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Transmission Modes  (Shay 4.3)
● Parallel (many wires) or Serial (one wire) 
● Direction-related
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Transmission Modes
● Time-related

– asynchronous: may start/stop at any time

– synchronous: uses a continuous clock

– isochronous: imposes gaps to match transmission rates
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Interface Standards  (Shay 4.4)
● There are lots of 'standard' interfaces for 

connecting devices together
● Shay has good descriptions of:

– EIA-232 (RS-232)  <= we only look at this one 
– USB
– IEEE 1394 (Firewire)
– X.21
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RS-232 Serial Interface
● Connects DTE (computer) to DCE (modem)

● 25-pin connector, we normally use only 9
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RS-232 Serial Interface
● Null Modem for connecting two DTEs

● Not used here:  pin 22 = Ring Indicator, pin 1 = Protective Earth
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Multiplexing  (Shay 4.5)
● Ways of carrying several different connections 

over a common link
    

● Frequency-Division (FDM):
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Multiplexing  (2)
● Time-Division (TDM):

● Statistical Multiplexing
– Much the same as TDM, but doesn't use fixed time 

allocations (slots)
– Receiver must be able to identify incoming frames
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Multiplexing  (3)
● Wave-Division (WDM):
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Flow Control  (Shay 8.1)
● Need for flow control

– how can we send long messages, e.g. big files?
– what happens when messages get lost, or are 

corrupted when they arrive?
– what if the receiving host is busy, i.e. slow to accept 

incoming data?
– how will a sender cope with lost (undelivered) 

messages?
– will both hosts be able to send/receive at the same 

time?
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What is Flow Control?
● Messages are broken into frames
● Flow Control defines

– “the way frames are sent, tracked and controlled”
– may be simple or complex

● Many examples of protocols around us, e.g. 
traffic rules (Road Code), 'phone conversations 

● How can we be sure that a protocol is correct?
– works properly
– will never suddenly 'freeze'
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Signaling  (Shay 8.2)
● Receiver tells sender when it's ready to receive
● Prevents receiver

buffer overflow
● DTE (computer) - 

DCE (modem) 
via RS-232 
interface ..
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X-ON/X-OFF
● Over the DTE-DCE path ..

– send ASCII X-OFF (0x13, ^S) to stop transmission
– send X-ON (0x11, ^Q) to start it again

● This is in-band signalling, i.e. send signal on 
same path as data

● How quickly does the transmitter stop sending?
● How can we send 0x11 or 0x13 to the receiver?
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Frame-oriented Control  (Shay 8.3)
● Idea is to break large sequences of chars into 

smaller frames
● Frames are sent from one user (higher protocol 

layer) to another

● Unrestricted protocol
– simply assume it's always safe to send
– not really a useable protocol!
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Stop-and-Wait
● Sender:

– send frame, wait for ACK or NAK
– if NAK, send frame again.  Repeat unil get ACK

● Receiver:
– receive frame, check for errors
– if OK, send ACK.  otherwise send NAK

● No way to handle lost (therefore not ACKed) 
frames
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Protocol Efficiency: Effective data rate
● Shay derives formulae, we “just work it out”
● Remember, velocity = distance / time

– in wire or fibre, v is ~2/3 speed of light, i.e. 2x108 m/s
– Auckland-Hamilton is about 120 km, so a byte takes 

(120 x 103)/(2 x 108) = 0.6 ms to get there
– If we send a 1500-Byte frame at 10 Mb/s, it will take 

(1500 x 8) /(10 x 106) = 1.2 ms to transmit
– Assume that ACK is a 64-Byte frame, 0.0512 ms
– Therefore, to send frame and receive ACK takes 

roughly   1.2 + 0.05 + 2 x 0.6 = 2.45 ms
– Effective bit rate is (1500 x 8)/(2.45 x 10-3) = 4.9 Mb/s
➔ Half the time is wasted waiting for ACKs
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Side note: a catch in the notation
● Convention: 

– Mb/s for megabits per second
– MB/s for megabytes per second

● Often leads to confusion, especially with 
marketing people, journalists, and politicians.

● If there is any chance of confusion, write 
"megabits" or "megabytes" in full.

● In data communications, we normally discuss 
megabits. But when considering application 
throughput, megabytes are more useful.
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Sliding Window  (Shay 8.4)
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Sliding Window / Go-back-n
● Idea here is to have a maximum of i frames on 

the wire at any time.  i is the window size
● Each frame has a sequence number, sender 

must hold each frame until it is ACKed
● Sender keeps track of w, sequence number of 

first (of i frames) in window.  When frame w is 
ACKed, sender can forget it

● Window does not move until earliest frame has 
been ACKed
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Go-back-n
● Shay develops a frame format for two-way 

communication

● Data frame in one direction can carry an ACK for the 
other direction, i.e. a piggy-backed ACK

● To handle lost frames, he has an ACK timer at 
the receiver ..

● and a frame timer at the transmitter
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Sequence Numbers
● Sequence Numbers fit in a K-bit field;

there can be at most 2K frames in the window
● K should be big enough to handle the maximum 

window size we expect to use
● They are unsigned numbers, and can wrap, 

i.e. count through 2K-2, 2K-1, 0, 1, 2, ...
You can think of the sequence numbers as 
being arranged in a circle

● What happens if a host crashes and restarts?
● Some protocols used lollipop sequence numbering to 

handle restarts!  (see Wikipedia)
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Selective Repeat  (Shay 8.5)
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Selective Repeat (2)
● Any frame can be ACKed, specifying it's sequence 

number
● Frames arriving out of sequence are buffered until 

earlier frames have been ACKed
● When a NAK is received, only the NAKed frame is 

resent (Go-Back-n resent the whole window!)
● If a frame timer expires (no ACK or NAK), only the 

timed-out frame is resent
● Piggy-backed ACK acknowledges the last frame 

delivered to the user, so the sender knows that all 
frames up to that one have been safely received
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Efficiency of Sliding Window Protocols  (8.6)
● For a particular window size, message size, 

transmission speed and link distance, we can 
“just work it out,” as we did for stop-and-wait

● We assume no lost or damaged packets !
● Two cases

– we get our first message ACKed before we've sent 
a whole window.  That allows us to keep sending at 
full link speed 

– we have to wait for an ACK after sending a window, 
then we can send another window.  Shay has a 
diagram illustrating this ..
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Sending whole window and waiting
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Numerical examples
● Sending 100x 1500B frames in 20-frame windows, 

Auckland-Hamilton on a 10 Mb/s link
– as for Stop-and-Wait: 1.2ms to send frame, 1.2ms 

round-trip time.  
Any window > 2 frames can run at full speed, 10 Mb/s
   

● As above, but with 64B frames
– send time is (64 x 8)/(10 x 106) = 0.0512 ms
– time to send 20 frames = 20 x 0.0512 = 1.024 ms
– first ACK returns after 1.2+2*0.0512 = 1.3024 ms
– effective bit rate is (20 * 64 * 8)/1.3024 = 7.862 Mb/s
– note the effect of using a small frame size !
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Bandwith-Delay Product (BDP)
● BDP for a link = data rate x link delay*
● Auckland-Hamilton at 10 Mb/s:

BDP = 10 Mb/s x 0.6 ms = 6000 bits= 6000 bits
   = 750 B   = 750 B

● This is the maximum number of bits we can have 'on 
the wire'

● Need to have buffers at least double this at least double this so that 
transport protocol can keep the link busy
– fill the wire once, and then again before first ACK returnsfill the wire once, and then again before first ACK returns

● Bigger frames sizes help to keep the link busy – less 
protocol overhead

*one-way delay, not round-trip time
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Protocol Correctness  (Shay 8.7)
● Shay discusses two ways to describe systems:

– Finite State Machines
– Petri nets

● Finite State Machine models a system as being 
in one of a finite set of states

● State Transition Diagrams (STDs) are graphs, 
each vertex represents a state, and each edge 
a transition between states

● Petri nets are more detailed, we won't discuss 
them further
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State Transition Diagrams

● Look for problems on graph
– No edges pointing to S

1

– S
5
 – S

6
 is an infinite loop

● This kind of analysis helps find flaws
– it doesn't prove correctness!
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Protocol Layers, the OSI Model  (reminder)
● Layers are an abstraction, they provide a 

simple view of what happens in a 
communication system

● Layer n 
– provides services to layer n+1
– uses services from layer n-1

● Generally we implement systems this way,
but sometimes we may find it useful to peek 
between layers, or 'break layer purity'
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OSI Model

● OSI has 7 layers, TCP/IP collapses 5-7 into 5
● So far, we've mainly discussed layer 1

7

6

5

4

3

2

1
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Introduction to LANs  (Shay 9.1)
● LANs connect many hosts (devices) together
● Link medium may be copper (coax or UTP), 

fibre or wireless
● Topology may be 

– bus: hosts share the medium by taking turns
– ring: access is controlled by pasing a token

● Ethernet – today's most common LAN physical 
layer – uses a bus topology

● Point-to-point link is a LAN with only two hosts
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LAN Layers
● Layer 1 is the Physical layer.  On this layer, 

you've already looked at signaling and 
modulation methods

● Layer 2, the Link layer, is where hosts talk to 
each other.  Protocols here send frames 
(packets) to other hosts, and receive frames in 
response

● Layer 3, the Network layer, is used to pass 
packets between LANs.  For example, we often 
use IP to pass frames between Ethernet-
connected hosts
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Data Link Control  (Shay 9.2)
● Link layer is divided in two – LLC and MAC
● Shay presents

HDLC, a fore-
runner of
IEEE 802.2

● These are
bit-oriented
protocols
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HDLC Frame Format
● Flag pattern, 01111110 (six 1s) marks start and 

end of frame.  Receiver watches medium for 
flags

● How do we send the flag pattern within the data 
part of the frame?
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HDLC Bit Stuffing
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HDLC communication example
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802.2 LLC Header Formats (if used)

● DSAP, SSAP are Service Access Point addresses
– 04 = IBM SNA, 06 = IP, 

AA = SNAP (Subnetwork Attachment Point)

● OUI = Organisation Unique Identifier
● Type field values are Ethernet type (Ethertype) values

– 0800
16

 = IP,  0806 = ARP,  6003 = DECnet phase IV, ...

DSAP address SSAP address    Control field   Information field
8 bits 8 bits    8 or 16 bits N*8 bits

AA    AA    03    00    00    00    08    00
     LLC 3 octet OUI  2-octet type field

General form 
of LLC header

SNAP header 
(8 bytes)
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Contention Protocols  (Shay 4.7)
● Basic idea: Hosts must share the medium
● Aloha System, 1970s, using packet radio:
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Aloha Protocol
● Any host can broadcast a message to 

Menehune at any time
● If the message is received correctly, Menehune 

ACKs it (on a different frequency)
● If two host transmissions overlap (and interfere) 

the message is lost
● If a message is not ACKed the host assumes it 

was lost, waits a random time, then resends
● Worked and was simple, but not a very efficient 

use of the medium
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Carrier Sense Multiple Access (CSMA)
● Like Aloha, listen to medium for any activity
● If no activity, transmit; otherwise wait
● Can still get collisions, various ways to reduce 

them:
– use 'slot time,' hosts can only transmit at start of a 

slot
– random choice, probability p, to decide whether to 

transmit or wait for next slot
– Fig. 4.44 compare various schemes
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Collision Detection
● Start transmitting any time, but watch medium for a collision
● When collision detected, stop transmitting, send jam signal
● This is CSMA/CD
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How to exit a stop sign using CSMA/CD

Oops *!#&*

Oops!

OK! 3rd 
time 
lucky


