
Question and Answer Booklet COMPSCI 330

Continued ...

THE UNIVERSITY OF AUCKLAND
First Semester, 2002

City Campus
Computer Science

Language Implementation
(Time allowed TWO hours)

FAMILY NAME:

PERSONAL NAMES:

STUDENT ID NUMBER:

SIGNATURE:

LOGIN NAME:

This Examination is out of 70 Marks. Attempt ALL questions. Write your answers in
the spaces provided in this booklet.

1 12

2 6

3 14

4 12

5 8

6 10

7 8

Total 70

Question and Answer Booklet - 2 - COMPSCI 330

Print Name ___

Continued ...

1. Bottom Up LALR(1) Parsing [12 Marks]
Consider the CUP grammar:
terminal LEFT, RIGHT, OR, STAR; /* “(”, “)”, “|”, “*” */
terminal Character CHAR; /* A single character other than “(”, “)”, “|”, “*” */

non terminal ExprNode OrExpr, ConcatExpr, SequenceExpr, SimpleExpr;

start with OrExpr;

OrExpr::=
OrExpr:expr1 OR ConcatExpr:expr2
{:
RESULT = new OrNode(expr1, expr2);
:}

|
ConcatExpr:expr
{:
RESULT = expr;
:}

;

ConcatExpr::=
SequenceExpr:expr1 ConcatExpr:expr2
{:
RESULT = new ConcatNode(expr1, expr2);
:}

|
/* Empty */
{:
RESULT = null;
:}

;

SequenceExpr::=
SimpleExpr:expr STAR
{:
RESULT = new OptSeqNode(expr);
:}

|
SimpleExpr:expr
{:
RESULT = expr;
:}

;

SimpleExpr::=
CHAR:chr
{:
RESULT = new CharNode(chr.charValue());
:}

|
LEFT OrExpr:expr RIGHT
{:
RESULT = expr;
:}

;

Question and Answer Booklet - 3 - COMPSCI 330

Print Name ___

Continued ...

(a) Using the information provided in the appendix, perform a shift-reduce LALR(1) parse of the
input

ab*c

Note that the tokens are the individual characters “a”, “b”, “*”, “c”.

Stack Token Action
$ 0 CHAR a Shift 6

$ 0 CHAR 6 CHAR b SimpleExpr Æ CHAR

$ 0

$ 0

$ 0

$ 0

$ 0

$ 0

$ 0

$ 0

$ 0

$ 0

$ 0

$ 0

$ 0

$ 0 Or 3 Shift $ 8

$ 0 Or 3 $ 8 $Start Æ OrExpr $

$ 0 $Start -1 Accept

(8 marks)

Question and Answer Booklet - 4 - COMPSCI 330

Print Name ___

Continued ...

(b) Draw the parse tree corresponding to the grammar rules used to parse this input

(2 marks)
(c) Draw the abstract syntax tree actually built by the actions in the CUP program

(2 marks)

Question and Answer Booklet - 5 - COMPSCI 330

Print Name ___

Continued ...

2. JLex [6 Marks]
Write a JLex program that
• Matches “{”s and “}”s, and records the number of “{...}”s it is currently nested inside. You

may assume “{...}”s outside string constants are properly nested.
• Matches string constants, where a string constant is an (opening) double quote, 0 or more

characters (excluding double quote and backslash characters), then a (closing) double quote.
Thus escape sequences are not allowed inside string constants, but “{”s and “}”s might occur.
For example, "{" is a legal string, but """, "\"" and "\033" are not. “{”s and “}”s inside string
constants should not change the nesting level. You may assume all string constants are well
formed (i.e., obey these rules).

• Matches UNIX, Macintosh and Windows style line breaks.
• Matches any other character outside a string by a “default” rule.
• Reprints any text (string constants, line breaks, and other text) not enclosed inside “{...}”s.
• Does not reprint “{”s and “}”s or text enclosed inside “{...}”s.
Note that you do not need to use states to write this JLex program, although you do need an integer
variable representing the current nesting level.

Question and Answer Booklet - 6 - COMPSCI 330

Print Name ___

Continued ...

3. Write a grammar definition [14 Marks]
Suppose we have a computer language, in which we can declare type identifiers. For example, we
might declare some types as in

type
integer = int,
bitArray = []boolean,
rational = struct(int numerator, denominator),
complex = struct(rational x, y),
complexArray = []complex,
list = struct(int value; list next),
binaryTree = struct(int value; binaryTree left, right),
multiTree = struct(int value; []multiTree child),
day = enum(sun, mon, tue, wed, thu, fri, sat),
daySet = set(day),
charSet = set(char)

In this example, “integer” is declared to be the same as the basic type “int”. “bitArray ” is declared
to be an array type with elements of the basic type “boolean”. “rational” is declared to be a structure
(record) type with two integer fields called “numerator” and “denominator”, both of type “int”.
“binaryTree” is declared to be a structure (record) with one integer field called “value” of type
“int”, and two fields called “left” and “right” of type “binaryTree”. “day” is an enumerated type
with members “sun” ... “sat”. “daySet” is a set type with element type “day”, etc.
Write a (general) CUP grammar definition for type declarations, capable of matching the complete
input in the above example.
Assume:
• “type” is a reserved word, not an identifier.
• Existing types, such as int, boolean, char, are considered to be identifiers.
• An array type is represented by putting “[]” in front of the element type.
• A structure type is represented by enclosing a list of field declarations separated by semicolons,

inside “struct(...)”.
• A field declaration is composed of a type, then a comma separated list of identifiers.
• An enumerated type is represented by enclosing a comma separated list of identifiers inside

“enum(...)”.
• A set type is represented by a type enclosed inside “set(...)”.
• Semicolons (“;”) separate declarations (as in “int value; binaryTree left, right”), and do not

terminate declarations.
You only have to write the grammar. You do not have to write any actions.

Question and Answer Booklet - 7 - COMPSCI 330

Print Name ___

Continued ...

Question and Answer Booklet - 8 - COMPSCI 330

Print Name ___

Continued ...

Question and Answer Booklet - 9 - COMPSCI 330

Print Name ___

Continued ...

4. Show the run time stack. [12 Marks]
Below is a program in the assignment 4 OBJECT3 language. Complete the drawing of the data
structure built for the global variable “node”, and the run-time stack when the maximum level of
nesting of method invocations occurs within the statement “insert(0, node, 18);” on line 44, and the
process is almost ready to return. Remember the stack grows “up” towards low memory. Enter the
appropriate values for each stack frame (activation record) you draw. Assume that all variables are
implicitly initialised to zero or null. The line numbers on the left-hand side of the program should be
used to represent the value of the program counter. Draw appropriate arrows for the var parameters,
and pointers to class objects. Make sure you indicate the exact field pointed to in an object very
clearly. The stack information has already been filled in for the main program, and most of the first
stack frame. You may label addresses, and refer to them, rather than drawing arrows, if you need to, to
make your answer clearer. Represent nodes as shown in the sample entry.
Also indicate the output generated by the complete execution of the program.

1 class BinTree
2 begin
3 instance
4 int value;
5 BinTree left, right;
6 end
7
8 void createLeaf(int level; var BinTree node; int value;)
9 begin

10 node = new BinTree;
11 node.value = value;
12 end
13
14 void insert(int level; var BinTree node; int value;)
15 begin
16 if node == null then
17 createLeaf(level + 1, node, value);
18
19 elif value < node.value then
20 insert(level + 1, node.left, value);
21
22 elif node.value < value then
23 insert(level + 1, node.right, value);
24
25 end
26 end
27
28 void printTree(BinTree node;)
29 begin
30 int i;
31 if node <> null then
32 printTree(node.left);
33 print(node.value + " ");
34 printTree(node.right);
35 end
36 end
37
38 BinTree node;
39
40 insert(0, node, 52);
41 insert(0, node, 14);
42 insert(0, node, 23);
43 insert(0, node, 44);
44 insert(0, node, 18); // Display at maximum level of recursion
45
46 printTree(node);

Question and Answer Booklet - 10 - COMPSCI 330

Print Name ___

Continued ...

Method Name:

Return Address:

Actual Parameters:

Method Name:

Return Address:

Actual Parameters:

Method Name:

Return Address:

Actual Parameters:

Method Name:

Return Address:

Actual Parameters:

Method Name: insert
Return Address: Line 45
Actual Parameters: level = 0, node = , value = 18

Top Of Stack (Low Memory)

Question and Answer Booklet - 11 - COMPSCI 330

Print Name ___

Continued ...

Main Program

Global Variables: node =

value = 52,

left =

right =

Bottom Of Stack (High Memory)

Output generated:

Question and Answer Booklet - 12 - COMPSCI 330

Print Name ___

Continued ...

5. Type checking and Evaluation [8 Marks]
Suppose we use an expression of the form “IDENT.IDENT” (for example “day.tue”) to
select a member constant of an enumerated type.
Complete the code for the class representing such an expression, to implement an interpreter.

public class MemberNode extends ExprNode {

private String typeIdent, memberIdent;
private Env env;
private Decl typeDecl, memberDecl;
private EnumType enumType;

public MemberNode(String typeIdent, String memberIdent) {
this.typeIdent = typeIdent; this.memberIdent = memberIdent;
precedence = 8;
}

public String toString() {

}

public void genEnv(Env env) {

}

public Type checkType() {

Question and Answer Booklet - 13 - COMPSCI 330

Print Name ___

Continued ...

}

public RunValue eval(RunEnv runEnv) {

}
}

Question and Answer Booklet - 14 - COMPSCI 330

Print Name ___

Continued ...

6. Implementation of object oriented languages [10 Marks]
Suppose we have the Java program
class A {

int c, d;
A(int c, int d) { this.c = c; this.d = d; }
String e() { return "A.e()"; }
String f() { return "A.f()"; }
String f(int x) { return "A.f(" + x + ")"; }
static String h() { return "A.h"; }
}

class B extends A {
int c, e;
B(int q, int r, int c, int e) {

super(q, r);
this.c = c; this.e = e;
}

String d() { return "B.d()"; }
String f() { return "B.f()"; }
String f(char x) { return "B.f(\'" + x + "\')"; }
String f(int x) { return "B.f(" + x + ")"; }
static String h() { return "B.h"; }
}

class Main {
public static void main(String[] args) {

A a = new A(30, 40);
B b = new B(150, 160, 170, 180);
A c = new B(210, 220, 230, 240);
System.out.println("a.c = " + a.c);
System.out.println("a.d = " + a.d);
System.out.println("b.c = " + b.c);
System.out.println("b.d = " + b.d);
System.out.println("b.e = " + b.e);
System.out.println("c.c = " + c.c);
System.out.println("c.d = " + c.d);
System.out.println("c.e() = " + c.e());
System.out.println("c.f() = " + c.f());
System.out.println("b.f('A') = " + b.f('A')); // 'A' is ASCII 65
System.out.println("c.f('A') = " + c.f('A')); // 'A' is ASCII 65
System.out.println("c.f(65) = " + c.f(65));
System.out.println("c.h() = " + c.h());
}

}

Question and Answer Booklet - 15 - COMPSCI 330

Print Name ___

Continued ...

(a) Draw a diagram showing the data structures (object, field table and method table) created for the
variables b and c, within the method Main.main. Shared data structures should be drawn only
once.

Method table for A

a

b

c

Fields

Methods
30

40

c

d

getClass()

e()

f()

f(int)

A.getClass()

A.e()

A.f()

A.f(int)

Field table for a

Fields

Methods

Fields

Methods

Object

toString() Object.toString()

equals(Object) Object.equals(Object)

Question and Answer Booklet - 16 - COMPSCI 330

Print Name ___

Continued ...

(b) Indicate the output generated by the method Main.main.
a.c = 30

a.d = 40

b.c =

b.d =

b.e =

c.c =

c.d =

c.e() =

c.f() =

b.f('A') =

c.f('A') =

c.f(65) =

c.h() =

Question and Answer Booklet - 17 - COMPSCI 330

Print Name ___

Continued ...

7. Code generation [8 Marks]
Assume objects are stored in a manner compatible with the diagrams displayed in question 6.
Assume the current object is pointed to by the “$ip” register, the current stack frame (activation
record) is pointed to by “$fp”, and the top of stack is pointed to “$sp”. Assume that the
actual parameters are passed on the stack.
Suppose “f” is an instance method of “a”, and “a” is an instance field of the current object
(“this”). Indicate the assembly language likely to be generated to invoke “a.f(5, 6, 7)”. Use
symbolic names “a” and “f” for the offsets of the corresponding instance field and method
from the base of the relevant field and method table. Add comments to explain the purpose of
your code.

__________________End of Questions_________________

Question and Answer Booklet - 18 - COMPSCI 330

Print Name ___

End of Questions, Appendix follows

This Page is left blank for questions that overflow

Appendix - 19 - COMPSCI 330

Appendix Continued ...

Appendix
Grammar Rules
8: SimpleExpr ::= LEFT OrExpr RIGHT
7: SimpleExpr ::= CHAR
6: SequenceExpr ::= SimpleExpr
5: SequenceExpr ::= SimpleExpr STAR
4: ConcatExpr ::=
3: ConcatExpr ::= SequenceExpr ConcatExpr
2: OrExpr ::= ConcatExpr
1: OrExpr ::= OrExpr OR ConcatExpr
0: $START ::= OrExpr EOF

Action Table
From state #0

EOF:REDUCE(4) LEFT:SHIFT(1) OR:REDUCE(4)
CHAR:SHIFT(6)

From state #1
LEFT:SHIFT(1) RIGHT:REDUCE(4) OR:REDUCE(4)
CHAR:SHIFT(6)

From state #2
EOF:REDUCE(4) LEFT:SHIFT(1) RIGHT:REDUCE(4)
OR:REDUCE(4) CHAR:SHIFT(6)

From state #3
EOF:SHIFT(8) OR:SHIFT(9)

From state #4
EOF:REDUCE(6) LEFT:REDUCE(6) RIGHT:REDUCE(6)
OR:REDUCE(6) STAR:SHIFT(7) CHAR:REDUCE(6)

From state #5
EOF:REDUCE(2) RIGHT:REDUCE(2) OR:REDUCE(2)

From state #6
EOF:REDUCE(7) LEFT:REDUCE(7) RIGHT:REDUCE(7)
OR:REDUCE(7) STAR:REDUCE(7) CHAR:REDUCE(7)

From state #7
EOF:REDUCE(5) LEFT:REDUCE(5) RIGHT:REDUCE(5)
OR:REDUCE(5) CHAR:REDUCE(5)

From state #8
EOF:REDUCE(0)

From state #9
EOF:REDUCE(4) LEFT:SHIFT(1) RIGHT:REDUCE(4)
OR:REDUCE(4) CHAR:SHIFT(6)

From state #10
EOF:REDUCE(1) RIGHT:REDUCE(1) OR:REDUCE(1)

From state #11
EOF:REDUCE(3) RIGHT:REDUCE(3) OR:REDUCE(3)

From state #12
RIGHT:SHIFT(13) OR:SHIFT(9)

From state #13
EOF:REDUCE(8) LEFT:REDUCE(8) RIGHT:REDUCE(8)
OR:REDUCE(8) STAR:REDUCE(8) CHAR:REDUCE(8)

Appendix - 20 - COMPSCI 330

End of Appendix

Reduce (Go To) Table
From state #0:

OrExpr:GOTO(3)
ConcatExpr:GOTO(5)
SequenceExpr:GOTO(2)
SimpleExpr:GOTO(4)

From state #1:
OrExpr:GOTO(12)
ConcatExpr:GOTO(5)
SequenceExpr:GOTO(2)
SimpleExpr:GOTO(4)

From state #2:
ConcatExpr:GOTO(11)
SequenceExpr:GOTO(2)
SimpleExpr:GOTO(4)

From state #3:
From state #4:
From state #5:
From state #6:
From state #7:
From state #8:
From state #9:

ConcatExpr:GOTO(10)
SequenceExpr:GOTO(2)
SimpleExpr:GOTO(4)

From state #10:
From state #11:
From state #12:
From state #13:

__________________End of Appendix__________________

