
Lectures 14, 15, 16:
Connections, Protocols,

Link and Flow Control, LANs

Brian Carpenter

314 S1T 2008

COMPSCI 314 2

Transmission Modes (Shay 4.3)
● Parallel (many wires) or Serial (one wire)
● Direction-related

COMPSCI 314 3

Transmission Modes
● Time-related

– asynchronous: may start/stop at any time

– synchronous: uses a continuous clock

– isochronous: imposes gaps to match transmission rates

COMPSCI 314 4

Interface Standards (Shay 4.4)
● There are lots of 'standard' interfaces for

connecting devices together
● Shay has good descriptions of:

– EIA-232 (RS-232) <= we only look at this one
– USB
– IEEE 1394 (Firewire)
– X.21

COMPSCI 314 5

RS-232 Serial Interface
● Connects DTE (computer) to DCE (modem)

● 25-pin connector, we normally use only 9

COMPSCI 314 6

RS-232 Serial Interface
● Null Modem for connecting two DTEs

● Not used here: pin 22 = Ring Indicator, pin 1 = Protective Earth

COMPSCI 314 7

Multiplexing (Shay 4.5)
● Ways of carrying several different connections

over a common link

● Frequency-Division (FDM):

COMPSCI 314 8

Multiplexing (2)
● Time-Division (TDM):

● Statistical Multiplexing
– Much the same as TDM, but doesn't use fixed time

allocations (slots)
– Receiver must be able to identify incoming frames

COMPSCI 314 9

Multiplexing (3)
● Wave-Division (WDM):

COMPSCI 314 10

Flow Control (Shay 8.1)
● Need for flow control

– how can we send long messages, e.g. big files?
– what happens when messages get lost, or are

corrupted when they arrive?
– what if the receiving host is busy, i.e. slow to accept

incoming data?
– how will a sender cope with lost (undelivered)

messages?
– will both hosts be able to send/receive at the same

time?

COMPSCI 314 11

What is Flow Control?
● Messages are broken into frames
● Flow Control defines

– “the way frames are sent, tracked and controlled”
– may be simple or complex

● Many examples of protocols around us, e.g.
traffic rules (Road Code), 'phone conversations

● How can we be sure that a protocol is correct?
– works properly
– will never suddenly 'freeze'

COMPSCI 314 12

Signaling (Shay 8.2)
● Receiver tells sender when it's ready to receive
● Prevents receiver

buffer overflow
● DTE (computer) -

DCE (modem)
via RS-232
interface ..

COMPSCI 314 13

X-ON/X-OFF
● Over the DTE-DCE path ..

– send ASCII X-OFF (0x13, ^S) to stop transmission
– send X-ON (0x11, ^Q) to start it again

● This is in-band signalling, i.e. send signal on
same path as data

● How quickly does the transmitter stop sending?
● How can we send 0x11 or 0x13 to the receiver?

COMPSCI 314 14

Frame-oriented Control (Shay 8.3)
● Idea is to break large sequences of chars into

smaller frames
● Frames are sent from one user (higher protocol

layer) to another

● Unrestricted protocol
– simply assume it's always safe to send
– not really a useable protocol!

COMPSCI 314 15

Stop-and-Wait
● Sender:

– send frame, wait for ACK or NAK
– if NAK, send frame again. Repeat unil get ACK

● Receiver:
– receive frame, check for errors
– if OK, send ACK. otherwise send NAK

● No way to handle lost (therefore not ACKed)
frames

COMPSCI 314 16

Protocol Efficiency: Effective data rate
● Shay derives formulae, we “just work it out”
● Remember, velocity = distance / time

– in wire or fibre, v is ~2/3 speed of light, i.e. 2x108 m/s
– Auckland-Hamilton is about 120 km, so a byte takes

(120 x 103)/(2 x 108) = 0.6 ms to get there
– If we send a 1500-Byte frame at 10 Mb/s, it will take

(1500 x 8) /(10 x 106) = 1.2 ms to transmit
– Assume that ACK is a 64-Byte frame, 0.0512 ms
– Therefore, to send frame and receive ACK takes

roughly 1.2 + 0.05 + 2 x 0.6 = 2.45 ms
– Effective bit rate is (1500 x 8)/(2.45 x 10-3) = 4.9 Mb/s
➔ Half the time is wasted waiting for ACKs

COMPSCI 314 17

Side note: a catch in the notation
● Convention:

– Mb/s for megabits per second
– MB/s for megabytes per second

● Often leads to confusion, especially with
marketing people, journalists, and politicians.

● If there is any chance of confusion, write
"megabits" or "megabytes" in full.

● In data communications, we normally discuss
megabits. But when considering application
throughput, megabytes are more useful.

COMPSCI 314 18

Sliding Window (Shay 8.4)

COMPSCI 314 19

Sliding Window / Go-back-n
● Idea here is to have a maximum of i frames on

the wire at any time. i is the window size
● Each frame has a sequence number, sender

must hold each frame until it is ACKed
● Sender keeps track of w, sequence number of

first (of i frames) in window. When frame w is
ACKed, sender can forget it

● Window does not move until earliest frame has
been ACKed

COMPSCI 314 20

Go-back-n
● Shay develops a frame format for two-way

communication

● Data frame in one direction can carry an ACK for the
other direction, i.e. a piggy-backed ACK

● To handle lost frames, he has an ACK timer at
the receiver ..

● and a frame timer at the transmitter

COMPSCI 314 21

Sequence Numbers
● Sequence Numbers fit in a K-bit field;

there can be at most 2K frames in the window
● K should be big enough to handle the maximum

window size we expect to use
● They are unsigned numbers, and can wrap,

i.e. count through 2K-2, 2K-1, 0, 1, 2, ...
You can think of the sequence numbers as
being arranged in a circle

● What happens if a host crashes and restarts?
● Some protocols used lollipop sequence numbering to

handle restarts! (see Wikipedia)

COMPSCI 314 22

Selective Repeat (Shay 8.5)

COMPSCI 314 23

Selective Repeat (2)
● Any frame can be ACKed, specifying it's sequence

number
● Frames arriving out of sequence are buffered until

earlier frames have been ACKed
● When a NAK is received, only the NAKed frame is

resent (Go-Back-n resent the whole window!)
● If a frame timer expires (no ACK or NAK), only the

timed-out frame is resent
● Piggy-backed ACK acknowledges the last frame

delivered to the user, so the sender knows that all
frames up to that one have been safely received

COMPSCI 314 24

Efficiency of Sliding Window Protocols (8.6)
● For a particular window size, message size,

transmission speed and link distance, we can
“just work it out,” as we did for stop-and-wait

● We assume no lost or damaged packets !
● Two cases

– we get our first message ACKed before we've sent
a whole window. That allows us to keep sending at
full link speed

– we have to wait for an ACK after sending a window,
then we can send another window. Shay has a
diagram illustrating this ..

COMPSCI 314 25

Sending whole window and waiting

COMPSCI 314 26

Numerical examples
● Sending 100x 1500B frames in 20-frame windows,

Auckland-Hamilton on a 10 Mb/s link
– as for Stop-and-Wait: 1.2ms to send frame, 1.2ms

round-trip time.
Any window > 2 frames can run at full speed, 10 Mb/s

● As above, but with 64B frames
– send time is (64 x 8)/(10 x 106) = 0.0512 ms
– time to send 20 frames = 20 x 0.0512 = 1.024 ms
– first ACK returns after 1.2+2*0.0512 = 1.3024 ms
– effective bit rate is (20 * 64 * 8)/1.3024 = 7.862 Mb/s
– note the effect of using a small frame size !

COMPSCI 314 27

Bandwith-Delay Product (BDP)
● BDP for a link = data rate x link delay*
● Auckland-Hamilton at 10 Mb/s:

BDP = 10 Mb/s x 0.6 ms = 6000 bits= 6000 bits
 = 750 B = 750 B

● This is the maximum number of bits we can have 'on
the wire'

● Need to have buffers at least double this at least double this so that
transport protocol can keep the link busy
– fill the wire once, and then again before first ACK returnsfill the wire once, and then again before first ACK returns

● Bigger frames sizes help to keep the link busy – less
protocol overhead

*one-way delay, not round-trip time

COMPSCI 314 28

Protocol Correctness (Shay 8.7)
● Shay discusses two ways to describe systems:

– Finite State Machines
– Petri nets

● Finite State Machine models a system as being
in one of a finite set of states

● State Transition Diagrams (STDs) are graphs,
each vertex represents a state, and each edge
a transition between states

● Petri nets are more detailed, we won't discuss
them further

COMPSCI 314 29

State Transition Diagrams

● Look for problems on graph
– No edges pointing to S

1

– S
5
 – S

6
 is an infinite loop

● This kind of analysis helps find flaws
– it doesn't prove correctness!

COMPSCI 314 30

Protocol Layers, the OSI Model (reminder)
● Layers are an abstraction, they provide a

simple view of what happens in a
communication system

● Layer n
– provides services to layer n+1
– uses services from layer n-1

● Generally we implement systems this way,
but sometimes we may find it useful to peek
between layers, or 'break layer purity'

COMPSCI 314 31

OSI Model

● OSI has 7 layers, TCP/IP collapses 5-7 into 5
● So far, we've mainly discussed layer 1

7

6

5

4

3

2

1

COMPSCI 314 32

Introduction to LANs (Shay 9.1)
● LANs connect many hosts (devices) together
● Link medium may be copper (coax or UTP),

fibre or wireless
● Topology may be

– bus: hosts share the medium by taking turns
– ring: access is controlled by pasing a token

● Ethernet – today's most common LAN physical
layer – uses a bus topology

● Point-to-point link is a LAN with only two hosts

COMPSCI 314 33

LAN Layers
● Layer 1 is the Physical layer. On this layer,

you've already looked at signaling and
modulation methods

● Layer 2, the Link layer, is where hosts talk to
each other. Protocols here send frames
(packets) to other hosts, and receive frames in
response

● Layer 3, the Network layer, is used to pass
packets between LANs. For example, we often
use IP to pass frames between Ethernet-
connected hosts

COMPSCI 314 34

Data Link Control (Shay 9.2)
● Link layer is divided in two – LLC and MAC
● Shay presents

HDLC, a fore-
runner of
IEEE 802.2

● These are
bit-oriented
protocols

COMPSCI 314 35

HDLC Frame Format
● Flag pattern, 01111110 (six 1s) marks start and

end of frame. Receiver watches medium for
flags

● How do we send the flag pattern within the data
part of the frame?

COMPSCI 314 36

HDLC Bit Stuffing

COMPSCI 314 37

HDLC communication example

COMPSCI 314 38

802.2 LLC Header Formats (if used)

● DSAP, SSAP are Service Access Point addresses
– 04 = IBM SNA, 06 = IP,

AA = SNAP (Subnetwork Attachment Point)

● OUI = Organisation Unique Identifier
● Type field values are Ethernet type (Ethertype) values

– 0800
16

 = IP, 0806 = ARP, 6003 = DECnet phase IV, ...

DSAP address SSAP address Control field Information field
8 bits 8 bits 8 or 16 bits N*8 bits

AA AA 03 00 00 00 08 00
 LLC 3 octet OUI 2-octet type field

General form
of LLC header

SNAP header
(8 bytes)

COMPSCI 314 39

Contention Protocols (Shay 4.7)
● Basic idea: Hosts must share the medium
● Aloha System, 1970s, using packet radio:

COMPSCI 314 40

Aloha Protocol
● Any host can broadcast a message to

Menehune at any time
● If the message is received correctly, Menehune

ACKs it (on a different frequency)
● If two host transmissions overlap (and interfere)

the message is lost
● If a message is not ACKed the host assumes it

was lost, waits a random time, then resends
● Worked and was simple, but not a very efficient

use of the medium

COMPSCI 314 41

Carrier Sense Multiple Access (CSMA)
● Like Aloha, listen to medium for any activity
● If no activity, transmit; otherwise wait
● Can still get collisions, various ways to reduce

them:
– use 'slot time,' hosts can only transmit at start of a

slot
– random choice, probability p, to decide whether to

transmit or wait for next slot
– Fig. 4.44 compare various schemes

COMPSCI 314 42

Collision Detection
● Start transmitting any time, but watch medium for a collision
● When collision detected, stop transmitting, send jam signal
● This is CSMA/CD

COMPSCI 314 43

How to exit a stop sign using CSMA/CD

Oops *!#&*

Oops!

OK! 3rd
time
lucky

