CompSci 330 Assignment 1 2007 19 March 2007 Page 1 of 22

CompSci 330 Assignment 1 LALR(1) Parsing, etc.

Obtain the tar/gzip file ASSIGN1STUD.tar.gz from the assignment directory. Gunzip/untar this file

by typing
tar -x -z -f ASSIGN1ISTUD.tar.gz

to create a directory ASSIGN1STUD, containing various template files.

If this fails, it is probably because your version of tar does not support the -z option. In this case

gunzip and the file separately, by typing
gunzip ASSIGN1STUD.tar.gz
tar -x -f ASSIGNLSTUD.tar

Question 1
Consider the CUP grammar in Appendix 1.

(a) Use the LALR(1) state information in Appendix 2. Construct the action table and goto table
from these states.

(5 marks)

(b) Perform an LALR(1) parse of the input in Appendix 3. Display the information in the same
style as chapter 2 of the lecture notes.

(10 marks)

(c) Draw the parse tree corresponding to the LALR(1) parse. The root node should correspond to
the rule “$START ::= Program $”. I would prefer that nodes correspond to grammar rules,
rather than terminal and nonterminal symbols.

(10 marks)

(d) Draw the abstract syntax tree built by the actions in the CUP grammar.
(10 marks)
Total 35 Marks

CompSci 330 Assignment 1 2007 19 March 2007 Page 2 of 22

Question 2
Consider the grammar in the directory COMPILE.
A program is composed of a sequence of statements.

What you have to do is write a “compiler” to “compile” a program for this language into Alpha
assembly language. It is actually very easy.

Assume we never run out of temporary registers.

We can generate code for expressions by a recursive method
public void evalCode(int freeReg);

The int parameter freeReg indicates the first free temporary register. For example, if freeReg is 2,
then registers $t2, $t3, $t4, ... can be used to evaluate the expression.

The algorithm is:

. For most binary operators:
. Generate code to evaluate the left operand into freeReg.
. Generate code to evaluate the right operand into freeReg + 1.
. Generate an operate instruction with suitable opCode to perform the operation with

source operands freeReg and freeReg + 1, and destination freeReg.
public void evalCode(int freeReg) {
left.evalCode(freeReg);
right.evalCode(freeReg + 1);
Code.instrn (opCode,
Code.tempReg(freeReg), Code.tempReg(freeReg + 1));
}

For example, if freeReg = 0, and the expression is “a * b”, we might generate code
ldig $t0, a;
ldig $tl1, b;
ldg $tl, ($tl1);
mulg $t0, $tl;

. For most prefix operators:
. Generate code to evaluate the right operand into freeReg.
. Generate an operate instruction with suitable opCode to perform the operation with

source operand freeReg, and destination freeReg.
public void evalCode(int freeReg) {
right.evalCode(freeReg);
Code.instrn (opCode,
Code.tempReg(freeReg), Code.tempReg(freeReg));
}

For example, if freeReg = 0, and the expression is “- a”, we might generate code
ldig $t0, a;
ldg $t0, ($t0);
negqg $t0, $t0;

. For simple variables:
. Generate a load immediate instruction to load the address of the variable into freeReg.
. Generate a load instruction to load the contents of the memory pointed to by freeReg

into freeReg.

CompSci 330 Assignment 1 2007 19 March 2007 Page 3 of 22

public void evalCode(int freeReg) {
Code.instrn("1dig", Code.tempReg(freeReg), ident);
Code.instrn("1dg", Code.tempReg(freeReg),
Code.indirect (freeReg));
}

For example, if freeReg = 1, and the expression is “b”, we might generate code
ldig $tl1, b;
ldg $tl, ($tl1);

. For most constants:
. Generate a load immediate instruction to load the value of the constant into freeReg.
public void evalCode(int freeReg) {
Code.instrn("1dig", Code.tempReg(freeReg), Code.literal(value));

}

For example, if freeReg = 1, and the expression is “24”, we might generate code
1dig $tl, 24;

. The code generated should leave the result in the register corresponding to freeReg.

We can generate code for statement sequences and statements, by a method
public void genCode() ;

° To generate code for statement sequences:
. Loop, generating code for each component statement.
public void genCode () {
for (int i = 0; 1 < size(); 1i++) |

StmtNode stmt = elementAt (i);
stmt.genCode () ;
}

}

. To generate code for assignment statements:

. Generate code to load the address of the variable (the left operand) into $t0.

. Generate code to evaluate the expression (the right operand) into $t1 (freeReg = 1).
. Generate a store instruction to store the contents of $tl into the address pointed to by
$t0.

public void genCode () {
Code.enter () ;
Code.instrn("1dig", "$t0", ident);
expr.evalCode(1);
Code.instrn("stg", "Stl", "(St0)");
Code.exit () ;
}

(Code.enter() and Code.exit() generate the braces, to provide a local block.)

For example, for the statement “a =b + 24;”, we might generate code
{
ldig $t0, a;
ldig $t1, b;
ldg $tl, (stl);
1dig $t2, 24;
addg $tl, $t2;
stg $tl, ($t0);
}

. To generate code for “print” statements:

CompSci 330 Assignment 1 2007 19 March 2007
p g
J Generate code to evaluate the parameters into $a0, $al, $a2,
. Generate an instruction to invoke the 10.printf method.
public void genCode () {
Code.enter () ;
exprList.evalCode () ;
Code.instrn("bsr", "IO.printf.enter"
Code.exit () ;

}

For example, for the statement “print(“%d\n”, a * b);”, we might generate code

{

}

{
const |
string:
asciiz "%d\n";
align;
} const
ldig $t0, string;
}
mov $t0, $a0l;
ldig $t0, a;
ldg $t0, ($t0);
ldig s$tl, b;
ldg $tl1, ($tl);
mulg $t0, $tl;
mov $t0, $al;
bsr IO.printf.enter;

. To generate code for “while” statements:
o Generate a label definition for “while”.
. Generate code to evaluate the condition into $t0.
o Generate code to branch to “end” if the condition is false.
o Generate a label definition for “do”.
o Generate code to evaluate the substatement.
. Generate code to branch back to “while”.
o Generate a label definition for “end”.
public void genCode () {
Code.enter () ;
Code.labelDefn("while");
cond.evalCode(0);
Code.instrn("blbc", "S$t0", "end");
Code.labelDefn("do");
stmt.genCode () ;
Code.instrn("br", "while");
Code.labelDefn("end");
Code.exit () ;

}

Page 4 of 22

For example, for the statement “while 0 < ado a=a - 1;”, we might generate code

{

while:

ldig $t0, O;
ldig $tl1, a;
ldg $t1, ($t1);
cmplt $tO0, $Stl;

CompSci 330 Assignment 1 2007 19 March 2007 Page 5 of 22

blbc $t0, end;
do:
{
ldig $t0, a;
ldig $tl, a;
ldg $tl1, ($tl);
ldiqg st2, 1;
subg $tl, $t2;
stg $tl, ($t0);
}
br while;
end:

}

We also need to generate code to allocate space for each variable. Assume our variables are simple
identifiers, and all variables are assigned to before they are used.

Assume we have a compile-time environment “env” that represents the set of identifiers seen so far
(or at least those as the destination of an assignment).

We can process each statement and statement sequence by a method
public void genDeclCode(Env env);

For each assignment statement, this method:
. Checks whether the destination identifier is already in the environment.

. If we have not processed the identifier, outputs a label definition for the identifier, and a
“quad’ directive to allocate space for the identifier.

o Adds the identifier to the environment.

For example, if we use variables a, d, we might generate code
a:
quad 0;
d:
quad 0;

In addition to this, we need to package the code within some text to import support files, specify the

entry point, etc. For example, we might generate code
entry main.enter;

import "../../IMPORT/callsys.h";
import "../../IMPORT/proc.h";
import "../../IMPORT/callsys.lib.s";
import "../../IMPORT/string.lib.s";
import "../../IMPORT/number.lib.s";
import "../../IMPORT/io.lib.s";
public block main {

data {

// Code generated by genDeclCode
} data
code {

public enter:
// Code generated by genCode, exprCode
clr $a0;
bsr Sys.exit.enter;
} code
} block main

Sample input and generated code is illustrated in appendix 5.

CompSci 330 Assignment 1 2007 19 March 2007 Page 6 of 22

Modify the code for parser.cup, Ylex.jflex and the Node classes so that the compiler reprints
programs suitably indented, and generates appropriate Alpha assembly language for the
following constructs.

Add in the grammar and code for the “true”, “false” literal values (which correspond to the numeric
values of 1 and 0). Ensure that they reprint as “true’ and “false”.

(5 marks)
Add in grammar and code for the “II”, “&&”, “!”, “>7, “>=", “I=" operators. Assume (infix) “II”
has the lowest precedence, then (infix) “&&”, then (prefix) “!”, then the (infix, non-associative)
relational operators, then (infix) “+” and (infix and prefix) “-”, then (infix) “*” and ““/”.

(10 marks)

Add in grammar and code for “if-then”, “if-then-else”, and “for” statements.

The syntax for “if-then” statements is “if Expr then Stmt”. The syntax for “if-then-else” statements
is “if Expr then Stmt else Stmt”. The syntax for “for” statements is “for IDENT = Expr to Expr do
Stmt”.

(20 marks)
Total 35 Marks

Using the shell scripts
Shell scripts to compile the compiler
Basically you just run createcompiler.bash, and fix the errors until your compiler compiles.

createlexer.bash Run JFlex. Put the error messages in jflex.error. Create
Source/grammar/Yylex.java.

createparser.bash Run CUP. Put the error messages in cup.error. Create
Source/grammar/{parser.java,sym.java,parser.states}.

createclass.bash Run javac. Put the error messages in javac.error. Create class files in
Classes directory.

createjar.bash Run jar. Create the jar file run.jar.

createcompiler.bash Run the other create*.bash files, to compile the compiler, and generate
run.jar.

Shell scripts to run the compiler

Basically just run runCompile.bash with a directory as argument to compile a program written in
this language.

run.bash A generic shell script to run the generated compiler. It needs the directory
containing the program to compile as an argument. It permits the user to
add additional arguments, such as -debug. It creates program.err,
program.parse, program.print, usercode.user.s.

runCompile.bash A more specific shell script, that calls run.bash, with the directory
containing the program to compile as an argument. For example, type
“runCompile.bash Programs/test”.

CompSci 330 Assignment 1 2007 19 March 2007 Page 7 of 22

Shell script to run the assembly language

Basically just run runSim.bash with a directory as argument to run the assembly language program
generated by the compiler.

runSim.bash Run the Alpha simulator in batch mode. It needs the directory containing
the program to compile as an argument. It creates sim.err and sim.out. For
example, type “runSim.bash Programs/test”.

Really intended for use by the markers. It is generally better for you to run
the simulator interactively, until you believe your code is working.

Shell scripts to run the compiler or assembly language over all subdirectories of a directory.

Once everything seems to be close to working, use runallCompile.bash to compile all programs in
this language, and runallSim.bash to run all the generated assembly language programs.

runall.bash A general shell script to run another shell script over all subdirectories of
the argument directory. Do not use directly.

runallCompile.bash ~ Runs runCompile.bash for every subdirectory of the argument directory.
For example, type “runallCompile.bash Programs”.

runallSim.bash Runs runSim.bash for every subdirectory of the argument directory. For
example, type “runallSim.bash Programs”.

Notes:

Read the provided code before starting.
The code for “true” and “false” is very similar to the code for integer literals.

For example, the statement
a = true;

should generate code
{
ldig $t0, a;
ldig stl, 1;
stg $tl, ($t0);
}

The “lI” and “&&” operators are trivial. Just define precedence as PREC_OR, PREC_AND:;

99 46

operator as “Il”, “&&”; and opCode as “or”, “and”. To generate code for “>”, “>=", “I=", generate
99 6 9% &6

code as for “<=", “<”, “==", then generate code to complement the result by generating a “cmpeq”
instruction that compares freeReg with “0”, and puts the result back in freeReg. To generate code

for “!”, generate code for the operand, then generate a “cmpeq” instruction, as for “>”,

>:”’ [!:’,‘
For example, the statement
cond = a < b || ¢c >d;

should generate code
{
ldig $t0, cond;
ldig $t1, a;
ldg $t1, ($t1);
ldig s$t2, b;
1dg $t2, (5t2);
cmplt $tl, $t2;
ldig $t2, c;
ldg $t2, (5t2);
ldig $t3, d;

CompSci 330 Assignment 1 2007

ldg $t3, ($t3);

cmple $t2, $t3;

cmpeq $t2, 0;

or $tl, $t2;

stg $tl, ($t0);
}

The statements

a 3;

b = 4;

print ("%d < %d is %d\n", a, b, a < b);
print ("%d <= %d is %d\n", a, b, a <= b
print ("%d > %d is %d\n", a, b, a > b);
print ("%d >= %d is %d\n", a, b, a >= b
print ("%d == %d is %d\n", a, b, a == b
print ("%d != %d is %d\n", a, b, a !'= b
a = true;

b = false;

print("%d || %d is %d\n", a, b, a || b
print("%d && %d is %d\n", a, b, a && b
print("! %d is %d\n", a, ! a);

should generate output

3 <4 is 1
3 <=4 1is 1
3 >4 1is 0
3 >4 1is 0
3 ==4 1s 0
3 1=4 is 1
1 1] 0 is 1
1 && 0 is O
!''1 is O

19 March 2007

Page 8 of 22

The code for “if-then”, “if-then-else”, and “for” statements is similar to the code for “while”

statements.

For example, the statements
a = 3;
b =4;
if a < b then
print ("%d < %d\n", a, b);

if a == b then
print ("%d == %d\n", a, b);

if a > b then
print ("%d > %d\n", a, b);

should generate output
3 <4

The statements
for 1 = 0 to 5 do
if i/ 2 * 2 == 1 then
print("%d is even\n", 1);
else
print ("%d is odd\n", i);

should generate output
is even
is odd
is even
is odd
is even
is odd

ad W NP O

CompSci 330 Assignment 1 2007 19 March 2007 Page 9 of 22

Support methods are declared in the Code class to generate code for instructions, labels, etc. The
text generated contains “%+", “%-", “%n” directives to increment and decrement the indenting
level, generate line breaks, etc. This is then processed by the code for the FormattedOutput.print()
method, to generated appropriately indented text.

Ensure that your code assembles and executes correctly, by loading it into the alpha simulator and
executing it. You can also run the Alpha simulator in batch mode by using the runSim.bash shell
script.

CompSci 330 Assignment 1 2007 19 March 2007 Page 10 of 22

Submission:
Note that template files are provided for you to edit. Do not create your own files.

Run the command
createtar.bash

to create a tar/gzip file
ASSIGNl.tar.gz

containing

(a) An Excel file, “lalrParse.xls”, with 2 separate sheets containing
(i) The LALR(1) action/goto tables.
(i1)) The LALR(1) parse of the input.

(b) A Visio file “lalrDiagram.vsd”, with 2 separate sheets containing
(1) A drawing of the parse tree for the input.
(i) A drawing of the abstract syntax tree for the input.

(c) The COMPILE directory containing your solution for question 2.

Submit the tar/gzip file
ASSIGNl.tar.gz

using the assignment drop box.

Due Date 12 Noon, Wednesday (week 5) 28th March 2007, subject to normal
Bonus/Penalty rules, as described in the introductory handout.

CompSci 330 Assignment 1 2007 19 March 2007 Page 11 of 22

Appendix 1 CUP grammar for question 1

terminal

LEXERROR,

DOT, EXPANDSTO, COMMA, LEFT, RIGHT, LEFTSQ, RIGHTSQ, BAR;
// . 1 - p () [] |
terminal String INTVALUE; // [0-9]+
terminal String NAME; // [a-z] [A-Za-z0-9]*
terminal String VARIABLE; // [A-Z] [A-Za-z0-9]~*

nonterminal ProgramNode
Program;

nonterminal ClauseListNode
ClauselList;

nonterminal ClauseNode
Clause;

nonterminal StructurelListNode
Structurelist;

nonterminal StructureNode
Structure;

nonterminal ExprListNode
ExprList;

nonterminal ExprNode
Expr, List, ElementListOpt, ElementList;

start with Program;

Program: :=
Clauselist:clauselist
{:
RESULT = new ProgramNode (clauselList);
)
Clauselist::=
Clauselist:clauselist Clause:clause
{:
clauselist.addElement (clause);
RESULT = clauselist;
)
Clause:clause
{:
RESULT = new ClauseListNode(clause);
)
Clause::=

Structure:head DOT

{:

RESULT = new FactNode(head);
)

Structure:head EXPANDSTO StructurelList:tail DOT
{:

RESULT = new RuleNode(head, tail);

2}

error DOT

CompSci 330 Assignment 1 2007 19 March 2007

{:
RESULT = new ErrorClauseNode() ;
)

StructurelList::=

Structure::

ExprList::

Expr::=

Structure:structure

{:

RESULT = new StructurelListNode (structure);
)

StructurelList:structurelList COMMA Structure:structure
{:

structurelist.addElement (structure);

RESULT = structurelist;

)

NAME :name LEFT ExprList:exprList RIGHT
{:
RESULT = new StructureNode(name, exprList);

:}

Expr:expr

{:

RESULT = new ExprListNode (expr);
)

ExprList:exprList COMMA Expr:expr
{:

exprlList.addElement (expr);
RESULT = exprList;

1}

INTVALUE:value

{:

RESULT = new IntValueNode(new Integer(value).intValue /()
1}

NAME : name

{:

RESULT = new NameNode (name) ;
)

VARIABLE :name

{:

RESULT = new VariableNode (name);
)

Structure:structure
{:
RESULT = structure;
)

List:list
{:

Page 12 of 22

CompSci 330 Assignment 1 2007 19 March 2007 Page 13 of 22

RESULT = list;
:}

List::=
LEFTSQ ElementListOpt:elementList RIGHTSQ
{:
RESULT = elementList;
)
ElementListOpt::=
ElementList:elementList
{:
RESULT = elementList;
)
/* Empty */
{:
RESULT = new EmptyListNode() ;
)
ElementList::=

Expr:expr

{:

RESULT = new NonEmptyListNode (expr, new EmptyListNode());
1}

Expr:expr COMMA ElementList:elementList

{:

RESULT = new NonEmptyListNode (expr, elementList);
1}

Expr:expr BAR Expr:tail

{:

RESULT = new NonEmptyListNode (expr, tail);
)

Appendix 2 LALR(1) State Information

===== Rules =====

[0] $START ::= Program EOF

[1] Program ::= Clauselist

[2] ClauselList ::= ClauselList Clause

[3] Clauselist ::= Clause

[4] Clause ::= Structure DOT

[5] Clause ::= Structure EXPANDSTO StructureList DOT
[6] Clause ::= error DOT

[7] Structurelist ::= Structure

[8] Structurelist ::= StructurelList COMMA Structure
[9] Structure ::= NAME LEFT ExprList RIGHT

[10] ExprList ::= Expr

[11] ExprList ::= ExprList COMMA Expr

[12] Expr ::= INTVALUE

[13] Expr ::= NAME

[14] Expr ::= VARIABLE

[15] Expr ::= Structure

[16] Expr ::= List

[17] List ::= LEFTSQ ElementListOpt RIGHTSQ

CompSci 330 Assignment 1 2007 19 March 2007

ElementListOpt ::= ElementList
ElementListOpt =

ElementList = Expr

ElementList ::= Expr COMMA ElementList
ElementList = Expr BAR Expr

———————— ACTION TABLE --------

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

From

state #0

error:SHIFT (state 4) NAME:SHIFT (state 6)

state #1

EOF:SHIFT (state 36)

state #2

DOT:SHIFT (state 30) EXPANDSTO:SHIFT (state 29)

state #3

EOF:REDUCE (rule 1) error:SHIFT (state 4) NAME:SHIFT (state 6)
state #4

DOT:SHIFT (state 27)

state #5

EOF:REDUCE (rule 3) error:REDUCE (rule 3) NAME:REDUCE (rule 3)
state #6

LEFT:SHIFT (state 7)

state #7

Page 14 of 22

LEFTSQ:SHIFT (state 15) INTVALUE:SHIFT (state 12) NAME:SHIFT (state 13)

VARIABLE:SHIFT (state 14)

state #8

COMMA :REDUCE (rule 15) RIGHT:REDUCE (rule 15) RIGHTSQ:REDUCE (rule
BAR:REDUCE (rule 15)

state #9

COMMA : SHIFT (state 24) RIGHT:SHIFT (state 25)

state #10

COMMA : REDUCE (rule 16) RIGHT:REDUCE (rule 16) RIGHTSQ:REDUCE (rule
BAR:REDUCE (rule 16)

state #11

COMMA : REDUCE (rule 10) RIGHT:REDUCE (rule 10)

state #12

COMMA : REDUCE (rule 12) RIGHT:REDUCE (rule 12) RIGHTSQ:REDUCE (rule
BAR:REDUCE (rule 12)

state #13

COMMA : REDUCE (rule 13) LEFT:SHIFT (state 7) RIGHT:REDUCE (rule 13)
RIGHTSQ:REDUCE (rule 13) BAR:REDUCE (rule 13)

state #14

COMMA :REDUCE (rule 14) RIGHT:REDUCE (rule 14) RIGHTSQ:REDUCE (rule
BAR:REDUCE (rule 14)

state #15

15)

16)

12)

14)

LEFTSQ:SHIFT (state 15) RIGHTSQ:REDUCE (rule 19) INTVALUE:SHIFT (state

NAME : SHIFT (state 13) VARIABLE:SHIFT (state 14)
state #16

RIGHTSQ:SHIFT (state 23)

state #17

COMMA:SHIFT (state 19) RIGHTSQ:REDUCE (rule 20) BAR:SHIFT (state 20)

state #18
RIGHTSQ:REDUCE (rule 18)
state #19

LEFTSQ:SHIFT (state 15) INTVALUE:SHIFT (state 12) NAME:SHIFT (state 13)

VARIABLE:SHIFT (state 14)
state #20

LEFTSQ:SHIFT (state 15) INTVALUE:SHIFT (state 12) NAME:SHIFT (state 13)

VARIABLE:SHIFT (state 14)
state #21
RIGHTSQ:REDUCE (rule 22)
state #22

12)

CompSci 330

From

From

From

From

From

From

From

From

From

From

From

From

From

Assignment 1 2007

RIGHTSQ:REDUCE (rule 21)
state #23
COMMA : REDUCE (rule 17)
BAR:REDUCE (rule 17)
state #24
LEFTSQ:SHIFT (state 15)
VARIABLE:SHIFT (state 14)
state #25
DOT:REDUCE (rule 9)
RIGHT:REDUCE (rule 9)

state #26

COMMA :REDUCE (rule 11) RIGHT:REDUCE (rule 11)
state #27

EOF:REDUCE (rule 6) error:REDUCE (rule 6) NAME:
state #28

EOF:REDUCE (rule 2) error:REDUCE (rule 2) NAME
state #29

NAME : SHIFT (state 6)

state #30

EOF:REDUCE (rule 4) error:REDUCE (rule 4) NAME
state #31

DOT:REDUCE (rule 7) COMMA:REDUCE (rule 7)
state #32

DOT:SHIFT (state 34) COMMA:SHIFT (state 33)
state #33

NAME : SHIFT (state 6)

state #34

EOF:REDUCE (rule 5) error:REDUCE (rule 5) NAME
state #35

DOT:REDUCE (rule 8) COMMA:REDUCE (rule 8)
state #36

EOF:REDUCE (rule 0)

From
From
From

From
From
From
From

From
From
From
From
From
From
From
From

REDUCE_TABLE
state #0:
Program:GOTO (1)
ClauseList:GOTO (3)
Clause:GOTO (5)
Structure:GOTO (2)
state #1:

state #2:

state #3:
Clause:GOTO (28)
Structure:GOTO (2)
state #4:

state #5:

state #6:

state #7:
Structure:GOTO (8)
ExprList:GOTO (9)
Expr:GOTO (11)
List:GOTO (10)
state #8:

state #9:

state #10:

state #11:

state #12:

state #13:

state #14:

state #15:
Structure:GOTO (8)

RIGHT:REDUCE (rule 17)

INTVALUE: SHIFT (state

EXPANDSTO:REDUCE (rule 9)
RIGHTSQ:REDUCE (rule 9)

19 March 2007

Page 15 of 22

RIGHTSQ:REDUCE (rule 17)

12)

NAME : SHIFT (state 13)

COMMA :REDUCE (rule 9)
BAR:REDUCE (rule 9)

REDUCE (rule

:REDUCE (rule

:REDUCE (rule

:REDUCE (rule

CompSci 330 Assignment 1 2007 19 March 2007 Page 16 of 22

Expr:GOTO (17)
List:GOTO (10)
ElementListOpt:GOTO(16)
ElementList:GOTO (18)

From state #16:

From state #17:

From state #18:

From state #19:
Structure:GOTO (8)
Expr:GOTO (17)
List:GOTO (10)
ElementList:GOTO (22)

From state #20:
Structure:GOTO (8)
Expr:GOTO (21)
List:GOTO (10)

From state #21:

From state #22:

From state #23:

From state #24:
Structure:GOTO (8)
Expr:GOTO (26)
List:GOTO (10)

From state #25:

From state #26:

From state #27:

From state #28:

From state #29:
StructureList:GOTO (32)
Structure:GOTO (31)

From state #30:

From state #31:

From state #32:

From state #33:
Structure:GOTO (35)

From state #34:

From state #35:

From state #36:

Appendix 3 Input for question 1(b), (¢), (d)

last([X, Y | 2], W):= last([Y | 2], W).

Appendix 4 Provided grammar for question 2

terminal
LEXERROR,
LT, LE, EQ, PLUS, MINUS, TIMES, DIVIDE, ASSIGN,
PRINT, IF, THEN, ELSE, WHILE, DO, FOR, TO, SEMICOLON, LEFTCURLY, RIGHTCURLY,
LEFT, RIGHT, COMMA;
terminal String STRINGVALUE;
terminal String INTVALUE;
terminal String IDENT;

nonterminal ProgramNode
Program;

nonterminal StmtListNode
StmtList;

CompSci 330 Assignment 1 2007 19 March 2007

nonterminal StmtNode

Stmt;

nonterminal ExprListNode
ExprList;

nonterminal ExprNode

Expr,

RelExpr, PlusExpr, MulExpr, Primary;

start with Program;

Program::

StmtList::

Stmt::=

StmtList:stmtList

{:

RESULT = new ProgramNode (stmtList);
1}

{:
RESULT
)

new StmtListNode () ;

StmtList:stmtList Stmt:stmt
{:

stmtList.addElement (stmt);
RESULT = stmtList;

)

IDENT:ident ASSIGN Expr:expr SEMICOLON

{:

RESULT = new AssignStmtNode (ident, expr);
)

PRINT LEFT ExprList:exprList RIGHT SEMICOLON
{:

RESULT = new PrintStmtNode (exprList);

1}

WHILE Expr:expr DO Stmt:stmt

{:

RESULT = new WhileStmtNode (expr, stmt);
)

LEFTCURLY StmtList:stmtList RIGHTCURLY

{:

RESULT = new CompoundStmtNode (stmtList);
1}

error SEMICOLON

{:

RESULT = new ErrorStmtNode () ;
)

error RIGHTCURLY

{:

RESULT = new ErrorStmtNode () ;
)

Page 17 of 22

CompSci 330 Assignment 1 2007 19 March 2007

ExprList:

Expr::=

RelExpr::

PlusExpr::

Expr:expr

{:

RESULT = new ExprListNode (expr);
)

ExprList:exprList COMMA Expr:expr
{:

exprlList.addElement (expr);
RESULT = exprList;

1}

RelExpr:expr
{:

RESULT = expr;
1}

PlusExpr:exprl LT PlusExpr:expr?2

{:

RESULT = new LessThanNode (exprl, expr2);
)

PlusExpr:exprl LE PlusExpr:expr?2

{:

RESULT = new LessEqualNode (exprl, expr2);
)

PlusExpr:exprl EQ PlusExpr:expr?2

{:

RESULT = new EqualNode(exprl, expr2);
)

PlusExpr:expr
{:
RESULT = expr;
1}

PlusExpr:expr PLUS MulExpr:expr?2

{:

RESULT = new PlusNode(expr, expr2);
)

PlusExpr:expr MINUS MulExpr:expr?2

{:

RESULT = new MinusNode (expr, expr2);
)

MINUS MulExpr:expr?2

{:

RESULT = new NegateNode (expr2);
1}

MulExpr:expr
{:

Page 18 of 22

CompSci 330 Assignment 1 2007 19 March 2007 Page 19 of 22

RESULT = expr;
1}

MulExpr::=
MulExpr:exprl TIMES Primary:expr2
{:
RESULT = new TimesNode (exprl, expr2);
)

MulExpr:exprl DIVIDE Primary:expr2

{:

RESULT = new DivideNode (exprl, expr2);
)

Primary:expr
{:

RESULT = expr;
1}

Primary::=
LEFT Expr:expr RIGHT
{:
RESULT = expr;
1}

INTVALUE:value

{:

RESULT = new IntValueNode(Integer.parselnt(value));
1}

STRINGVALUE:value
{:
RESULT = new StringValueNode (
Convert.parseString(value.substring(1, value.length() - 1)));

:}

IDENT:ident

{:

RESULT = new IdentNode(ident);
)

Appendix S Sample program and code generated for question
2

The program
max = 20;
for p = 2 to max do
{
isPrime = true;
i = 2;
while i * 1 < p do
{
if p/ i * 1 == p then
isPrime = false;
i=1+ 1;
}

if isPrime then

CompSci 330

}

Assignment 1 2007 19 March 2007

print("%d is prime\n", p);

might generate code
entry main.enter;

import
import
import
import
import
import
public

p:

N

n ./.

./IMPORT/callsys.h";
./IMPORT/proc.h";
./IMPORT/callsys.lib.s";
./IMPORT/string.lib.s";
./IMPORT/number.lib.s";
./IMPORT/io.lib.s";

block main {
data {
max:

quad 0;

quad 0;
isPrime:
quad 0;

quad 0;
} data
code {
public enter:

{

ldig $t0, max;
1dig $tl, 20;
stg $tl, ($t0);

for:
ldig $t0, 2;
ldig s$tl, p;
Stq $tOI ($tl);
while:

do:

ldig $t0, p;

ldg $t0, ($t0);
ldig $tl, max;
ldg $t1, ($tl1);
cmple $t0, Stl;
blbc $t0, end;

{

ldig $t0, isPrime;
ldig s$t1, 1;
stg $tl, ($t0);

1diq $t0, i;
ldig $tl1, 2;
stg $tl, ($t0);

}

{

while:
1diq $t0, i;
ldg $t0, ($t0);
1dig $tl, i;
1dg $t1, ($tl);
mulg $t0, $tl;
ldig s$tl, p;
1dg $t1, ($tl);

Page 20 of 22

CompSci 330

do:

end:

if:

then:

end:

Assignment 1 2007 19 March 2007

cmplt $t0, Stl;
blbc $t0, end;

{

ldig $t0, p;

ldg $t0, ($t0);

1dig $t1, i;

1dg $t1, ($tl);

divg $t0, S$t1;

1dig $t1, i;

1dg $t1, ($tl);

mulg $t0, $tl;

ldig s$tl, p;

1dg $t1, ($tl);

cmpeq $t0, $tl;

blbc $t0, end;

then:

{
ldig $t0, isPrime;
ldig stl1, O;
stg $tl, ($t0);

end:

1diq $t0, i;
1diq $tl1, i;
1dg $tl, ($tl);
ldiqg st2, 1;
addg tl, St2;
stg $tl, ($t0);

}

}
br while;

ldig $t0, isPrime;
1dg $t0, ($t0);
blbc $t0, end;

{

const {
string:
asciiz "%d is prime\n";
align;
} const
ldig $t0, string;
}
mov $t0, $a0l;
ldig $t0, p;
ldg $t0, (StO0);
mov $t0, $al;
bsr IO.printf.enter;

Page 21 of 22

CompSci 330 Assignment 1 2007

}

increment:
ldig $t0, p;
ldg $tl, ($t0);
addg stl, 1;
stg $tl, ($t0);
br while;

end:

}

clr $a0;

bsr Sys.exit.enter;

} code

} block main

and output

~N 0w N

9

11
13
17
19

is
is
is
is
is
is

prime
prime
prime
prime
prime
prime

is prime
is prime
is prime
is prime

Bruce Hutton

19 March 2007

Page 22 of 22

