
COMPSCI 314 S1T Assignment 1 
2008 

 
Department of Computer Science 

The University of Auckland 
 

Carefully review the tutorial document before starting the assignment. This assignment contributes to 5% of your 
overall course mark. Submit your assignment in PDF format to Assignment Drop Box. Include all workings and 
explanations. Marks will be deducted for ambiguous solutions. Zero marks are awarded if the answers contain no 
explanation. Also, refer to the Departmental Policy on Cheating on Assignments.  
 
Assignment Drop Box (https://adb.ec.auckland.ac.nz/adb/). 
Departmental Policy on Cheating on Assignments (http://www.cs.auckland.ac.nz/CheatingPolicy.php) 

 
Important: For the questions Q1(b), Q2, Q3 and Q4(b), you must also attach one or two pages of your actual 
capture files for each question, as proof that you did the work, e.g., output screen-shots. You can use 
File/Export/File in Wireshark to save a text file. 
 

[Total: 50 marks] 
 

 
Q1. Packet capturing [10 marks] 
[Mark allocation: 2, 3, 3, 2] 
Go to Capture Options in Wireshark, and check ‘Limit each packet to…’.  
 

a) What is the smallest and largest size limit you can set? 
Smallest: 68 bytes  
Largest: 65535 bytes 

 
b) Explain why Wireshark imposes a lower and higher limit. 

Low limit: capturing fewer than 68 bytes per packet could lead to a loss of information, 
e.g., TCP optional headers. Because most packets contain TCP segments, often the 
optimistic minimum size could only be 54 bytes, i.e., frame header (14 bytes) + IP header 
(20 bytes) + TCP header (20 bytes) = 54 bytes. However, both IP and TCP headers are 
then the minimum size; they can both have optional fields associated. So Wireshark 
moderately assumes 68 bytes is a reasonable length. (In windump, you can even set lower 
to 1byte!) 
High limit: IP packets or IP routers cannot handle any packet size more than 64kB. So it 
is unnecessary to assume the packets are larger than 64kB. (Also, IP packets are usually 
limited by the most widely used Ethernet frame size, i.e., 1500 payload bytes) 

 
c) Explain one advantage and one disadvantage of setting a small size limit. 

Advantage: System workload is reduced; it only requires reading a given number of bytes 
for each packet before dumping into memory/trace file. Also, the trace file size is 
significantly smaller than if we captured every byte. 



Disadvantage: we cannot understand the application data; since they are truncated, there 
is no way to reconstruct them. The minimum 68 bytes may only capture the first few 
bytes of application layer data. 

 
d) Start capturing packets and stay idle for a few minutes. Then stop the capture. What kind 

of protocols do you see? List and explain at least three of them.  
(Hint: See list of protocol abbreviations in Wireshark Help/Supported Protocols)  
- OSPFv2 - routing protocol 
- NBSS (NET-BIOS) - Microsoft's local network protocol 
- ARP - How to find the Ethernet address for an IP address 

 
 
Q2. IP packet size distributions [10 marks] 
[Mark allocation: 5, 5] 
Use a web browser to visit a few HTTP web pages, e.g., www.cs.auckland.ac.nz. Capture the full 
packets that are travelling between you and the web page. You only need to visit once to capture 
all the packets. Make sure to avoid HTTP status code 304; this is most likely to happen if you are 
refreshing the web page.  
 

a) List at least two frequently observed packet sizes, e.g. a small size and a large size. 
~60 bytes  
~1514 bytes 
(note: any approx. sizes are okay, Q3a is more detailed) 
 

b) Explain why these two different sizes exist. What is the difference in contents of the two 
sizes of packet? 
Small packet sizes (~60 bytes) show that they contain no application data; indicating that 
these are most likely acknowledgement packets. 
Bigger packet sizes (~1514 bytes) most likely contain the application data, i.e., the actual 
user-data traffic.  

 
 
Q3. Packet trace file [20 marks] 
[Mark allocation: 5, 10, 2, 3] 
Use a web browser to download two files BigFile1 and BigFile2 from the 314 webpage 
Assignment section. Make sure to capture only packets belonging to the file download (i.e. set a 
host IP filter). Save the packets separately into a capture file for each download.  
(Hint: See list of Packet length in Wireshark Statistic Menu) 
 

a) Assuming the two files are the user-data, and observing from the switch level, list and 
explain the overheads (extra bytes per user-datagram) involved in layer-4, layer-3 and 
layer-2 (TCP, IP and Ethernet). 
Assuming the optimistic case, we can see that each user-data packet is encapsulated by 
three lower layers: TCP (L4), IP (L3) and Ethernet (L2). 
L4: requires adding 20 bytes per user-data 
L3: requires adding 20 bytes per TCP segment 



L2: requires adding 18 bytes per IP packet (including 4 bytes of Frame Checksum 
Sequence that are truncated before pcap captures them) 
Thus, we can say that the overhead = 58 bytes per user-datagram 
 

b) Based on your answer (a) and the packet size seen by Wireshark, calculate the efficiency 
ratio of your user-data to data transmitted by the switch. In other words, approximately 
what percentage of the total transmission should be user-data? 
Efficiency ratio per packet = user-data (user-datagram size) / total-data (frame size)  
Based on answer (a), we find that the network switch would require an additional 58 
bytes per user-data for the transmission. Furthermore,  
- For a simple ACK packet, they do not have user-data, overhead ratio = 100% 
- For a user-datagram, overhead ratio = (1518-58) / 1518 = 96.2% 
 
Total overhead seen by the network switch (BigFile1): 
Overhead for the number of ACK packets = 1580 x 58 = 91640 bytes 
Overhead for the number of user-data packets = 3523 x 58 = 204334 bytes 
= 91640 + 204334 = 295974 bytes 
User-data = 3523 x 1460 = 5143580 bytes 
Thus, 5143580 / (295974+5143580) = 94.56% 
 
Total overhead seen by the network switch (BigFile2): 
Overhead for the number of ACK packets = 5696 x 58 = 330368 bytes 
Overhead for the number of user-data packets = 14224 x 58 = 824992 bytes 
= 330368 + 824992 = 1155360 bytes 
User-data = 14224 x 1460 = 20767040 bytes 
Thus, 20767040 / (1155360 +20767040) = 94.73% 
 
Further remark:  
- Above example simply used small and large packet sizes. There are however, a few 

‘medium’ user-data packets (e.g., ~600 bytes), especially when an application data 
stream ends.  

- We used minimum 58 bytes, but often each start of TCP stream contains optional 
header specifying MSS. 

- The network switch transmitted approximately 5.4% more data, e.g., if we are using a 
switch rated at 100Mbp/s, can we transmit 12.5MB of a file in 1s? 

- It is possible to simply obtain Wireshark’s Summary (total bytes): for example,  
BigFile1 / ( Summary_Bytes + (#FCS_Bytes) ). Wireshark’s ‘saved-file’ should not 
be used here as it contains its own overheads (see Q3d) that are not part of the 
transmission.  

 
c) Based on your answer (b), comment on the overhead effects for transmitting small versus 

large packet size. Which is more efficient? 
- The larger the packet size, the smaller the overhead (or smaller the packet size, the 

larger the overhead) 
- Further remark – ‘tradeoff’: if the large packet size is lost, then we are ‘wasting’ that 

amount of the available bandwidth. In such cases, small packet size is better. To work 



out the best possible packet size, you need to know the probabilities of lost/corrupted 
packets too.   

 
d) Comment on the size of the actual downloaded files (BigFile1 and BigFile2) compared 

with the total sizes indicated by your captured files. Why are they different? 
- (transmission overheads/etc are explained already in (a), (b)) 
- The trace file itself contains pcap header information as well as the actual packets. 
- Per-packet timestamp used by pcap: each captured packet is marked with pcap 

specific timestamp (e.g., 32bit timestamp per packet). 
- The packets transmitted in either direction that may have been lost on the LAN are 

still recorded, i.e., they do not contribute to the downloaded file size, but only occur 
in Wireshark’s record. 

 
 
Q4. Transport layer [10 marks] 
[Mark allocation: 5, 5] 
TCP and UDP are the most widely used protocols in the transport layer. However, they are very 
different. For example, TCP provides end-to-end reliable transmission, while UDP does not. 
Often, TCP carries HTTP traffic and together they often contribute more than 90% of total 
volume in our network. 
 

a) Assuming that all of your HTTP traffic is carried by TCP; would you be able to visit web 
pages such as www.google.com if a network administrator blocks all UDP traffic? Justify 
your answer. 
No: you are unlikely to reach the web sites, since the web browser would request DNS 
name-to-IP lookup (which is queried using UDP packets). But, yes: If you visited a web 
site shortly before the UDP blockage, the browser would likely have access to a local 
DNS cache (along with an appropriate TTL record), so a repeat DNS lookup would not 
be needed. If you happened to know the IP address of the web site, you could also enter 
that directly in the browser. 
 

b) Often we use the term TCP stream, or simply a connection to represent data transmission 
between two end points. Technically, there can be many connections at the same time. 
List the fields/attributes used to identify a single stream. In other words, what makes a 
series of packet transmissions belong to the same connection?  
(Hint: In the Wireshark capture window, right-click on a packet and use the ‘Follow TCP 
stream’ option.) 
- Source IP address 
- Destination IP address 
- Source Port number 
- Destination Port number 
- Protocol number 
If any of the five attributes are different, then the packet belonged to a different 
stream/connection. Note that these are bi-directional, i.e., source and destination fields 
can be ‘swapped’ and still be regarded as the same stream/connection. 
 



________________________________________________________________________ 


