
COMPSCI 314 Lab: 2008-S1
Department of Computer Science

The University of Auckland

DongJin Lee, Nevil Brownlee, Brian Carpenter
{dongjin, n.brownlee, brian}@cs.auckland.ac.nz

Version 1.0 [28th-Feb-2008]

I. Introduction

In this guideline, you are to learn to capture packets and analyze them using some tools. This
guideline should be trivial and thus we will only cover basic materials you’d need to know to
start the assignment. You will learn to use windump and Wireshark. While the guideline here
should be sufficient, you should also read other web resources so as to better understand them.
We strongly advise you to revise CS215, and we expect you to study on your own any material
that you might not be familiar with. In particular, you need to be familiar with the TCP/IP
concepts you’ve learned in CS215.

II. Course book chapters
‘Understanding Data Communications and Networks (3e)’ by William A. Shay
The chapters below are highly recommended, although not all are covered in this guideline.
- Chapter 1.3 to 1.4 (page 15 to 43)
- Chapter 9.1 to 9.2 (page 396 to 399)
- Chapter 9.3 (page 410 to 416)
- Chapter 10.1 to 10.3 (page 462 to 469)
- Chapter 11.1 to 11.2 (page 524 to 528, 537 to 539, 541 to 549)
- Chapter 11.4 (page 571 to 576)

III. Brief review of networking concepts
The lowest level in any communication system is the most likely either wired or wireless. For

‘wire’ communications, signals are carried by electricity (e.g., on copper wires) or light (e.g., on
glass fibres). For wireless communications, they are carried by radio waves. We call this lowest
level layer-1, the physical layer in the OSI or TCP/IP models. The way signals carry binary
information is vastly different depending on the types of medium with different standards. As
long as both end-points use the same standard, we shouldn’t need to worry. If a device is said to
work only at layer-1, then you should know that it will only work on the ‘bit’ level, i.e., physical
level. For example, typical ‘hubs’ or ‘repeaters’ would be regarded as layer-1 devices, as they
simply regenerate (or amplify) an incoming signal to all outgoing ports.

It is important to know that when the bits are sent, there are certain ‘gaps’ to indicate the end
of data. For 10Mb/s Ethernet, there is at least 9 s of an idle period for each frame. Thus, you
would observe this amount of gap between the frames. These gaps allow a receiver to prepare (or
synchronize) for the next frame. Failing to provide the gaps can cause the receiver to discard
frames as ‘unreadable’.

Each frame or datagram should contain sufficient information to be delivered across the
network. In that sense, they contain ‘header’ and ‘payload’. The headers contain vital
information such as destination address, types of payload, and so on. Once data is safely
delivered, headers are no longer required (so they are called ‘overheads’). Payloads contain the
actual ‘data’, but data can also include headers (as well as data). This may be confusing, however
taking an example of your favorite MP3 file, you may call it data, but from the structure point of
view, the file content itself would contain some header information such as bit-rates, ID tags and
so on. You would observe such examples almost everywhere! It is only important to distinguish
header/payload depending on the context. If you are working on the file itself, such as reducing
the ID tag sizes, then you would divide the file into two types: a header for ID tags, and data for
MP3 signals. However, if you are sending this file over the network, then the file itself is
regarded as a payload: it would be split into pieces, each piece encapsulated by layers of
(network-specific) headers.

IV. Brief TCP/IP Model concepts

A frame operates at layer-2 (datalink layer), a packet operates at layer-3 (network layer) and

TCP/UDP operates at layer-4 (transport layer). Under normal network setups, this means that
your user-data (often regarded as an application layer) is encapsulated by the transport layer,
then again encapsulated by the network layer, and finally by the datalink layer.

To simply the explanation, Figure 1 shows how your user-data is carried across the network.
It is important to know that each layer operates independently, thus communicating devices often
disregard upper layers. For example, switches will only look at the header of frames (i.e.,
frame/MAC addresses) and regard the rest as ‘payload’. Routers observe more, by taking out the
frame payload to look for the packet header (e.g., IP address) and regard the rest as ‘payload’.
Your machine will interpret the rest. For example, all TCP states are controlled by your
Operating System’s IP stack.

Figure 1. Top blocks show the layers of TCP/IP model and bottom blocks show a popular usage example.

For example, assuming you are connected to a network with Internet access, and visiting
some external websites, a user-data (e.g., HTTP request) created by your machine will be
encapsulated by the TCP, IP, and frame before it travels through the network (e.g., switches).
The switches will forward your frame to, for instance, the next closest switch/router. Note that,
while a frame is travelling between the switches, its source and destination address could change
(but its upper layers are preserved, such as your IP/TCP packet). Once a frame enters the router,
it will strip off the frame header, look at the IP packet (observing destination IP address), and
forward the packet to the next (best) router, and so on. The important distinction here is that your
source and destination IP addresses are unchanged throughout the communication. The rest of

application transport network datalink

Ethernet frame IP packet TCP HTTP (user-data)

the upper layers (e.g., TCP) are handled by your machine, not the switches or routers! Obviously,
there are some exceptions, such as NAT enabled routers that could change the source/destination
IP and TCP addresses.

There are many vague words used in networking literature. That is, some terminologies are
inconsistent between the books and papers! One may use ‘frame’ to indicate ‘packet’ and others
do vice versa. Often when exchanging data across the network, people say ‘...sending and
receiving packets’, but actually they mean ‘…sending and receiving frames’. To be even more
precise, ultimately, one could say ‘…sending and receiving binary/bits/signals’. Generally, you
should attempt to understand overall concepts as these words are normally used in a specific
context (e.g., one may choose to use ‘bits/signals’ to explain how signals travel on the wire).

Further, there may be several names for similar terms. For example, ‘address’ can be
explained as ‘frame address’, ‘packet address’, ‘MAC address’, ‘IP address’, ‘TCP address’, or
UDP address’! To be less confusing, one chooses to be more specific, e.g., ‘frame address’.
However, this is also similar to a ‘MAC address’ since its 48bit MAC addressing scheme
(OUI+NIC) is used as the frame address. Also, ‘packet address’ or ‘IP address’ mean the same.
As for TCP/UDP address, they are usually called a ‘port number’.

There are just too many protocols described in networking materials. Fortunately, only a few
protocols are being used widely. Before you begin to learn and use the tools, we expect you to
have a brief grasp of following protocols: IP, TCP, UDP, ICMP, ARP and DHCP.

V. Brief overview of the tools
A. tcpdump / windump / packet capture library

tcpdump is one of the most popular tools for observing and analyzing network packets, and
this tool runs on Unix/Linux machines. Here, we are using a Windows version called windump.
Both versions have an underlying API library called pcap (libpcap in Linux, and winpcap in
Windows). Often people say tcpdump to refer both versions. Both tcpdump and windump are
non-GUI, meaning that you use these tools from a command line. We will discuss this further in
Section VI. While some little differences may exist, you do not need to worry about the details.
What you need to be aware of is that once you’ve acquired either of them, you can start
capturing packets!

Our CS Lab machines now run the Windows Vista OS, and we have installed winpcap. This
means that once you are enrolled in CS314, you should be able to run this tool. We do not have
the Linux version and thus you are limited to capture packets under Windows only! You can of
course, install Linux versions on your own machine. Below are the links that you can download
them from. Also, explore the websites as you will find many useful features and hints, for
example, FAQ sections.

http://www.tcpdump.org/ for linux users
http://www.winpcap.org/ for windows users
http://www.winpcap.org/misc/faq.htm Frequently Asked Questions

For a simple outline, you can also refer to wikipedia:
http://en.wikipedia.org/wiki/Tcpdump
http://en.wikipedia.org/wiki/Pcap
http://en.wikipedia.org/wiki/Packet_capturing

B. Wireshark
This is an advanced toolkit that incorporates a GUI with various useful features. The original

version (Ethereal) has been replaced by Wireshark, so we will use Wireshark rather than
Ethereal. Both versions are the same except that the name has changed, and Ethereal is no longer
updated. Unlike windump which merely provides useful information about the packets,
Wireshark can interpret almost every packet, for instance, types/contents/sizes. Also, it can give
you a detailed summary of the captured packets, all within a GUI.

http://www.wireshark.org/ for both Windows and Linux users

There are little tradeoffs between the two tools. Generally, Wireshark is more preferable than

windump as far as the usage and functionalities are considered. Figure 2 shows a simple diagram
of how pcap and the tools are related.

Figure 2. Both windump and Wireshark uses pcap library

Note that you are only capturing packets on your lab machine! It’s Network Interface Card
(NIC) will not be able to ‘hear’ packets from other machines except some broadcast messages.
This is because the machines are connected to a switch (Also, we do not recommend you
eavesdropping messages of other users as this could breach University policies). However, if you
are an administrator and have multiple networked machines at your own residence, you can set
up the network in such a way to allow your machine to hear all packets going in/out from
Internet (and your local network). This is relatively straightforward if you have a hub; simply
connect all machines to it including yours, and run the tool. As mentioned, the hub is a layer-1
device that simply regenerates the signals. This approach has some disadvantages because the
machines can suffer from the hub bottleneck and hubs are rather rare nowadays with switches
being more common.

There are other solutions, for example, a ‘managed switch’ can be configured to set one or
more port to perform ‘port mirroring’ (also called span-port). This sets the switch to copy and
forward any incoming/outgoing packet to the mirrored port. Thus, a machine connected to that
port will be able to hear all packets in the network.

As for our typical university network, there are over 15,000 networked hosts in our campus!
All incoming/outgoing packets are passing through a single 1Gb/s channel with backup links,
and our system can observe the packets at this point. There are countless benefits in capturing
and measuring the packets, such as billing/accounting (NetAccount), detecting malicious (DDoS)
traffic, bandwidth provisioning, and so on. In other words, ‘…if you don’t measure your network,
you don’t know what’s happening…’

If you are interested in setting up your own network with monitoring capabilities, you may
find this link useful. http://wiki.wireshark.org/CaptureSetup/Ethernet

 Packet capture library
 (pcap)

 Windows (winpcap)

 Linux (libpcap)

Windows
windump / Wireshark

Linux
tcpdump / Wireshark

Before you start using these tools, first create a blank directory, and make sure you have some
storage space in your AFS. You can check your space by right clicking on your AFS Drive (e.g.,
H:), select Volume/Partition to select Properties. As a rule of thumb, have at least 50 to
100MB of free space in your AFS.

VI. windump usage

We will first start with windump. Again, this is a Command Line Input (CLI) tool, which
does not have any GUI front-end. All option parameters are Unix-style where you type hyphen
(–) with a letter. Here, you need to learn some of the command to capture the packets. As you
can see from the output below, there are many arguments/options! Fortunately you do not need
to learn all the commands as we will only cover the basics.

D:\>windump -help
windump version 3.9.5, based on tcpdump version 3.9.5
WinPcap version 4.0 (packet.dll version 4.0.0.755), based on libpcap version 0.9.5
Usage: windump [-aAdDeflLnNOpqRStuUvxX] [-B size] [-c count] [-C file_size]
 [-E algo:secret] [-F file] [-i interface] [-M secret]
 [-r file] [-s snaplen] [-T type] [-w file]
 [-W filecount] [-y datalinktype] [-Z user]
 [expression]

Here are the lists of the options that you need to learn. –B, –c, –i, –e, –r, –n, –s, –w
We will briefly explain with an example. For those wanting more detailed explanations, you can
go to the link here. http://www.winpcap.org/windump/docs/manual.htm

We specify which NIC we want to capture packets from. You can view a list of interfaces by
adding –D to check which one you want to monitor.

D:\>windump -D
1.\Device\NPF_{6A81D585-1844-4B46-B2B1-E471A96173DF} (MS LoopBack Driver)
2.\Device\NPF_{9F23AED8-893D-486B-9B3F-53BFCA7DAA06} (Realtek)
3.\Device\NPF_{12F01666-2E62-40F5-88AD-999A67176997} (VMware Virtual Ethernet Adapter)
4.\Device\NPF_{12FD419D-C0A8-40E3-B741-19468FFFBE11} (MS Tunnel Interface Driver)
5.\Device\NPF_{8082E9B6-DEF0-40E8-B012-923E2EEB67EF} (VMware Virtual Ethernet Adapter)

What you see above is likely to be different in your machine. So you should just concern

about the actual ‘ethernet’ NIC. In the above example, it is number 2. We specify the interface
number by adding –i2.

D:\>windump -i2
windump: listening on \Device\NPF_{9F23AED8-893D-486B-9B3F-53BFCA7DAA06}
0 packets captured
0 packets received by filter
0 packets dropped by kernel

The above example did not capture any packet, because it was immediately stopped

(CTRL+C). The first (captured) and second (received by filter) lines should have equal counts.
There are some differences between the first and second line. For example, if you are capturing
the packets outgoing to some specific address, then this first line will show the number of
packets actually captured. The second line shows the (total) number of packets sent/received by
the NIC. The third line shows how many packets were ‘dropped’. Packet drops can occur for a
variety of reasons, such as lack of processor, capacity or disk writing speed. Since you are only
capturing packets on your local machine, there should be zero packet drops. By default,

windump uses 1MB of buffer which can be changed by adding –B followed by the amount of
buffer in kB. Also, windump will attempt to resolve any IP addresses to their names (by
requesting DNS lookup). This process often slows down the packet capturing and may cause
some packet drops. You should use –n to disable any name resolution.

D:\>windump -i2 -n

One of the simplest ways to confirm whether you are capturing correctly, is to send/receive

packets on your NIC. This can be easily done by ‘surfing a website’. For example, going to the
main page of our CS homepage would result in capturing over 100 packets. You will have to
stop the windump to see what has been captured. Note that you can specify to stop after
capturing some number of packets by adding –c followed by packet counts. Whenever there are
many packets being captured, it is often very hard to observe packets that you are interested in.
For instance, running the above command would be likely to capture broadcast packets as well.

Here, as a simple example, we want to capture ICMP packet exchanges between the CS
homepage and your machine. We can find the CS homepage IP address using the nslookup
command, shown below.

D:\>nslookup www.cs.auckland.ac.nz
Server: kronos1.cs.auckland.ac.nz
Address: 130.216.35.35:53

Name: www.cs.auckland.ac.nz
Address: 130.216.33.106

Often you do not need to know the IP address you are monitoring, since most of the tools will

automatically convert name-to-IP by default. Here, we tell windump to capture only packets
going to/from CS homepage. Then, we open a new command prompt and use the ping command
to send ICMP packets to the CS homepage. So in your first command prompt,

type: windump -i2 -n host www.cs.auckland.ac.nz and in your second command prompt,
type: ping www.cs.auckland.ac.nz

First command prompt
D:\>windump -i2 -n host www.cs.auckland.ac.nz
windump: listening on \Device\NPF_{9F23AED8-893D-486B-9B3F-53BFCA7DAA06}
17:05:59.169380 IP 130.216.42.162 > 130.216.33.106: ICMP echo request, id 1, seq 12715, length 40
17:05:59.169668 IP 130.216.33.106 > 130.216.42.162: ICMP echo reply, id 1, seq 12715, length 40
17:06:00.162740 IP 130.216.42.162 > 130.216.33.106: ICMP echo request, id 1, seq 12716, length 40
17:06:00.162957 IP 130.216.33.106 > 130.216.42.162: ICMP echo reply, id 1, seq 12716, length 40
17:06:01.162908 IP 130.216.42.162 > 130.216.33.106: ICMP echo request, id 1, seq 12718, length 40
17:06:01.163119 IP 130.216.33.106 > 130.216.42.162: ICMP echo reply, id 1, seq 12718, length 40
17:06:02.163007 IP 130.216.42.162 > 130.216.33.106: ICMP echo request, id 1, seq 12719, length 40
17:06:02.163205 IP 130.216.33.106 > 130.216.42.162: ICMP echo reply, id 1, seq 12719, length 40

8 packets captured
140 packets received by filter
0 packets dropped by kernel

Second command prompt
D:\>ping www.cs.auckland.ac.nz

Pinging www.cs.auckland.ac.nz [130.216.33.106] with 32 Bytes of data:

Reply from 130.216.33.106: Bytes=32 time<1ms TTL=61
Reply from 130.216.33.106: Bytes=32 time<1ms TTL=61
Reply from 130.216.33.106: Bytes=32 time<1ms TTL=61
Reply from 130.216.33.106: Bytes=32 time<1ms TTL=61

Ping statistics for 130.216.33.106:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

As you can see from the above example, we capture the packets that are either going to/from

www.cs.auckland.ac.nz and we intentionally ping (send ICMP Request packets) to that host. In
total, eight packets have been captured (and total 140 packets are observed). To better understand
the output lines of windump, we will explain the first two. At time 17:05:59.169380, an IP packet
(ICMP echo request) from IP address 130.216.42.162 was sent to IP address 130.216.33.106, and vice
versa for the second line (ICMP echo reply). Notice that the reply ICMP packet’s ID and sequence
number is the same as the first line, indicating that the response is to the initial request. Further,
length 40 indicates that the ICMP packet size is 40 bytes, but the full frame (captured) size is 74
bytes. This is because of the frame header (14) + IP header (20) + ICMP header (8) + Payload
(32) = 74. As well, you can find the ping RTT more precisely by differencing the two times, i.e.,
.169668 - .169380 = 0.000288 = 0.288ms. (Note you can do this by adding –ttt to display the time
differences for consecutive packets). An ICMP packet’s payload does not contain much
meaningful data. Nevertheless, to print out what is being captured in ASCII format, you can add
–A which will display the contents of each packet in ASCII. This can be useful if the packets
contain typical HTML objects.

Often network administrators store the captured packets into files for later analysis. Here, we
have not yet saved these captured packets into disk storage. To do so, you need to add –w
followed by a path/directory and file name.

D:\>windump -i2 -waaa.bpf -n host 130.216.33.106

This command will save the captured packets into a file called aaa.bpf instead of printing

them out. Although a file extension name could be different, windump uses a common format,
known as Berkeley Packet Filter. This file is often called an offline traffic data trace or simply a
trace file. You can also read back such saved files by replacing –i2 with –r followed by the file’s
path/directory and file name.

D:\>windump -raaa.bpf -n

You need to be aware of the fact that capturing and saving packets can require a large amount

of storage. For example, capturing packets from a gateway link transferring at 20-30MB/s may
sound a little, but producing a trace file for a whole day can easily fill up the disk space, e.g., it
would require at least 1.7TB. Also, disk storage may be a bottleneck if it cannot write faster than
the data rate observed on the network link, resulting packet drops. Furthermore, CPU and disk
usage is higher when capturing a full payload of the packets, which can also cause packet drops.
For these reasons, full payload traces are rarely used. Instead, it is possible to just capture the
packet headers and still obtain vital network information. To capture a limited number of bytes
for each packet, you need to add –s followed by the number of bytes.

D:\>windump -i2 -s4 -waaa.bpf -n host 130.216.33.106

This example captures only the first four bytes of each frame. This may well reduce the

amount of disk storage required, but the loss of packet details is significant. Reading back the
trace file, you will not be able to learn much from what you’ve captured (e.g., are they ICMP
packets?). Here, you would need to choose a more appropriate (larger) snap length.

VII. Wireshark usage

In this section, we will use Wireshark to capture packets (as we did with windump), then
observe and analyze some of the captured packets, all in GUI! Configuring the Wireshark is
relatively simple with GUI setups. Once the program has started, go to Capture and Options to
bring up Capture Options. Here, select your Ethernet NIC and set Capture Filter (host
130.216.33.106) as shown in Figure 3. There are several other options you can enable/disable,
such as disabling MAC name resolution, and limiting the packet capturing size. But for now,
select Start. To test whether it is working or not, you can send some packets, e.g., using a ping
command in the command prompt. By default, Wireshark will immediately display captured-
packets similar to windump. Figure 4 shows eight ICMP packets captured after the ping
command. We also advise you to stop the capturing process whenever you need to observe or
analyze packets. Similar to windump, you can save the captured packets into a trace file; the
command to do this is under the File menu.

Figure 3. A screenshot of Capture Options

Figure 4. A screenshot of main screen showing three sections

Top: Main menu

Middle: List of captured packets
(one line per packet)

Bottom: Selected packet

You need to spend some time studying the middle and bottom sections of Figure 4. The
middle section shows a list of captured packets in ascending time order. That is, the latest
captured packet will be displayed at the bottom. You can however change to sort the packets in
various orders, e.g., protocol by selecting the Protocol meta-header. You can select each packet,
and the bottom layout will display detailed information about it. This is very powerful but can be
complicated. We will explain the first captured packet (i.e., ICMP request packet). Here, you will
see four lines (of details) at the bottom. You need to expand these by clicking plus [+] as shown
in Figure 5.

Figure 5. A screenshot of Figure 4’s bottom section expanded

A – Total of 74 bytes of frames is captured. 74 bytes are displayed for on wire and captured.
This is because (by default) we’ve set to capture full (Figure 3). If we had set to limit the size to
68, we will see 74 bytes on wire and 68 bytes captured. Regardless of how small we set to limit
the frame size, the NIC already finds on wire frame sizes (i.e., 74 bytes). Note that we are

In total 74 bytes captured

Three time views

Encapsulations

ethernet IP ICMP data

MAC addresses

IP addresses

ICMP data

Total IP packet size (incl. header)

IP header size

IP protocol (1)

A

B

C

D

E

F

G
H

I

B 1
2
3

actually missing 4 bytes (of FCS) for each frame. This is because FCSs are already truncated by
the NIC before pcap acquires the information. In other words, your frame size was actually 78
bytes.

B – Three timing lines are displayed. The first listed time (1) shows the time difference (delta)

between the last captured frame and the currently selected frame. The second listed time (2) is
similar to the first one, but calculates the time of last captured frame as what’s displayed on the
GUI (i.e., time since last frame selected by the filter expression in the main screen). The third
listed time (3) shows the time of the currently selected captured frame since the capturing began.

The first line is useful to observe packet inter-arrival times (or packet gap times). Also, you
will find the third line useful, as you can think of this as ‘elapsed time since the packet capturing
began’.

C – Here, you can see that the structure of a frame is eth:ip:icmp:data. This means that the

first 14 bytes are the frame header, and the remaining 60 bytes are regarded as ‘payload’ of the
frame.

D – Both source and destination frame addresses are shown. These are the NIC (MAC)

addresses (Notice that they are 6 bytes each). We can further observe that the first 3 bytes is the
manufacturer’s ID and the other 3 bytes are the ID of the devices. For example, we observe that
destination MAC address is AlliedTed_08:fe:8a (00:00:cd:08:fe:8a), most likely indicating that
your ping command frames are traveling to a router/switch manufactured by Allied Telesis. You
can disable MAC name resolution by unselecting ‘Enable MAC name resolution’ in the Capture
Options.

E – From here, we are at IP packet level and similar to MAC addresses, both source and

destination addresses are shown (they are 4 bytes each). Because we did not check ‘Enable IP
name resolution’ in the Capture Options, no name lookups are performed. (i.e., this is the same
as the –n option in windump).

F – This 20 bytes length is the IP header size and is the minimum size. Maximum possible IP

header size is 60 bytes, e.g., additional 40 bytes of option field.

G – This 60 bytes length is the total IP packet size which includes the packet header. It

therefore leaves 40 bytes of IP payload.

H – This is a protocol field in the IP header. It specifies what kind of application data the IP

packet is carrying in its payload. The three most common protocols (ICMP, TCP, UDP) are 1, 6,
and 17 respectively. Note that an IP packet can carry another IP packet, such as IPv4 packet
carrying IPv6 packet. The protocol field would then be 41.
(refer link here, http://www.iana.org/assignments/protocol-numbers)

I – This 32 bytes is the payload of ICMP packet. We do not need to worry about the content

of data here. Payload size implies the ICMP header size of 8 bytes (calculated from the
remaining 40 bytes of IP packet payload).

Other than displaying packet information, there are more useful features to analyze the
packets. A filter toolbar sitting on your main screen is use to filter out and display the packets
you are interested in. For example, typing tcp and apply will only display packets that are TCP
(Figure 6). There are more commands that you may find useful; refer examples by clicking on
Filter.

Figure 6. A filter toolbar

Summary under the Statistics menu gives overall traffic information. Figure 7 shows a

summary of Captured and Displayed. Note that bytes are the total packet size on wire. Average
rates of packets or bytes are calculated from the total counts over the duration.

Figure 7. Summary statistics

Protocol Hierarchy under the Statistics menu gives a protocol breakdown view. As shown

in Figure 8, IP packets fall into two parts: UDP and TCP. Again these protocols are further
separated (e.g., DNS and NetBIOS are the UDP packets).

Figure 8. Protocol Hierarchy statistics

Total captured packets Displays packets (e.g., filtered, showing only the TCP packets)Total duration

VIII. Optional Programming – Capturing the packets in Java

A. Jpcap: Java wrapper for pcap
This section is optional, where you will learn to program in Java to capture and send packets

using jpcap library. Although Wireshark has many useful functions that can be extended, there
are some limitations to what you can do, for instance, you cannot customize or aggregate
packets. The main function of this jpcap library is the ability to call its APIs under the Java
environment. This means that once you’ve learned some of the APIs, you can capture the packets
and process them on your own.
Jpcap main page: http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html
Jpcap API page: http://netresearch.ics.uci.edu/kfujii/jpcap/doc/javadoc/index.html

Rather than explaining each API or method, we will briefly start with a simple tool provided

by the jpcap author. Figure 6 is a simple Java code (Tcpdump.java). You should be able to
understand it as most of the codes are self-explanatory. The program works almost the same as
how windump prints out the captured packets.

Figure 6. Simple Tcpdump.java code (http://netresearch.ics.uci.edu/kfujii/jpcap/sample/Tcpdump.java)

A – This part is the start of the program where the main method exists. If there are no arguments,
then it will print out a list of network interfaces available by the pcap, and finishes the program.
The output is similar to windump –D command. Once you’ve added a device number as an
argument, it will jump to the else part.

import jpcap.*;
import jpcap.packet.Packet;

class Tcpdump implements PacketReceiver {

 public void receivePacket(Packet packet) {
 System.out.println(packet);
 }

 public static void main(String[] args) throws Exception {
 NetworkInterface[] devices = JpcapCaptor.getDeviceList();
 if(args.length<1){
 System.out.println("usage: java Tcpdump <select a number from the following>");
 for (int i = 0; i < devices.length; i++) {
 System.out.println(i+" :"+devices[i].name + "(" + devices[i].description+")");
 System.out.println(" data link:"+devices[i].datalink_name + "("+ devices[i].datalink_description+")");
 System.out.print(" MAC address:");
 for (byte b : devices[i].mac_address)
 System.out.print(Integer.toHexString(b&0xff) + ":");
 System.out.println();
 for (NetworkInterfaceAddress a : devices[i].addresses)
 System.out.println(" address:"+a.address + " " + a.subnet + " "+ a.broadcast);
 }
 }else{
 JpcapCaptor jpcap = JpcapCaptor.openDevice(devices[Integer.parseInt(args[0])], 2000, false, 20);
 jpcap.loopPacket(-1, new Tcpdump());
 }
 }
}

C

A

B

B – Here, it creates a capturing handler instance, jpcap using the argument. Then it calls out a
loopPacket method to capture packets observed for that instance (i.e., your NIC). Note that first
parameter (-1) in loopPacket specifies to capture continuously until the program is aborted by
user, and the second parameter calls out new instances of Tcpdump which (must) implement the
PacketReceiver interface. Thus, every captured packet will call out an interface method
receivePacket.

C – As mentioned, this method is called for each packet received in loopPacket(). In this method,
it simply ‘prints’ out the packet instance, which acts similar to toString(). In other words, it will
print out brief information of the packet, similar to the default output of windump. This
receivePacket() is the method you should modify: processing the packets and building your own
small monitoring tool. There are a few more examples in the above website. You should attempt
to modify some of these to get used to programming and the jpcap API.

B. Compiling and running the code
Because you cannot install jpcap into the System or Java directory, you need to acquire two

files jpcap.jar and jpcap.dll (located at the Resource section). For simplicity, copy both files into
your directory where you will be working. To compile, type: javac Tcpdump.java –classpath
jpcap.jar
You can run the program by typing java Tcpdump
If you prefer to use Textpad, you need to go to Configure, Preferences, Tools and Compile
Java. Modify the Parameters to –classpath jpcap.jar $File
Note that you can do similar for other IDE tools.

You may run into the Exception OutOfMemoryError while your program is running: you
need to allocate more heap size to the JVM, for example, java –Xmx512M ... will allocate a
maximum amount of 512MB to it.

C. Jpcap exercises
You should build your own small monitoring tool using this library. Your program should

produce some simple statistics of the captured packets, and provide useful features that cannot be
done in Wireshark. We will provide some trace files for you to test on, located at the Resource
section. Note that you should develop with care: capture a few packets, double check that what
you are observing is also correct with Wireshark. You can assume that Wireshark shows the
correct answers. In particular, here are some examples you could do:

- Brief Statistics1: Total packets, total TCP packets, total UDP packets, total ICMP packets,
total non-IP packets, total duration of the trace (elapsed time), and average rates.

- Brief Statistics2: timestamps of each packet and packet inter-arrival times.
- Filtering: filtering number of known IP addresses, TCP/UDP port numbers.
- Activity Log: finding out some activities, e.g., alarming when it detects a large file transfer.
