
Checksums and error control

Peter M. Fenwick

c©Assoc Prof Peter Fenwick, The University of Auckland, 2003–2006

March 10, 2006

This material is not examinable in 2006.

1 Error Control Codes

Computing has always had to live with errors, especially in data transmission
and data recording. Sometimes these errors are only a nuisance and a simple
retry can obtain satisfactory, accurate, data. But sometimes an error can be
serious, and perhaps even disastrous if an accurate original copy is inaccessible.

Two related, but somewhat parallel disciplines, have developed to deal with
the handling of erroneous data, both part of the general theme of “Coding
Theory” and collected under the generic title of “Error Control”.

Error Detection Error Detection extends the ideas of parity to provide pow-
erful and reliable detection of errors, usually by appending a “checksum”
of 8, 16 or 32 bits to the data. The checksum is carefully designed to
be sensitive to the probable errors: a checksum for manual data entry
must be sensitive to digit transposition and repetition, while one for data
transmission must detect long bursts of errors.

A detected error invariably leads to an alarm of some sort and request for
data re-entry or retransmission.

Error Correction Error correction is required if the original data is remote
either in space (such as telemetry) or in time (such as data recording). In
both cases the data must carry sufficient redundant information to allow
the original to be reconstructed in the presence of an error. While methods
for handling single-bit errors have been known for many years and errors
of just a few bits for nearly as long, few data errors are that simple. The
methods for coding on physical transmission or recording media mean that
many single errors at the physical level become bursts of errors at the data
level. Burst error correction is then important, but is unfortunately a very
difficult topic.

Despite the division of error control into two fields, many of the techniques in
one can be applied to the other. In particular, the better error detection codes
are based on polynomial generators and Galois field arithmetic. Exactly the
same techniques can be applied to some of the simpler error correcting codes,
perhaps just be choosing a different generator polynomial. A consequence of

1

this convergence is that a suitable long checksum can often provide some degree
of error correction over a short message. An example is found in the ATM cell
header which is protected by an 8 bit checksum (or “Header Error Control”
field – HEC), far longer than is usually needed for the 32 bits of the header.
Although it is designed for error detection, the HEC can provide some error
correction as well.

This booklet emphasises codes for error detection where it is possible to
repeat the entry or transmission. Codes for error correction are touched on only
briefly, describing Hamming codes one of the older and simpler error correcting
codes. A full discussion of error correction codes is far beyond the intended
scope of this booklet.

2 More on Parity

The simplest form of error control adds a single parity bit to a byte, word, or
other simple data unit. Simple parity is fine for detecting very occasional errors,
but becomes less satisfactory for higher error probabilities and for longer data.

With a bit error probability of p and assuming independent errors, the prob-
ability Pk of an n-bit message having k errors is

P0 = (1− p)n

P1 = n(1− p)n−1p

P2 =
n(n− 1)

2
(1− p)n−2p2

. . .

Pk =
n(n− 1) . . . (n− k + 1)

k!
(1− p)n−kpk

if p ≈ 0, then P2 ≈ (np)2

2
the probability of an undetected error

Unfortunately a single parity bit detects only odd numbers of errors and does
not detect even numbers of errors. For a message of 12500 octets (n = 100000
bits) and a bit error probability p = 10−6, the probabilities are

P0 90.5% probability of no errors
P1 9.05% probability of one error
P2 0.45% probability of two errors (undetected)

Pk>0 10.5% probability of at least one error
Podd 10.0% probability of any odd errors (detected)

Peven 0.50% probability of any even errors (undetected)

Thus even though 10.5% of messages have detected errors and should be re-
transmitted, 0.5% of the errors remain undetected and are falsely reported as
“correct”.

Except where errors are very infrequent, practical error control uses much
more powerful and complex checking functions, with the checking spread over
several inter-related checking bits, so that even a single error affects several par-
ity bits and multiple errors are unlikely to cancel out and give a “false positive”.

2

char P a r i t y c h e c k s
hex 50 61 72 69 74 79 20 63 68 65 63 6B 73 HP
VP 0 1 0 0 0 1 1 0 1 0 0 1 1 0

MSB 1 1 1 1 1 1 0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 0
1 0 1 0 1 1 0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 1 1 1 1

LSB 0 1 0 1 0 1 0 1 0 1 1 1 1 0

Figure 1: Horizontal and Vertical Parity on a Message

Many of the checks described here are for strings of decimal digits, while others
apply to sequences of bytes or octets.

As a simple extension of parity, Figure 1 shows an ASCII message with
both character (vertical) parity and message (horizontal) parity as was used on
some early ASCII terminals with block-mode transmission. The top row shows
the characters of the message and the line below that their encoding in (7-bit)
ASCII. Below that row VP shows the even vertical parity of each character
based on the bits as shown in the remaining rows. At the extreme right, the
column headed HP shows the horizontal parity for the entire message, where
each bit is the Exclusive-OR of all preceding bits in that row (or bit-position
within the characters). It is again even parity, though odd parity can be used
if desired in either case. An error is usually signalled if the vertical parity fails
for any character or if the overall horizontal parity fails.

The 2-dimensional parity is much better than the simple 1-dimensional par-
ity in detecting errors; only errors which occur in fours, in positions on the
corner of a rectangle will escape detection. (If it is known that only one error
has occurred, then that error can be corrected at the intersection of the failing
row and column parities.) It was soon superseded by the much more powerful
CRC-16 checks, described in Section 5.3.

3 Hamming Codes

The Hamming code [8] is one of the oldest and simplest of the error-correcting
codes and is a good example of a Single Error Correcting (SEC) code. For the
simplest non-trivial case (and the one which is the usual example) take 4 data
bits and 3 parity bits and arrange them in a 7-bit word as d7d6d5p4d3p2p1, with
the bits numbered from 7 on the left to 1 on the right. The bits whose numbers
are of the form 2k are used as parity bits, with the other bits used as data.

On transmission set the parity bits as below, transmitting the entire 7-bit
word as the codeword.

p1 = d3 ⊕ d5 ⊕ d7 (the bits with a “1” in the bit number)
p2 = d3 ⊕ d6 ⊕ d7 (the bits with a “2” in the bit number)
p4 = d5 ⊕ d6 ⊕ d7 (the bits with a “4” in the bit number)

On reception, calculate the syndrome S = {s4s2s1} from the equations

3

The raw data 1 1 0 1
Bit numbers 7 6 5 4 3 2 1
position data for Hamming 1 1 0 . 1 . .
generate even parities . . . 0 . 1 0
combine for codeword 1 1 0 0 1 1 0
bit#6) corrupted 1 0 0 0 1 1 0 syndrome
generate syndrome 1 0 0 0 1 1 0 1 1 0
syndrome = 6, bit error at ↑

Figure 2: Example of Hamming correction

s1 = p1 ⊕ d3 ⊕ d5 ⊕ d7

s2 = p2 ⊕ d3 ⊕ d6 ⊕ d7

s4 = p4 ⊕ d5 ⊕ d6 ⊕ d7

If S = 0, then the bits are all correct. If S 6= 0, then it gives the number of
the bit in error (assuming just one error).

The operation of a Hamming Code is shown in Figure 2
The Hamming code is easily extended to longer words, by using each bit

number 2k as a parity bit, but does not extend to correcting more than one
error. The example used here is often written as a (7,4) code; each codeword
has 7 bits, with 4 of those for user data. A general SEC Hamming Code is
described as a (2k − 1, 2k − 1− k) code. Examples are the (15,11) and (31,26)
codes.

Adding a single parity bit gives a code which is able to detect two errors
if an internal parity fails, but the overall parity still succeeds, giving a Single
Error Correcting, Double Error Detecting (SEC-DEC) code.

4 Modular Checkdigits and checksums

Most of the checks described here use some form of modular arithmetic, deriving
some relatively large value from the data and reducing that value to a smaller
one by taking its remainder on division by some modulus. In very simple cases
we may just use a modulus of 10 (which delivers the units decimal digit), or
256 (to give the least significant 8 bits). Generally the modulus is chosen using
some less obvious criterion which maximises the ability to detect errors. The
simpler techniques use ordinary numerical division and are more suitable for
software calculation, while others use polynomial division and are better for
hardware implementation. For example, many checking algorithms work best
if the modulus is a prime number. Ordinary parity is the simplest example of
modular arithmetic, taking the sum of the bits modulo 2.

4.1 Modular Arithmetic

When adding or subtracting mod p, it is necessary only to divide every value
by p and take the positive remainder. Multiplication and division require more
care.

4

We say that a “number a is congruent to a′ modulo m” if both a and a′ give
the same remainder on division by m. This relation is written

a ≡ a′ mod m

b ≡ b′ mod m

Consider the particular case m = 12, a = 21 and b = 20. Then

a′ = 9 and b′ = 8

and
ab ≡ a′b′ ≡ 0 mod 12

despite neither a nor b being congruent to zero modulo 12. Only for a prime
modulus do we have that if a product is zero, then at least one factor is zero.
Given that many checksums work by forcing an overall value to be congruent
to zero, this is a very important requirement.

4.2 Parity and Arithmetic Checksums

In the following descriptions we will use the generic term digit for the basic
data. Depending on the context it may be a decimal digit (range 0 . . . 9), a byte
(range 0 . . . 255), a 32-bit word (range 0 . . . 231 − 1), etc. In many respects the
algorithms are similar for all cases.

For simplicity the term checksum will include terms such as parity and check-
digit. Digit will include byte, character and word as whatever is the major data
unit entering into the calculation. More usually though, the term check digit is
used where the entities being checked are decimal digits (human readable) and
the check is itself a decimal digit (or is usually decimal).

logical sum A checksum is formed by bit-wise Exclusive-ORing together all
the bytes or words of the message.

{0010, 1010, 1001, 0001, 0110} → 0110

Each bit of the checksum is the Exclusive-OR of the corresponding bits of
each data word, as shown in the horizontal parity of Figure 1. Problems
with this approach are that errors have limited effect on the checksum, and
that it does not detect transpositions (unimportant for data transmission,
but crucial for data entry).

arithmetic sum This resembles the logical sum, except that the Exclusive-OR
is changed to a conventional arithmetic addition. With this change, the
carries give some inter-dependence between bits of the checksum, but it is
still insensitive to data transpositions.

With most computers the obvious addition uses 2s complement, reducing
the sum modulo 2N for an N bit word. However, with the carries prop-
agating from least- to most-significant bits, the more-significant bits are
much more sensitive to errors than are the less-significant bits. Changing
to 1s-complement addition (adding modulo 2N − 1 rather than modulo

5

2N), allows the end-around carry to give an overall symmetry to the oper-
ation with low-order checksum bits affected by changes in high-order data
bits.

This is the checksum used in TCP/IP. While it is computationally simple
and better than a simple Exclusive-OR, it is not as good as the Fletcher
or Adler checksums described later.

Tests on real data by Stone et al[12] show that the TCP/IP checksum
is not good for many types of real-world data, such as character strings
and even real numbers where there may be high correlations between
adjacent words. They show that checksum values are far from uniformly
distributed, and that the 16-bit TCP/IP arithmetic checksum may be no
better than a 10-bit CRC.

4.3 Digit Checksums

The checksums of this section are all designed to check decimal numbers, and
especially ones which are manually entered. Frequent errors during manual data
entry are duplication or deletion of digits, transposition of adjacent digits and
substitutions such as “667” for “677”. Simple parity and arithmetic sums have
the disadvantage that all digits are treated identically; to handle transposition
errors the digits must be treated differently so that the checksum is also depen-
dent in some way on the position of each digit. Most of the examples for digit
checksums use systematically varying weights for successive digits. Wagner and
Putter discuss using decimal check digits for a particular application[13].

The examples will assume a string of decimal digits

. . . d6 d5 d4 d3 d2 d1 d0

where the subscript corresponds to the power of 10. The digits d6 . . . d1 will be
the supplied data and d0 the checksum digit.

4.3.1 IBM Check

This check, discussed briefly in [4] [p 49], is given as an example of a very
simple checksum which involves minimal computation and is appropriate to
electromechanical equipment, such as the IBM 026 Card Punch. It will detect
adjacent transpositions (but not 09 ↔ 90) but because of the simple repeating
pattern of weights is insensitive to many other errors.

Form the sum of the even digits plus twice the odd digits.

s =
∑

d2i + 2×
∑

d2i+1

and the check digit is the 10s complement of the last digit of s. Thus the check
digit c is

c = 10−
(∑

d2i + 2×
∑

d2i+1

)
mod 10

Wagner and Putter[13] describe a similar algorithm (possibly the same one
given that they provide more details) which is used for some account numbers
and is known as the IBM check. The possible difference is that when a digit is
doubled and exceeds 10, the two digits of the sum are added. Thus 2 ∗ 3 → 6,
while 2 ∗ 7 → 14 → 5.

6

5 Modular checkdigits

This method is described Hamming [9][p 28 ff] but is widely used in many other
contexts as well. All digits are weighted by their position in the input number.
While it might seem natural to have the weights increasing from left to right,
the usual sum of sums algorithm assigns weights increasing from right to left.

The value (including checkdigit), must have
∑

(i + 1)di mod m ≡ 0.
To generate the sum without multiplication (or even prior knowledge of the

number of digits), progressively form the sum of the digits, in order left to right,
and at each stage add the sum into a running sum of the sums. To illustrate
with the successive digits p q r s t.

Message Sum Sum of Sums
p p p
q p + q 2p + q
r p + q + r 3p + 2q + r
s p + q + r + s 4p + 3q + 2r + s
t p + q + r + s + t 5p + 4q + 3r + 2s + t

Hamming [9] gives an example of checksumming a combination of the let-
ters “A”. . . “Z”, digits “0”. . . “9” and space “ ”. This gives an alphabet of 37
symbols, conveniently a prime number.

A better example is the ISBN (International Standard Book Number). The
ISBN is a sequence of 9 decimal digits indicating the country, the publisher and
a sequence number for the book. The digits are combined with a sum of sums
as above and reduced modulo 11 to give a check digit, written as the final, 10th,
digit of the ISBN. With a modulus of 11, the check digits can range from 0 to
10. While we could just ignore values with a checkdigit of 10, that wastes 1/11

of the available numbers. Instead, a check digit of 10 is represented by “X”,
giving an ISBN such as 0 7112 0232 X.

To compute the checksum, calculate . . . 8d7+7d6+6d5+5d4+4d3+3d2+2d1,
reduce the sum modulo 11 and take the 11s complement of the result.

c = 11− (
∑

(i + 1)di) mod 11

To illustrate the verification of an ISBN, consider the example above –
digit sum sum of sums

0 0 + 0 = 0 0 + 0 = 0
7 0 + 7 = 7 0 + 0 = 7
1 7 + 1 = 8 7 + 8 = 15
1 8 + 1 = 9 15 + 9 = 24
2 9 + 2 = 11 24 + 11 = 35
0 11 + 0 = 11 35 + 11 = 46
2 11 + 2 = 13 46 + 13 = 59
3 13 + 2 = 16 59 + 16 = 75
2 16 + 2 = 18 75 + 18 = 93
X 18 +10 = 28 93 + 28 = 121 ≡ 0 mod 11

The final sum of sums is a multiple of 11, showing that this is a valid ISBN.

7

5.0.2 ID checksum

This is a variation of the modular checksum which is often used for ID number
checksums and the like. In this case the digit weights are successive powers of
2 and a check digit again makes the result 0 modulo 11. More formally, the
checkdigit is calculated as

d0 = c = 11−
(∑

2i+1di

)
mod 11

and then, for a 6-digit number with checkdigit,

2(d0 + 2(d1 + 2(d2 + 2(d3 + 2(d4 + 2(d5 + 2d6)))))) mod 11 ≡ 0

(Taking digits from the left, double the sum-so-far and add in the next digit.)
The polynomial may be written in a more familiar form as(

n∑
i=0

2idi

)
mod 11 ≡ 0

To confirm that 6051001 is indeed a valid checked number in this system

6× 64 + 0× 32 + 5× 16 + 1× 8 + 0× 4 + 0× 2 + 1× 1 = 473

As 473 = 43× 11 the result is (0 mod 11) and is correct.
In contrast to the ISBN, values with a checkdigit of 10 are rejected.
A possible variation using a modulus of 7 allows all numbers to be handled

(no rejects) but at the cost of decreased error detection. This possibility has not
been investigated. However Wagner and Putter[13] describe a similar modulo
97 code which appends two check digits.

5.0.3 Dihedral Group Checksum

This method is discussed in detail by Wagner and Putter[13], who cite both
Verhoeff’s original paper[14] and its rediscovery by Gumm[7]. The algorithm
uses operations in the dihedral group D5, which is related to symmetries of
a pentagon. In particular, multiplication in D5 is not commutative, so that
a ∗ b 6= b ∗ a, where ∗ denotes multiplication in D5. Instead of addition using
a simple pattern of weights to differentiate the incoming digits, the digits are
first subjected to a Permutation, (perhaps more correctly a substitution) where
each is replaced by another, the permutation function depending on the digit
position. The permuted digits are then multiplied in D5 to give the checksum.

The algorithm is most easily implemented with supporting tables –

Multiplication table This is a 10 by 10 matrix where each element corre-
sponds to the product of its indices (0-origin) in D5.

M =



0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 6 7 8 9 5
2 3 4 0 1 7 8 9 5 6
3 4 0 1 2 8 9 5 6 7
4 0 1 2 3 9 5 6 7 8
5 9 8 7 6 0 4 3 2 1
6 5 9 8 7 1 0 4 3 2
7 6 5 9 8 2 1 0 4 3
8 7 6 5 9 3 2 1 0 4
9 8 7 6 5 4 3 2 1 0


8

Inverse This gives the multiplicative inverse of i, so that i ∗ Inv[i] ≡ 0 in D5.

I =
(

0 4 3 2 1 5 6 7 8 9
)

Permutation Function The successive digits are combined by an equation
f1a1 ∗ f2a2 ∗ . . . ∗ fnan, where the successive fi are permutation functions,
defined by successive applications of an initial function. Note that F [i, j] ≡
F [i mod 8, j].

F [1, j] = [1 5 7 6 2 8 3 0 9 4]
and

F [i, j] = F [i− 1, F [1, j]]
giving

F =



0 1 2 3 4 5 6 7 8 9
1 5 7 6 2 8 3 0 9 4
5 8 0 3 7 9 6 1 4 2
8 9 1 6 0 4 3 5 2 7
9 4 5 3 1 2 6 8 7 0
4 2 8 6 5 7 3 9 0 1
2 7 9 3 8 0 6 4 1 5
7 0 4 6 9 1 3 2 5 8
0 1 2 3 4 5 6 7 8 9
1 5 7 6 2 8 3 0 9 4


Assuming that the digits to be checked are in positions 1 . . . n of an array

dig and that dig[0] is the check digit, the two checking functions are

Boolean checkDihedral() // TRUE if valid checksum

{

int check = 0; // the running check digit

for (int i = 0; i <= n; i++)

check = M[check, F[i % 8][dig[i]]];

return check == 0; // TRUE if valid check

}

void computeDihedral()

{

int check = 0; // the running check digit

for (int i = 0; i <= n; i++)

check = M[check,F[i % 8][dig[i]]];

dig[0] = I[check]; // set the check digit

}

In contrast to the simpler mod-11 algorithms, the dihedral check has the
advantage that any combination of data digits can be checksummed. There is
no need to reject those with an unrepresentable check digit. This advantage
comes at the cost of a much less comprehensible algorithm, which depends on
rather inaccessible mathematics.

9

Despite the undoubted quality of the dihedral algorithm, Wagner and Put-
ter caution against its use, especially in commercial applications which may be
maintained by less-skilled programmers who do not understand the mathemat-
ics1. In their paper, they describe a system where the customer wanted 4 check
digits for 8 data digits; their solution involves three nested checks. First is a
mod-11 check on the 8 data digits, expanding to 9 digits. Next is a mod-97
check on those 9 digits, to a total of 11 digits. Finally, the 11 digits are sub-
jected to a mod-10 IBM check. The resulting code may be inferior to one using
4 check digits and based on advanced mathematics, but its three stages are
comprehensible to users with modest mathematical ability. Comprehensibility
is often preferred to intellectual excellence.

5.1 Fletcher Checksum

The Fletcher checksum[6] [11] was developed for the Transport Layer (Level 4)
of the OSI communication model. It is fundamentally a sum of sums method,
with all additions done modulo 255. (But note that 255 is not prime!) Thus to
add in the digit di we calculate

s1 = s1 + di mod 255
s2 = s2 + s1 mod 255

If the checksum is at the end of the message (the usual case) the two check-bytes
are set to B1 = s1−s2 and B2 = −2s1+s2 to make the checksum including the
two check bytes sum to zero. Testing for correct transmission is a little different
from many checksums, because the result is correct if either s1 = 0 or s2 = 0.
An error is signalled only if both sums are non-zero.

If the checksum bytes are at position n and n + 1 of an L-octet message
(numbering 0. . .L− 1), then

bn = (L− n)× s1− s2 and
bn+1 = s2− (L− n + 1)× s1

A Java fragment to calculate the checksum given an array c[] of nChar
characters follows. Note that the characters should be limited to ASCII char-
acters, or at least to values < 256. The while loops are equivalent to division
with remainder, but should be faster here, where more than one correction is
seldom needed.

int s1 = 0, s2 = 0; // initialise checksums

for (int i = 0; i < nChars; i++) // scan the characters

{

s1 += c[i]; // add in the character

while (s1 >= 255) // reduce modulo 255

s1 -= 255;

s2 += s1; // get the sum of sums

1Similar comments were made by Knuth when describing what is now called the Knuth-
Morris-Pratt pattern matching algorithm. An earlier version of the algorithm, carefully de-
signed according to finite-state machine theory was, within a few months, “hacked” beyond
recognition by well meaning but ignorant programmers.

10

while (s2 >= 255) // modulo 255

s2 -= 255;

}

The Fletcher checksum is stated to give checking nearly as powerful as the
CRC-16 checksum described below, detecting –
• all single-bit errors,
• all double-bit errors,
• all but 0.000019% of burst errors up to length 16, and
• all but 0.0015% of longer burst errors.

5.2 Adler Checksum

The Adler checksum [5] is a development of the Fletcher checksum which gen-
erates 16-bit sums and a 32-bit checksum. It was devised particularly for the
GZIP text compressor. For each digit (or byte)

s1 = s1 + di mod 65521
s2 = s2 + s1 mod 65521

The checksum is the 32-bit value 65536 ∗ s1 + s2, transmitted most-significant
byte first. The values are initialised with s1 = 1, s2 = 0 to give a length-
dependent checksum for all-zero data.

Note that the modulus 65521 is prime, removing one doubtful feature about
the design of the Fletcher checksum.

5.3 Cyclic Redundancy Checks

These are the most important and widespread of the error-detecting codes.
They are especially suitable for hardware implementation at very high operating
speeds and are used in most data communications systems. They are still based
on modular arithmetic, but with some major changes from the earlier examples
–

1. The “number system” is changed from the conventional and familiar in-
tegers to one of finite fields, specifically GF (2). All of the arithmetic is
performed modulo 2, as in point 3 below.

2. The bits are regarded as coefficients in polynomials. This allows the very
highly developed and powerful mathematics of finite fields and polyno-
mial fields to be applied to the theory of error control coding, both error
detection and error correction.

The expression as polynomials also allows a convenient representation for
bit vectors which often have many zero elements. Only the terms cor-
responding to 1s appear in the polynomial and they very conveniently
have the bit position shown explicitly as the exponent. Thus these two
representations are equivalent

1 0 0 1 0 1 ⇐⇒ x5 + x2 + 1

11

1 0 1 0 1 1 0
1 0 1 1) 1 0 0 1 0 0 1 0 0 0

– 1 0 1 1
0 1 0 0

1 0 0 0
– 1 0 1 1

0 1 1 1 0
– 1 0 1 1

1 0 1 0
– 1 0 1 1

0 1 0

Figure 3: Polynomial division — x3(x6 + x3 + 1)÷ x3 + x + 1

as are also
1 0 0 0 0 0 1 1 1 ⇐⇒ x8 + x2 + x + 1

The polynomial variable is truly a dummy variable with little significance
to most of the coding process. It could be regarded as a “carrier” for the
exponents.

3. Numerical arithmetic in integers is replaced by logical operations on the
bits in the GF (2) finite field. Addition and subtraction are now both
equivalent to an Exclusive-OR (⊕) and multiplication is equivalent to a
logical AND (∧). (In both cases, regard the bits as numerical values, do
the numerical operations and take the result modulo 2.) There is no carry
propagation between bits, which immediately removes one of the main
impediments to fast addition.

Practically, this change means that the arithmetic can be done very easily
and quickly by simple logic. While not developed to any great extent here,
this is a great incentive for using these methods in fast hardware.

The most visible operation for cyclic redundancy checks is polynomial divi-
sion, as shown in Figure 3. Except for the slightly changed subtraction rules the
overall method is precisely that of traditional long division. The divisor, which
is always a constant, is normalised with its most-significant bit a 1. (In practise
its least significant term is also a 1, giving a polynomial of the form xN . . . 1.
Technically, g(x) is monic.) Because there is no carry propagation in subtrac-
tion, the divisor can be subtracted from the partial remainder whenever the
most significant bit of the remainder is a 1; there is no concept of a “trial sub-
traction” or compensation for overdraws as needed in integer division. The form
of the dividend and the way it is written in this example are deliberately chosen
to fit with the use of polynomial division in forming CRCs (i(x) = x6 + x3 + 1
and g(x) = x3 + x + 1).

When we apply polynomials to checksum generation, the transmitted data
forms a 1-dimensional bit stream, with earlier bits corresponding to higher-
powers within the polynomial. There are several polynomials involved in trans-
mitting data and checking for correct transmission –

information polynomial i(x) The information polynomial is the transmitted
data as provided by the user (usually including headers, addresses and

12

other transmission control information). The information polynomial is
usually transmitted without modification.

generator polynomial g(x) The information polynomial is divided by the
generator polynomial and the remainder from that division is appended
as the checksum. Usually zeros corresponding to the degree of g(x) are
appended to i(x)before the division.

codeword polynomial c(x) Appending the checksum from the division to the
information polynomial forms the codeword polynomial, which is what is
actually transmitted.

error polynomial e(x) During transmission one or more bits of c(x) may be
corrupted. The corrupted positions may be regarded as a polynomial, the
error polynomial e(x).

received codeword v(x) This is what is received after corruption in transit.
As e(x) marks the corrupted bits in the transmitted data, then clearly
v = c⊕ e, assuming a term-by-term exclusive-OR, or v(x) = c(x) + e(x).

In more detail, if r is the degree of g(x),

1. append r low-order zeros to i(x), to form xri(x).

2. calculate (xri(x) mod g(x)), the remainder on division by g(x)

3. append that remainder to i(x) to form c(x), the transmitted codeword.
Thus the transmitted codeword

c(x) = xri(x)− (xri(x) mod g(x))

is always a multiple of g(x). (Step 1 ensures that the whole of i(x) is
processed by g(x) and also creates a space into which the remainder may
be written.

4. On reception compute

r(x) = v(x) mod g(x)
= e(x) mod g(x) + c(x) mod g(x)
= e(x) mod g(x) , as c(x) mod g(x) ≡ 0 by construction

An error will be undetected if and only if e(x) is a multiple of g(x). The
design of the generator polynomial g(x) therefore determines the ability to detect
errors and is in turn determined by its relationship to e(x).

• If there is single-bit error, then the error polynomial is e(x) = xi, where
i determines the bit in error. If g(x) contains two or more terms it will
never divide e(x) and all single-bit errors will be detected.

• If there are two single-bit isolated errors, then e(x) = xi + xj , or e(x) =
xj(xi−j + 1) if i > j. If g(x) is not divisible by x, then all double errors
will be detected if g(x) does not divide xk +1 for all k up to the maximum
message length. Suitable g(x) may be found by computer search; for
example x15 + x14 + 1 does not divide xk + 1 for any k < 32768.

13

• If there is an odd number of bits in error, then e(x) has an odd number
of bits. As no polynomial with an odd number of terms has (x + 1) as
factor, 2 we make g(x) have (x + 1) as a factor to detect all odd numbers
of errors.

• A polynomial code with r check bits will detect all burst errors of length
≤ r. A burst error of length k can be represented as xi(xk−1 + . . . +1). If
g(x) has a constant term it will not have xi as a term, so if the degree of
(xk−1 + . . . + 1) is less than that of g(x), the remainder cannot be zero.

• If the burst is of length r + 1, the remainder r(x) will be zero if and only
if the burst is identical to g(x). If all bit combinations are equally likely,
the probability of the intervening r − 1 bits all matching is 1/2r−1.

• For a longer error burst, the probability of an undetected error is 1/2r.

Many of the terms in this description of CRC codes actually arise from
the use of polynomial techniques in error correction developing and improving
on what Hamming Codes showed possible. The key difference in block error-
correcting codes is the remainder from dividing v(x) by g(x) is known as the
syndrome s(x) and can be used to determine the error vector e(x) and thereby
correct any errors. Although the mechanics are similar, the design of g(x) is
quite different from what was described for error detection.

5.4 Examples of CRC polynomials

As a preliminary observation, the polynomial x8 +1 generates a simple longitu-
dinal parity over a message of 8-bit characters, and similarly for other character
lengths. [There are two bits in g(x), which in the data stream correspond to
similar bits of two adjacent data characters. The effect of this “window” is to
Exclusive-OR bits of each data character into the corresponding bit of an overall
parity character.]

Some standard error-checking polynomials are–

CRC-12 x12 + x11 + x3 + x + 1
CRC-16 x16 + x15 + x2 + 1
CRC-CCITT x16 + x12 + x5 + 1
IEEE 802 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8+

x7 + x5 + x4 + x2 + x + 1
ATM HEC x8 + x2 + x + 1
ATM AAL3/4 x10 + x9 + x5 + x4 + x + 1

CRC-12 is used for 6-bit character codes in some older banking and flight-
reservation systems.

The 16-bit codes (CRC-16 used largely in North America, and CRC-CCITT
in Europe) can detect all error bursts of 16 or fewer bits, all errors with an odd
number of bits, and 99.998% of bursts of 18 or more bits.

The “ATM HEC” is the Header Error Control code used in ATM cells (Asyn-
chronous Transfer Mode). It covers the 4 preceding octets and can correct all
single errors and detect many multiple errors.

2Assume that e(x) = (x + 1)q(x). Then, because e(x) has an odd number of terms, e(1)
must be equal to 1. But e(x) = (x+1)q(x) = (1+1)q(x) = 0.q(x) which is always 0. Therefore
the assumption must be false.

14

The “ATM AAL3/4” is used to verify the user data of each ATM cell in the
ATM Adaptation Layers 3 and 4.

The “IEEE 802” checksum has been adopted in many communications sys-
tems apart from the IEEE802.x standards, including Fibre Channel and ATM
AAL-5.

In some cases the details of the checking are changed. For example, with
X.25 frames, using the CRC-CCITT polynomial.

• The shift register is initially preset to all 1s,

• the check digits are inverted as they are shifted out after the information
bits,

• the receiver includes the check field in its calculation, and

• the result must be 1111 0000 1011 1000.

Although the IEEE 802 generator polynomial is very widely used in many com-
munications systems it is used with several variations.
In 802.3 Contention Bus (Ethernet) –

• the first 32 bits of the data are complemented,

• the entire frame including header and user data is divided by the generator
polynomial,

• the FCS bits are inverted as they are shifted out after the information
bits,

• the receiver checks that the FCS generated from the preceding received
data matches the received FCS

and in 802.5 Token Bus –

• the 32-bit register for the checksum is initialised to all 1s,

• the entire frame including header and user data is divided by the generator
polynomial,

• the check bits are inverted as they are shifted out after the information
bits,

• the receiver includes the check field in its calculation, and

• the result, including the received checksum, must be
x31 + x30 + x26 + x25 + x24 + x18 + x15 + x14 + x12 + x11 + x10 + x8 +
x6 + x5 + x4 + x3 + x + 1
or, in binary, 1100 0111 0000 0100 1101 1101 0111 1011

5.5 Misunderstandings with Cyclic Redundancy Codes

Experience has shown several frequent errors and alleged disadvantages that
arise when students try to understand Cyclic Redundancy checks –

15

These codes cannot correct an error The codes are not intended to cor-
rect errors, although some can do so to a limited extent. Their main
purpose is to provide very powerful error checks.

You must send also the generator polynomial The generator is agreed
between sender and receiver and is never transmitted with a message

A 1s complement check can detect only a single-bit error. Not true; a
16-bit additive checksum can detect multiple bit errors, and is about as
good as a 10-bit CRC.

The CRC-16 generator polynomial is difficult to make The generator
polynomial is indeed hard to make, but once made is then defined in
the standard and assumed by both sender and receiver. It does not have
to be decided afresh for each message.

They are inefficient because the message must include the checksum
All of the error-correction codes must send the checksum! It is the neces-
sary overhead to ensure reliable message transmission.

6 Further developments

This booklet has just touched on some very large and important areas, which
go far beyond what is appropriate here, in particular –

Error Correcting Codes These have been developed far beyond the simple
Hamming Codes described in Section 3. As with the Cyclic Reduncancy
checks, most codes are described by polynomial methods using the math-
ematics of finite fields. A good description of error correcting codes is
given by Blahut [3], with a simpler introduction by Arazi [1]. Hamming
[9] gives an excellent introduction to coding in conjunction with Informa-
tion Theory, but without going far into error correcting codes.

The power of modern error correcting codes is demonstrated in a Compact
Disk player [10]. Even minor surface scratches and dirt can cause some
data loss and a 1mm disk blemish can cause a data loss of 1500 bits.
Compact Disc players therefore need excellent error correction and use
some of the most powerful error correcting codes. These codes (technically
a cross-interleaved Reid-Solomon code) can completely correct an error
burst (data drop-out etc) of 4000 data bits. At a Bit Error Rate (BER)
of 10−3 the uncorrected error rate is less than one in 750 hours and is
undetectable at a BER of 10−4.

A recent development is “turbo-codes” in which two correctors operate in
parallel and cooperate to get greatly improved correction.

Message Authentication Some of the most complex checksums are the “mes-
sage digests” and “message signatures” which are now used to authenticate
messages whose integrity must be guaranteed. They must detect interfer-
ence which is malevolent rather than accidental, requiring a quite different
design process and performance analysis. They are really a development
of cryptography and their whole discussion and theory comes from that

16

area. In passing it should be mentioned that Cyclic Redundancy Codes are
very weak cryptographically and should never be used for authentication
or message security.

Data Scrambling At the physical level, where data bits are encoded on the
physical medium, few data transmission techniques tolerate long sequences
of 0s or 1s, or sometimes other regular repeated patterns. Information is
“scrambled” or randomised to minimise regularities and ensure regular
data transitions.

This is often done by dividing the data stream by a suitable scrambling
polynomial and transmitting the quotient as the data. The receiver mul-
tiplies the data by the same polynomial to recover the original data. (The
order of division and multiplication could be reversed, but division is much
more prone to catastrophic error propagation in response to transmission
errors and should be avoided in the receiver.) Some typical scrambler
polynomials are –

x7 + x + 1 V.27 4800 bps,
x23 + x5 + 1 V.29 9600 bps,
x20 + x3 + 1 V.35 48000 bps,

x16 + x13 + 1 Bell System 44Mb/s T3

The scrambler polynomials do not of themselves assure satisfactory oper-
ation; a long string of 1s or 0s may cause the shift register to freeze in
an all-1 or all-0 or other repetitive state. In the V.35 standard for exam-
ple, an Adverse State is recognised if, for 31 bits, each transmitted bit is
identical to the bit 8 before it. An Adverse State causes line data to be
complemented.

7 Historical Comments

The use of error-detecting and even error-correcting codes predates computers.
As a very simple example, with telegrams minor errors in letters could be cor-
rected from the context, but not digit errors. The digits were often all repeated,
in order, at the end of the message as a form of redundancy check.

An even better example comes from commercial code books. In the days
of manual transmission (Morse code, or teleprinters for very advanced work),
transmissions were expensive, relatively open to public scrutiny, often commer-
cially sensitive and liable to corruption. Many organisations used commercial
codebooks which had 5-letter groups for frequent words or phrases. Using code
groups shortened the data (reducing the cost) and also provided a measure of
security by concealing the information. Transmissions were however prone to
errors and the codes often included error-control mechanisms. Apart from the
expected errors of transpositions and character reversals, other errors peculiar
to Morse code included splitting and joining characters.

A ·- ⇒ · - E T
B -··· ⇒ - ··· T S

or ⇒ -· ·· N I
or ⇒ -·· · D E

17

For example Bentley’s Second Phrase Code[2] (1930), claimed the following
properties for its codes3

1. A difference of two letters between any two codewords, including the spare
codewords.

2. The reversal of any pair of consecutive letters in any codeword will not
form a valid codeword.

3. The reversal of any three consecutive letters in any codeword will not form
a valid codeword.

4. The mutilation of any pair of consecutive letters in any codeword by a
pause-error in transmitting by Morse will not give another valid codeword.

Many of the early computers such as the Bell System relay machines used
constant-parity codes (such as the 2-out-of-5 codes) and included extensive
checking facilities. Apparently Richard Hamming was using one of these com-
puters in the late 1940’s on problems which could run over the weekend, but
was continually frustrated by errors which froze the machine part way through
the calculation. It was from considering that problem and trying to rectify that
situation that he developed the Hamming codes which could not only detect er-
rors (which the machine designers already knew about and handled) but could
correct them. These were described in Section 3.

From that time designers of major computers have been well aware of the
need to handle errors. Many errors arise from transmission or similar noise and
are known as “soft” errors; they may be overcome just by retrying the operation.
While other, “hard”, errors may need an actual physical repair computers can
be designed to recover from hard errors and reconstitute the correct results “on
the fly”. Apparently on at least one occasion a major computer suffered a logic
failure during an acceptance test, but the error correction allowed the test to
continue satisfactorily.

Especially since the advent of semiconductor memories, smaller computers
have tended to ignore errors, or at best pay lip service to error detection and
recovery. While data buses and so on usually have parity checks, there seem to
be few processors where checking is carried right through into the chip itself.
This despite the fact that connectors are often the least reliable part of a system;
it is all to easy for the deliberately temporary connection of a plug and socket
to become accidentally temporary.

The author has heard two accounts from a major computer manufacturer
in this regard. The first concerned a visit from a semiconductor manufacturer
eager to show off their new semiconductor memory chips (this occurred in the
mid 1970s). After a while it dawned on some attendees that the computer
people could not understand why parity was absent, while the semiconductor
people could not understand why parity was expected. The big systems and
small systems expectations were quite different. In the second case, the same
manufacturer had a big computer which was plagued by occasional errors, in-
frequent but enough to prevent commercial release. That problem was solved
by changing to different, though apparently equivalent, backplane connectors.

3It is salutary to note that the book defines over 100,000 codes, all prepared without a
computer.

18

Errors are a continuing problem in computing. This booklet has touched on
the enormous area of Error Correcting Codes, but emphasised Error Detecting
Codes, as an area which is somewhat simpler and with much less coverage in the
literature. The two are often inter-related under the general theme of “Error
Control Codes”.

References

[1] B. Arazi, A Commonsense Approach to the Theory of Error Correcting
Codes, MIT Press, Cambridge MA, 1988

[2] E.L. Bentley, Bentley’s Second Phrase Code, E.L. Bentley, London and
Prentice-Hall New York, 1930

[3] R.E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley,
1983.

[4] F.P. Brooks and K.E. Iverson Automatic Data Processing, New York, NY
: John Wiley, 1963

[5] P. Deutsch, J-L. Gailly, “ZLIB Compressed Data Format Specification ver-
sion 3.3”, RFC 1950, Internet Engineering Task Force, May 1960

[6] Fletcher, J. G., “An Arithmetic Checksum for Serial Transmissions”, IEEE
Trans. on Comm., Vol. COM-30, No. 1, January 1982, pp 247-252.

[7] Gumm, H.P. “A new class of check-digit methods for arbitrary number
systems”, IEEE Trans Inf. Theory, Vol 31, No 1, Jan 1985, pp 102–105.

[8] R.W. Hamming, “Error Detecting and Correcting Codes”, Bell Sys. Tech.
Journ., Vol 29, pp 147 – 160, 1950.

[9] R.W. Hamming, Coding and Information Theory, 2nd Ed, Prentice-Hall,
Englewood Cliffs NJ 1986

[10] H. Hoeve, T. Timmermans and L.B. Vries, “Error correction and conceal-
ment in the Compact Disk system”, Philips Tech Rev., Vol 40, pp 166–172,
1982.

[11] ITU-T Recommendation X.224, Annex D, “Checksum Algorithms”,
November, 1993, pp 144, 145.

[12] L. Stone, M. Greenwald, C. Partridge and J Hughes, “Performance of
Checksums and CRCs over Real Data”, IEEE/ACM Trans. on Networking,
Vol 6, No 5, pp529 – 543 Oct 1998.

[13] N.R. Wagner and P.S. Putter, “Error Detecting Decimal Digits”, Comm
ACM, Vol 32, No 1, Jan 1989, pp 106–110

[14] Verhoeff, J. “Error Detecting Decimal Codes”, Mathematical Centre Tract
29, The Mathematical Centre, Amsterdam, 1969.

19

