Question and Answer Booklet COMPSCI 330

THE UNIVERSITY OF AUCKLAND

First Semester, 2003
City Campus

Computer Science

Language Implementation
(Time allowed TWO hours)

FAMILY NAME:

PERSONAL NAMES:

STUDENT ID NUMBER:

LOGIN NAME:

SIGNATURE:

This Examination is out of 100 Marks. Attempt ALL questions. Write your answers
in the spaces provided in this booklet.

1 23
2 20
3 15
4 15
5 14
6 13
Total 100

Continued ...

Question and Answer Booklet -2- COMPSCI 330

Print Name
1. Bottom Up LALR(1) Parsing [23 Marks]
Consider the CUP grammar:
terminal
LEFT, RIGHT, LEFTSQ, RIGHTSQ, SEMICOLON, COMMA, STRUCT;
// () [] ; , struct

terminal String IDENT;
non terminal Type, DeclList, Decl, IdentList;

start with Type;

Type::=
IDENT
|
LEFTSQ RIGHTSQ Type
|
STRUCT LEFT DeclList RIGHT
DeclList::=
DeclList SEMICOLON Decl
|
Decl
Decl::=
Type IdentList
IdentList::=

IdentList COMMA IDENT

IDENT

(a) Using the information provided in the appendix, perform a shift-reduce LALR(1) parse of the
input
struct([]int a, b)

(13 9% G _ Y

Assume “int”, “a”, “b” match IDENT.

Continued ...

Question and Answer Booklet -3- COMPSCI 330

Print Name
Stack Token Action
$0 |O O O O O O struct [shift
$0 |struct2 |O O O O O I shift
$0 |struct2 (7 O O O O [shift
$0 [struct2 |(7 [4 O O O] shift
$0 |struct2 (7 [4 15 O O ID int |shift
$0 |O O O O O O O |
$0 |O O O O O O O O
$0 O O O O O O O |
$0 |O O O O O O O |
$0 |O O O O O O O O
$0 O O O O O O O |
$0 |O O O O O O O |
$0 |O O O O O O O O
$0 (O O O O O O O |
$0 |O O O O O O O |
$0 |O O O O O O O O
$0 [Typel |O O O m] [m] O shift
$0 |Typel [$18 O O O O O Accept

(10 marks)
(b) Draw the parse tree corresponding to the grammar rules used to parse this input

(3 marks)

Continued ...

Question and Answer Booklet -4 - COMPSCI 330

Print Name

(c) State 2is
lalr state [2]: {
[Type ::= STRUCT (*) LEFT DeclList RIGHT , {EOF IDENT }]
}

transition on LEFT to state [7]

Derive the kernel sets of items of State 7 = GoTo(State 2, LEFT), then take its closure to get the
full set of items.

(10 marks)

Continued ...

Question and Answer Booklet -5- COMPSCI 330

Print Name

2.

Write a grammar definition [20 Marks]
Suppose we have a mathematical notation for sets of unsigned integers.
We can enumerate unsigned integers, asin {},{ 1 },{ 1, 2, 4 },etc,toform basic sets.

2

We can also include ranges of unsigned integers within a basic set, by using a “. .” notation, as

in{1 ..10, 20 .. 30, 40 .. },etc.

The notation “40 ..” means the infinite range of integers from 40 up to (but excluding)
infinity.

We can combine these notations, asin { 1, 2, 4, 10 .. 20, 31, 40 .. }.

An infinite range may only appear as the last component in the list.

We can also combine sets using parentheses (...) and the left associative binary infix
operators U and N, representing union and intersection, as in

{1, 23U {3}U{20..40}N ({25} U {30..5071).
Union has a lower precedence than intersection.

Write a grammar definition for sets, to match the above notation. You do not have to write any
actions.

Continued ...

Question and Answer Booklet -6- COMPSCI 330

Print Name

Continued ...

Question and Answer Booklet -7 - COMPSCI 330

Print Name
3. Interpretation [15 Marks]
(a) Suppose you are implementing old style BASIC, with line numbered statements.

Suppose the syntax for a “for” statement is
FOR IDENT EQ Expr TO Expr

and the syntax for “next” statements is
NEXT IDENT

Give an example of a simple BASIC program that uses these statements to print out the numbers
from 1 to n, one per line.

(1 mark)

Indicate the data structures and the actions needed to implement these statements in general, and
explicitly relate them to your example (e.g., specify the actual values stored in your data structure
at various times).

Continued ...

Question and Answer Booklet -8- COMPSCI 330

Print Name

(6 marks)

(b) Describe the notation used in assignment 4 to implement a construct equivalent to “super”.
Give an example, and explain what it does.

(4 marks)

Continued ...

Question and Answer Booklet -9- COMPSCI 330

Print Name

Describe the data structure generated by this construct. Draw a picture and explain in English
what it achieves.

(4 marks)

Continued ...

Question and Answer Booklet - 10 - COMPSCI 330

Print Name
4. Show the run time stack. [15 Marks]

Use the program in the appendix written in the Chapter 8 INTERP7 language. Complete the drawing
of the data structure built for the global variables “source” and “dest”. Display the stack frames
(activation records) for all methods in the process of being invoked when the maximum level of
nesting of method invocations occurs when the statement “insertList(0, source, dest, S);” on line
38 is invoked, and the process is almost ready to return. At this stage the process should be executing
the method “createNode” at line 16, which should have been invoked from the method “insertList”
at line 21.

Indicate the appropriate values for each stack frame (activation record) you draw. The line numbers on
the left-hand side of the program should be used to represent the return address. Draw appropriate
arrows for the var parameters, and pointers to objects. For var parameters, make sure you indicate the
exact field pointed to in an object very clearly. Represent List nodes as shown in the sample entry.

Also indicate the output generated by the complete execution of the program.
Output generated:

(3 marks)

Continued ...

Question and Answer Booklet - 11 -

Print Name

COMPSCI 330

insertList

main program

return address
line 39

level
source
dest

value

source

a2

a4

a7

a9

dest
value 2
next /
value 4
next /
value 7
next /
value 9
next null
(12 marks)

Continued ...

Question and Answer Booklet

Print Name

12 -

COMPSCI 330

S. Implementation of object oriented languages

Use the Java program in the appendix.

[14 Marks]

(a) Draw a diagram showing the data structures (object, field table and method table) created for the
variables b and c, within the method Main.main. Shared data structures should be drawn only

once.
Object
Field table for a
a L Fields
p | 100
Methods
q 6
Method table for A
getClass() | A.getClass()
toString() | Object.toString()
equals(Object) | Object.equals(Object)
fO | A0
f(char) [A.f(char)
f(int) [A.f(int)
f(char, int) | Af(char,int)
b L 5 Fields
Methods
¢ L Fields
Methods

(10 marks)

Continued ...

Question and Answer Booklet -13 - COMPSCI 330

Print Name

(b) Indicate the output generated by the method Main.main.
a.p = 100

a.qg = 6

b.p = 150

b.g =

b.r =

c.p =

c.q =

o =

b.f('B') =
c.f('B') =
b.f('A', 'B') =
c.f('a', 'B') =
c.g('a') =

(4 marks)

Continued ...

Question and Answer Booklet -14 - COMPSCI 330

Print Name
6. Code generation [13 Marks]

Assume objects are stored in a manner compatible with the diagrams displayed in question 5.
Assume the current object is pointed to by the “$ip” register, the current stack frame (activation
record) is pointed to by “$fp”, and the top of stack is pointed to “$sp”. Assume that the
actual parameters are passed on the stack.

Suppose we have the OBJECT4 program

class A
begin
instance
void f£(int a, b; wvar int c;)
begin
c=a+b;
end
end
class B
begin
instance
A a = new A;
int x = 2, y;
a.f(x, 1, yv)
println("y =" + vy);
end

B b = new B;

Indicate the assembly language likely to be generated by the line
c =a + b;

Use symbolic names “a”, “b”, “c” for the offsets of the corresponding formal parameter from
the base of the relevant register. Add comments to explain the purpose of your code.

(3 marks)
Note: An appendix is provided with common Alpha instructions.

Continued ...

Question and Answer Booklet -15- COMPSCI 330

Print Name

Indicate the assembly language likely to be generated by the line
a.f(x, 1, y);

2 6 bh) (Y32

Use symbolic names “a”, “f”, “x”, “y” for the offsets of the corresponding instance field or
method from the base of the relevant table. Add comments to explain the purpose of your code.

(10 marks)

End of Questions

Continued ...

Question and Answer Booklet - 16 - COMPSCI 330

Print Name

This Page is left blank for questions that overflow

End of Questions, Appendices follow

Appendices -17 -

Appendix For Question 1

Grammar Rules

8: IdentList ::= IDENT

7: IdentList ::= IdentList COMMA IDENT
6: Decl ::= Type IdentList

5: DeclList ::= Decl

4: DecllList ::= DeclList SEMICOLON Decl
3: Type ::= STRUCT LEFT DeclList RIGHT
2: Type ::= LEFTSQ RIGHTSQ Type

1: Type ::= IDENT

0: S$START ::= Type EOF

Action Table
From state #0
LEFTSQ:SHIFT (4) STRUCT:SHIFT(2) IDENT:SHIFT(3)
From state #1
EOF:SHIFT (18)
From state #2
LEFT:SHIFT (7)
From state #3
EOF:REDUCE (1) IDENT:REDUCE (1)
From state #4
RIGHTSQ:SHIFT (5)
From state #5
LEFTSQ:SHIFT (4) STRUCT:SHIFT (2) IDENT:SHIFT (3)
From state #6
EOF:REDUCE (2) IDENT:REDUCE (2)
From state #7
LEFTSQ:SHIFT (4) STRUCT:SHIFT (2) IDENT:SHIFT (3)
From state #8
RIGHT:SHIFT (16) SEMICOLON:SHIFT (15)
From state #9
IDENT:SHIFT (11)
From state #10
RIGHT:REDUCE (5) SEMICOLON:REDUCE (5)
From state #11

RIGHT:REDUCE (8) SEMICOLON:REDUCE (8) COMMA:REDUCE (8)

From state #12

RIGHT:REDUCE (6) SEMICOLON:REDUCE (6) COMMA:SHIFT (13)

From state #13
IDENT :SHIFT (14)
From state #14

RIGHT:REDUCE (7) SEMICOLON:REDUCE (7) COMMA:REDUCE (7)

From state #15
LEFTSQ:SHIFT (4) STRUCT:SHIFT(2) IDENT:SHIFT(3)
From state #16
EOF:REDUCE (3) IDENT:REDUCE (3)
From state #17
RIGHT:REDUCE (4) SEMICOLON:REDUCE (4)
From state #18
EOF :REDUCE (0)

Note: The Reduce (Go To) Table is over the page.

COMPSCI 330

Appendices Continued ...

Appendices -18 -

Reduce (Go To) Table

From state #0:
Type:GOTO (1)

From state #1:

From state #2:

From state #3:

From state #4:

From state #5:
Type:GOTO (6)

From state #6:

From state #7:
Type:GOTO (9)
DeclList :GOTO (8)
Decl:GOTO(10)

From state #8:

From state #9:
IdentList:GOTO(12)

From state #10:

From state #11:

From state #12:

From state #13:

From state #14:

From state #15:
Type:GOTO (9)
Decl:GOTO(17)

From state #16:

From state #17:

From state #18:

COMPSCI 330

Appendices Continued ...

Appendices -19 -

Appendix For Question 4

COMPSCI 330

1 type List = struct(int value; List next);

2

3 void printList(List source) {

4 print("{ ");

5 while (source != null) {

6 print (source.value);

7 source = source.next;

8 if (source != null)

9 print(", ");

10 }i

11 println("™ }")

12 }s

13

14 void createNode(int level; var List dest; int value; List next) {
15 dest = new List{ value, next };

16 // Show state at this point

17 }s

18

19 void insertList(int level; List source; var List dest; int value) {
20 if (source == null || value <= source.value) {

21 createNode(level + 1, dest, value, source);

22 // Inside the above invocation

23 }

24 else {

25 createNode (level + 1, dest, source.value, null);

26 insertList(level + 1, source.next, dest.next, value);
27 // Inside the above invocation

28 }

29 }s

30

31 List source, a2, a4, a7, a9, dest;

32 a9 = new List{ 9, null };

33 a7 = new List{ 7, a9 };

34 a4 = new List{ 4, a7 };

35 a2 = new List{ 2, a4 };

36 source = az2;

37 dest = null;

38 insertList(0, source, dest, 5); // Inside this invocation
39 printList(source);

40
41

printList(dest);

Appendices Continued ...

Appendices -20 - COMPSCI 330

Appendix For Question 5

class A {
public int p,
public A(int

q = 6;
p
public String f
£
£
f

{ this.p = p; }

)
) { return "A.f()"; }

(
public String f(char ¢) { return "A.f('" + c + "')"; }
public String f£(int y) { return "A.f(" + y + ")"; }
public String f(char ¢, int d) { return "A.f(""" + c + "', "+ d+ ")"; }
public static String g(int x) { return "A.g(" + x + ")"; }

}

class B extends A {
public int p, r;
public B(int p, int g, int r) {
super (q);
this.p = p; this.r = r;
}
public String toString() { return "B"; }
public String d() { return "B.d()"; }
public String h() { return "B.h()"; }

(
public String f(char ¢) { return "B.f('"" + c + "')"; }
public String f(int x) { return "B.f(" + x + ")"; }
public String f(char ¢, char d) {
return "B . f (T + C + my , T + d + mwa) ll;
}
public static String g(char ¢) { return "B.g('" + c + "')"; }

}

class Main {
public static void main(String[] args) {
A a = new A(100);

B b = new B(150, 160, 170);

A ¢ = new B(210, 220, 230);

System.out.println("a.p =" + a.p);

System.out.println("a.g =" + a.q);

System.out.println("b.p =" + b.p);

System.out.println("b.g = " + b.g);

System.out.println("b.r = " + b.r);

System.out.println("c.p =" + c.p);

System.out.println("c.g =" + c.q);

System.out.println("c =" + c);

// '"A' is ASCII 65, 'B' is ASCII 66

System.out.println("b.f('B') =" + b.f('B'));
System.out.println("c.f('B') =" + c.f('B'));
System.out.println("b.f('A', 'B') =" + b.f('A', '"B'));
System.out.println("c.f('A', 'B') =" + c.f('A', '"B'"));
System.out.println("c.g('A') =" + c.g('"A'));

}

Appendices Continued ...

Appendices -21- COMPSCI 330

Commonly used Alpha instructions

Integer operate instructions

Opcode S$regA, SregB, S$regC

intReg[regC] = intReg[regA] op intReg|[regB]

Opcode S$regA, constantB, S$regC

The constant is an 8 bit unsigned constant.

intReg[regC] = intReg[regA] op constantB

Arithmetic integer operate instructions

addq add +

subq subtract -

mulq multiply *

divg/divqu divide, signed/unsigned /

modg/modqu modulo, signed/unsigned Yo

s8addq scaled 8 add 8*operand A+operandB

Shift integer operate instructions

sll shift left logical <<

srl shift right logical >>>

sra shift right arithmetic >>

Compare integer operate instructions

cmpeq compare equal ==

cmplt/cmpult compare less than| <
signed/unsigned

cmple/cmpule compare less than or equal| <=
signed/unsigned

Logical integer operate instructions

and and &

bic bit clear & ~

bis/or bit set/or I

eqv/xornot equivalent/exclusive or not A~

ornot or not | ~

Xor exclusive or A

Memory instructions
Opcode $regA, displacement ($regB)

Opcode S$regh, (

SregB)

Opcode S$regA, constant
The displacement or constant is a 16 bit signed constant.

Load address instruction

intReg[regA] = displacement + intReg[regB]

[1da

| load address

Load memory instructions

intReg[regA] = Memory[displacement + intReg[regB]]

1dq

load quadword

1dbu

load byte unsigned

Appendices Continued ...

Appendix -22-

Store memory instructions

Memory|[displacement + intReg[regB]] = intReg|[regA]

stq store quadword

stb store byte

Branch instructions

Conditional branch instructions

Opcode $regA, destination

if (condition holds for intReg|[regA |)
programCounter = destination

beq branch equal

bne branch not equal

blt branch less than

ble branch less than or equal
bgt branch greater than

bge branch greater than or equal
blbs branch low bit set

blbc branch low bit clear

Unconditional branch instructions
Opcode destination;

programCounter = destination I br
intReg| ra | = programCounter I bsr
programCounter = destination

br branch

bsr branch to subroutime

Jump instruction
Opcode (S$Sregh);

programCounter = intReg[regAll I Jjmp
intReg| ra | = programCounter I Jsr
programCounter = intReg[reg ALl

Jmp jump

jsr jump to subroutine

Return instruction

programCounter = intReg[ra |

ret | return

End of Appendix

COMPSCI 330

End of Appendices

