
CompSci 330 Examination Information 2007 Page 1

Computer Science 330 Language Implementation

Examination Information 2007
This Examination is out of 100 Marks. Attempt ALL questions. Write your
answers in the spaces provided in this question and answer booklet. Do not remove
the staples from the question and answer booklet. However, you may detach and
remove the staples from the appendices.

Note: Many portions of the examination are related to the assignments. It is
important that you do the assignments.

1 10

2(a) 15

2(b) 5

3(a) 15

3(b) 5

4 17

5 18

6 15

Total 100

1. JFlex [10 Marks]
 Indicate at least 10 different kinds of errors in the following fragment of JFlex code. (“...”

just means omitted code). Give a reason or appropriate correction for each one.
Preparation:
 Chapter 1. Making mistakes when trying to implement a lexical analyser. This year’s test.

Last year’s test and examination.
2. Bottom Up LALR(1) Parsing [20 Marks]
Consider the CUP grammar in the Appendix For Question 2. Note that some rules are left
recursive, while other rules are right recursive. Also note the rule for “...” that expands to empty.
(a) Using the information provided in the appendix, perform a shift-reduce LALR(1) parse of the

input ...
 (15 marks)
(b) Draw the parse tree corresponding to the grammar rules used to parse this input
 (5 marks)

CompSci 330 Examination Information 2007 Page 2
Preparation:
 Assignment 1, previous tests and examinations.
3(a). Write a grammar for... [20 Marks]
(a) Write a grammar for... in general.
 You do not have to define the grammar for ...
 You do not have to include any actions (“{...}”) or attribute names (“:ident”). You may

write terminal symbols such as keywords, and special symbols directly by enclosing them in
double quotes (“...”).

 (15 marks)
Preparation:
 Previous tests and examinations. Assignment 2. B-- Grammar. Java grammar (appendix

4). Designing grammars for various constructs.
3(b). A question directly related to assignment 2 [5 Marks]
Preparation:
 Assignment 2.
4. Show the run time stack for a B-- program [17 Marks]
Use the program written in the B-- language in the Appendix For Question 4.
Complete the drawing of the data structure built for the global variables
Use multiple colours (other than red) for arrows, etc., to make your diagram clearer.
Display the stack frames (activation records) for all methods in the process of being invoked when
the maximum level of nesting of method invocations occurs when the statement
...

on line ... is invoked, and the process is almost ready to return. At this stage the process should be
executing the method “...” at line
Indicate the appropriate values for each stack frame (activation record) you draw. The line
numbers on the left-hand side of the program should be used to represent the return address. Draw
appropriate arrows for the var parameters, and pointers to objects. For var parameters, make sure
you indicate the exact variable pointed to in an object very clearly. Represent nodes as shown in
the sample entries.
Also indicate the output generated by the complete execution of the program.
Preparation:
 Examples in Chapter 10. Previous examinations. Write your own examples that involve

simple data structures and recursion, with var parameters. Note that the B-- language is a bit
different from the one in much earlier examinations.

5. Implementation of object oriented languages [18 Marks]
 Use the Java program in the Appendix For Question 5.
(a) Draw a diagram showing the data structures (variable, field table, method table, etc) created

for the variables..., within the method Main.main. Shared data structures should be drawn
only once.

 (12 marks)
 (b) Indicate the output generated by the method Main.main.

 (6 marks)

CompSci 330 Examination Information 2007 Page 3
Preparation:
 Primarily experimentation: Write simple Java programs to test your understanding, that use

overloading, overriding, constructors that explicitly or implicitly invoke the constructor of the
superclass, constructors with side effects that modify static fields, accessing the same object
through variables of different type, instance and static variables of the same name in different
classes, implicit use of the toString method, when conversion of an object to a String,
methods declared in a superclass, that refer to variables declared in both the superclass and
subclass, etc. Previous examinations.

 Note that the way I represent objects this year is different from two years ago. So any
solutions in previous examinations have to be adjusted to take this into account.

6. Code generation [15 Marks]
(a) Consider the the B-- language. Answer some relatively high level questions about the

language, especially related to method invocation.
 (7 marks)

(a) Indicate the Alpha assembly language likely to be generated for the following statements.
 (8 marks)

An appendix is also provided describing common Alpha instructions.
Preparation:
 B-- chapters in the lecture notes. Write simple B-- programs to access instance fields, invoke

instance methods, pass var and value parameters, etc.

福
Bruce Hutton

CompSci 330 Examination Information 2007 Page 4

Exercises
1. Bottom Up LALR(1) Parsing
Consider the grammar
terminal IDENT, LEFT, RIGHT, COMMA, SEMICOLON, ETC, ERROR;

non terminal MethodHeader, FormalParamDeclList, FormalParamDecl, Type, IdentList;

start with MethodHeader;

MethodHeader::=
 Type IDENT LEFT FormalParamDeclList RIGHT
 ;

FormalParamDeclList::=
 FormalParamDecl
 |
 ETC
 |
 FormalParamDecl SEMICOLON FormalParamDeclList
 ;

FormalParamDecl::=
 Type IdentList
 ;

Type::=
 IDENT
 ;

IdentList::=
 IDENT
 |
 IdentList COMMA IDENT
 ;

with lexical analyser
ident = [A-Za-z][A-Za-z0-9]*
space = [\ \t]
newline = \r|\n|\r\n

%%

"(" { return token(sym.LEFT); }
")" { return token(sym.RIGHT); }
"," { return token(sym.COMMA); }
";" { return token(sym.SEMICOLON); }
"..." { return token(sym.ETC); }
{newline} { lineNumber++; }
{space} { }

{ident} { return token(sym.IDENT); }

. { return token(sym.ERROR); }
<<EOF>> { return token(sym.EOF); }

CompSci 330 Examination Information 2007 Page 5
The action and goto tables are
-------- ACTION_TABLE --------
From state #0
 IDENT:SHIFT(3)
From state #1
 EOF:SHIFT(17)
From state #2
 IDENT:SHIFT(4)
From state #3
 IDENT:REDUCE(6)
From state #4
 LEFT:SHIFT(5)
From state #5
 IDENT:SHIFT(3) ETC:SHIFT(6)
From state #6
 RIGHT:REDUCE(3)
From state #7
 IDENT:SHIFT(13)
From state #8
 RIGHT:SHIFT(12)
From state #9
 RIGHT:REDUCE(2) SEMICOLON:SHIFT(10)
From state #10
 IDENT:SHIFT(3) ETC:SHIFT(6)
From state #11
 RIGHT:REDUCE(4)
From state #12
 EOF:REDUCE(1)
From state #13
 RIGHT:REDUCE(7) COMMA:REDUCE(7) SEMICOLON:REDUCE(7)
From state #14
 RIGHT:REDUCE(5) COMMA:SHIFT(15) SEMICOLON:REDUCE(5)
From state #15
 IDENT:SHIFT(16)
From state #16
 RIGHT:REDUCE(8) COMMA:REDUCE(8) SEMICOLON:REDUCE(8)
From state #17
 EOF:REDUCE(0)

-------- REDUCE_TABLE --------
From state #0:
 MethodHeader:GOTO(1)
 Type:GOTO(2)
From state #1:
From state #2:
From state #3:
From state #4:
From state #5:
 FormalParamDeclList:GOTO(8)
 FormalParamDecl:GOTO(9)
 Type:GOTO(7)
From state #6:
From state #7:
 IdentList:GOTO(14)
From state #8:
From state #9:
From state #10:
 FormalParamDeclList:GOTO(11)
 FormalParamDecl:GOTO(9)
 Type:GOTO(7)
From state #11:

CompSci 330 Examination Information 2007 Page 6
From state #12:
From state #13:
From state #14:
From state #15:
From state #16:
From state #17:

2. Write a grammar definition
Grammar for a grammar.
Variable declarations.
Method declarations.
If statements with the if ... end structure of assignment 2.
Interface declarations.
Class declarations, allowing implements ...
4. Show the run time stack.
Make up more recursive examples, for example:
Create a copy of an unordered list with all elements that are < n deleted.
In all cases, make appropriate use of recursion and var parameters, and make all methods return
void.

CompSci 330 Examination Information 2007 Page 7
5. Implementation of object oriented languages
Draw diagrams to show the data structures generated, and output generated for
class A {
 public static int a = 1, b = 2;

 public int x = 5;

 public A(int x) {
 System.out.println("Invoke A(" + x + ")");
 this.x = x;
 }
 public A() {
 System.out.println("Invoke A()");
 a++;
 x++;
 }

 public String toString() { return "A.toString(): " + x; }
 public void set(int x) { this.x = x; }
 public int get() { return x; }
 public String f(int i) { return "A.f(" + i + ")"; }
 public String f(double x) { return "A.f(" + x + ")"; }
 }

class B extends A {
 public static int a = 3, d = 4;

 public int x = 100;

 public B(int x) {
 System.out.println("Invoke B(" + x + ")");
 d++;
 this.x = x;
 }

 public void set(int x) { this.x = x; }
 public int get() { return x; }
 public String f(char c) { return "B.f('" + c + "')"; }
 public String f(double x) { return "B.f(" + x + ")"; }
 }

public class Main {
 public static void main(String[] args) {

 A a1 = new A(55);
 A a2 = new A();
 B b1 = new B(66);
 A b2 = b1;

 System.out.println("A.a = " + A.a);
 System.out.println("A.b = " + A.b);
 System.out.println("B.a = " + B.a);
 System.out.println("B.d = " + B.d);
 System.out.println();

 System.out.println("a1.x = " + a1.x);
 System.out.println("a2.x = " + a2.x);
 System.out.println("b1.x = " + b1.x);
 System.out.println("b2.x = " + b2.x);
 System.out.println();

CompSci 330 Examination Information 2007 Page 8
 System.out.println("a1 = " + a1);
 System.out.println("a2 = " + a2);
 System.out.println("b1 = " + b1);
 System.out.println("b2 = " + b2);
 System.out.println();

 // 'A' is ASCII 65
 System.out.println("a1.f('A') = " + a1.f('A'));
 System.out.println("b1.f('A') = " + b1.f('A'));
 System.out.println("b2.f('A') = " + b2.f('A'));
 System.out.println();

 System.out.println("a1.f(65) = " + a1.f(65));
 System.out.println("b1.f(65) = " + b1.f(65));
 System.out.println("b2.f(65) = " + b2.f(65));
 System.out.println();

 System.out.println("a1.f(65.0) = " + a1.f(65.0));
 System.out.println("b1.f(65.0) = " + b1.f(65.0));
 System.out.println("b2.f(65.0) = " + b2.f(65.0));
 System.out.println();

 b1.set(123);
 b2.set(456);
 System.out.println("b1.x = " + b1.x);
 System.out.println("b2.x = " + b2.x);
 System.out.println("b1.get() = " + b1.get());
 System.out.println("b2.get() = " + b2.get());
 }
 }

What is the output:
class A {
 int initA() {
 System.out.println("Init A fields");
 return 0;
 }
 int x = initA();
 A() {
 System.out.println("Init A default constructor");
 }
 }

class B extends A {
 int initB() {
 System.out.println("Init B fields");
 return 0;
 }
 int x = initB();
 B() {
 System.out.println("Init B default constructor");
 }
 }

class Main {
 public static void main(String[] arg) {
 B b = new B();
 }
 }

