a4 };

39 source = a2;

40 deleteNode(0, source, dest, 6); // Inside this invocation
41 printList(source);

42 printList(dest);

43

Appendices Continued ...

Appendices -20 - COMPSCI 330

Appendix For Question 5§

class A {
public static int g = 100, r = 200;

public int p = 888;

public A(int p) { this.p = p; gt+; }

public A() { r++; }

public String toString() { return "A.toString(): p =" + p; }
public String e(char ¢) { return "A.e('" + c + "')"; }
public String e(double x) { return "A.e(" + x + ")"; }

}

class B extends A {
public static int g = 300;
public int p = 999;

public B(int p) { this.p = p; gt+; }

public String toString() { return "B.toString(): p =" + p; }
public String e(int i) { return "B.e(" + 1 + ")"; }
public String e(double x) { return "B.e(" + x + ")"; }

}

Appendix For Question 5 Continued On Next Page

Appendices Continued ...

Appendices -21- COMPSCI 330

Appendix For Question 5 Continued From Previous page ...

class Main {
public static void main(String[] args) {

A al = new A();
A a2 = new A(1000);
B bl = new B(2000);

A b2 = bl;

System.out.println("A.g = " + A.qgq);

System.out.println("A.r = " + A.r);

System.out.println("B.g = " + B.qgq);

System.out.println() ;

System.out.println("al.p =" + al.p);

System.out.println("a2.p = " + a2.p);

System.out.println("bl.p = " + bl.p);

System.out.println("b2.p = " + b2.p);

System.out.println();

System.out.println("al = " + al);

System.out.println("az2 = " + a2);

System.out.println("bl = " + bl);

System.out.println("b2 =" + b2);

System.out.println();

// 'A' is ASCII 65

System.out.println("al.e('"A'") =" + al.e('"A'"));

System.out.println("bl.e('"A'") =" + bl.e('"A"'"));

System.out.println("b2.e('A'") =" + b2.e('A'"));

System.out.println();

System.out.println("al.e(65) =" + al.e(65));

System.out.println("bl.e(65) = " + bl.e(65));

System.out.println("b2.e(65) =" + b2.e(65));

System.out.println();

System.out.println("al.e(65.0) =" + al.e(65.0));

System.out.println("bl.e(65.0) =" + bl.e(65.0));

System.out.println("b2.e(65.0) =" + b2.e(65.0));
(

System.out.println

Appendices Continued ...

Appendices -22- COMPSCI 330

Appendix For Question 6

interface X
begin
void set(int c;);
int get();
end

class A implements X

begin
instance
int b;
int get()
begin
println("Invoke A.get ()");
return b;
end
void print ()
begin
println(get ());
end
void set(int c;)
begin
println("Invoke A.set(" + c + ")");
b = c;
end
end
class B extends A
begin
instance
int c;
void set(int c;)
begin
println("Invoke B.set(" + c + ")");
this.c = c;
end
int get()
begin
println("Invoke B.get ()");
return c;
end
end
A a = new B;
X x = a;

x.set(4);
println(x.get ());

Appendices Continued ...

Appendices -23-

Commonly used Alpha instructions

Integer operate instructions
Opcode S$reghA, S$regB, SregC
intReg|[regC | = intReg| regA] op intReg[regB]

Opcode S$regA, constantB, S$regC
The constant is an 8 bit unsigned constant.
intReg[regC] = intReg[regA] op constantB

Arithmetic integer operate instructions

COMPSCI 330

addq add +
subq subtract -
mulq multiply *
divg/divqu divide, signed/unsigned /
modg/modqu modulo, signed/unsigned Yo
s8addq scaled 8 add 8*operand A+operandB
Shift integer operate instructions
sl shift left logical <<
srl shift right logical >>>
sra shift right arithmetic >>
Compare integer operate instructions
cmpeq compare equal ==
cmplt/cmpult compare less than| <
signed/unsigned
cmple/cmpule compare less than or equal| <=
signed/unsigned
Logical integer operate instructions
and and &
bic bit clear & ~
bis/or bit set/or I
eqv/xornot equivalent/exclusive or not A~
ornot or not | ~
XOr exclusive or A

Appendices Continued ...

Appendices -24 - COMPSCI 330

Memory instructions

Opcode S$regA, displacement (SregB)

Opcode S$reghA, ($SregB)

Opcode S$reghA, constant

The displacement or constant is a 16 bit signed constant.

Load address instruction
intReg|[regA] = displacement + intReg|[regB]
| lda | load address |

Load memory instructions

intReg[regA] = Memory|[displacement + intReg[regB] |

1dq load quadword
1dl load longword
1dbu load byte unsigned

Store memory instructions

Memory|[displacement + intReg[regB]] = intReg|[regA]

stq store quadword
stl store longword
stb store byte

Branch instructions

Conditional branch instructions

Opcode S$regA, destination

if (condition holds for intReg[regA])
programCounter = destination

beq branch equal

bne branch not equal

blt branch less than

ble branch less than or equal
bgt branch greater than

bge branch greater than or equal
blbs branch low bit set

blbc branch low bit clear

Unconditional branch instructions
Opcode destination;

programCounter = destination I br
intReg| ra | = programCounter I bsr
programCounter = destination

br branch

bsr branch to subroutime

Appendices Continued ...

Appendix -25-
Jump instruction

Opcode (Sreghd);

programCounter = intReg[regA] I Jmp
intReg| ra | = programCounter I Jsr
programCounter = intReg[regA]

Jmp jump

jsr jump to subroutine

Return instruction

programCounter = intReg[ra]

ret | return

Callpal instruction
call pal constant;
The constant is a 26 bit constant.

call_pal | call PALcode

Pseudoinstructions

Load immediate

1dig $regA, constant

The constant is a 64 bit constant.
intReg| regA] = constant

| 1diq | load immediate quadword

Clear
clr SregA

intReg[regA]=0

| clr | clear

Unary pseudoinstructions
Opcode $regB, SregC
intReg[regC] = op intReg|[regB]

Opcode constantB, $regC
The constant is an 8 bit unsigned constant.
intReg[regC | = op constantB

mov move

negq negate

End of Appendices

COMPSCI 330

End of Appendices

