CS314 2011 27
UDP: User Datagram Protocol,
Other Transports, Sockets

IP is an unreliable datagram protocol

- congestion or transmission errors cause lost packets

- multiple routes may lead to out-of-order delivery

UDP delivers exactly this service to user programs

If senders

- send too fast, routers or receivers cannot keep up (making
congestion worse);

- compete, capacity must be fairly shared
UDP cannot solve these problems in any way

UDP header fields

» Port numbers - used to find TCBs at each end
- Note that source port is optional. Since there is no concept of a
connection in UDP, it may not be needed
* Length
- length in bytes of UDP header plus data
- ill-advised to exceed the available MTU

» Checksum

- 16-bit one's complement of the one's complement sum of a
pseudo header of information from the IP header, the UDP
header, and the data, padded with zero bytes at the end (if
necessary) to make a multiple of two bytes

- Pseudo-header is the same as for TCP

UDP header

0 1

2

3

01234567890123456789012345678901

-ttt +—+-
| Source Port

+-t—t—t—t -ttt -ttt
| Length

R D et e e A e e A A e St
| data
+-t—t—t—+—+—t—t -+ +—+-

+
|
+
|
+

+

-ttt
Destination
—t=t-t—t-t -t -ttt
Checksum

e e st et St Sl 2

e B ek S

Protocol Number or Next Header is 17 (decimal)

A day in the life of a UDP packet

User A: Listen (portA)

User A: Receive (DataB)
User A: Listen (portA)

User B: Send (AddressA, portA, DataB)

+-t—t—+-+-+-+
Port |
+-t—t—t-t-+-+

|
+-t-t-+-+-+-+

ottt

» That's if the packet gets through the network. If it
happens to be discarded due to congestion or error,

we get:
- User A: Listen (portA)

- User B: Send (AddressA, portA, DataB)

... and the rest is silence



Why is UDP useful?

» Because UDP offers no error recovery and no error
notification, it may appear useless
* In fact, on a network less than 100% busy, UDP packets
usually get delivered. But a UDP-based application must
include its own timeouts and error recovery. Mostly, it's
easier to use TCP instead
» Important UDP applications include
- DHCP
- DNS
- RIP
- SNMP (simple network management protocol)
which can all survive lost packets. Each listens on a well-
known port number

Other transport protocols

« RTP - Real time Transmission Protocol
e SCTP - Stream Control Transmission Protocol
» DCCP - Datagram Congestion Control Protocol

* And related: ECN - Explicit Congestion Notification

References for UDP

« Afew words in Shay 11.4
* Any of the TCP/IP books listed for IPv4
* RFCs:

- RFC 768, the original definition
- RFC 2460 (IPv6) modifies UDP’s checksum formula

RTP - mainly for audio/video streams

* RTP data packets run over UDP on an even-numbered
port
- normally a port number above 16384
- RTSP (RT Streaming Protocol) is layered on top of RTP
* RTCP (RTP Control Protocol) runs over UDP on the next-
higher (odd-numbered) port

* RTP provides
- Payload-type identification
- Sequence numbering
- Time stamping for synchronisation and jitter management
- Delivery monitoring
» But with the unreliability issues of UDP
- Video or audio codecs must allow for this



Background slide S CT P

* Areliable, congestion-friendly protocol that has
learned much from TCP

* Main differences:

- Both ends can have multiple IP addresses, and the SCTP
connection can switch between addresses (for example, in case
of a routing failure for one of the addresses)

- SCTP supports multi-streaming, i.e. separate virtual connections
within the main SCTP connection

* Intended use was reliable connectivity for telephony
signalling over the Internet
- SCTP is quite general in applicability
- Quite new and not widely used yet

Background slide E C N

Makes use of bits 6 and 7 in the IPv6 Traffic Class field
or the IPv4 Differentiated Services field

- 00 - ECN not in use

- 01 - unused

- 10 - ECT flag

- 11 - CE flag

ECT means “sender is ECN-capable”
CE means “router is congested” and is interpreted by
the receiving transport protocol

A transport protocol that supports ECN will invoke a
“slow down” mechanism when it receives a CE flag
- Quite new and not widely used yet

DCCP

* DCCP behaves like a halfway house between UDP
and TCP

- TCP's reliability and in-order delivery features introduce delays
that are not OK for audio/video

Background slide

- UDP's lack of congestion management causes network saturation
when demand exceeds capacity

- DCCP establishes a connection (like TCP) and reports packet
delivery (unlike UDP). It does not retransmit on error or attempt
in-order delivery (like UDP and unlike TCP)

- DCCP offers two congestion management approaches
- Also makes use of ECN (next topic)
- Quite new and not widely used yet

Other Transport References

RTP - Shay 11.4, RFC 3550
RTSP - RFC 2326

SCTP - RFC 4960

DCCP - RFC 4340, 4341, 4342
ECN - RFC 3168



Sockets

 All transport protocols need a mechanism for upper
layer software to access the transport

* The general concept is a notional “socket” that the
application plugs into, embodied as a Socket API

- Originated as “Berkeley sockets” on 4.2BSD Unix
- Standard APl is defined as part of Posix standard

* APl includes calls to resolve DNS names into IP

addresses, open and close sockets, and send and
receive data

- Plus many socket options for various purposes

Finding addresses (1)

gethostbyname () is a function that takes a DNS
name as a string and returns a structure containing the
corresponding |IP address

In other words, it invokes the DNS resolver and the
whole DNS lookup process

Works well in an IPv4 network with one |IP address per
DNS name

Inadequate for an IPv4/IPv6 network with multiple
addresses per name

Socket APl overview
(not a programmer's guide)

socket is a function that creates a new socket data
structure and returns a handle for it.

mySocket = socket (domain, type,proto)

domain is AF_INET for IPv4, AF_INET6 for IPv6

type is SOCK_STREAM for TCP,
SOCK_DGRAM for UDP

proto is IPPROTO_IP as a default

close (mySocket) gets rid of a socket

Finding addresses (2)

getaddrinfo () overcomes the shortcomings of
gethostbyname () for IPv4/IPv6 coexistence
Allows user to express IPv6 preference

Note that it doesn't return “the” address. The code that calls
getaddrinfo is supposed to choose from a set of
addresses

- by default, assume addresses are ordered by system preference

- if the first address doesn't answer, try the next one...
The user code is more complex than with gethostbyname,

but results in more robust application behaviour when there
is any kind of network problem




Finding addresses (3)

« An AF_INET6 socket can be used for IPv6 or
IPv4
- if a “mapped” address like ::FFFF:10.1.2.3 is used,
the socket will automatically use IPv4

» Shay 11.3 is wrong to suggest that routers recognise
these addresses - it is the sending host that decides to
use IPv4 when mapped addresses are used with a
socket

 The socket option IPV6_V6ONLY will force a
socket to work only in IPv6 mode

Talking

 send() and recv () calls
- and variants, or use write () and read ()

» Streaming mode for TCP - no relationship between
individual send/recv calls and individual TCP

segments

- Hence the PUSH option in TCP, to force data into the
receiver

« Datagram mode for UDP - one send/recv for each
datagram, and lost datagrams are truly lost

- checksum errors give error returns from recv ()

Getting ready to talk
* bind () assigns an address to a socket

« listen () asks a socket to listen for incoming
connections (TCP) or datagrams (UDP)

« connect () launches a connection (TCP

SYN/ACK), or connects a program to a local
socket (UDP)

- shutdown () disconnects (TCP FIN/ACK)

* accept () accepts an incoming connection
request (TCP)

Securing the socket layer:
Transport Layer Security (TLS)

Protects TCP sessions
- Earlier versions known as SSL
» Uses a handshake procedure to negotiate crypto algorithm

» Uses server's public key to securely negotiate keys for the
session

- server presents a certificate to the client, including its public
key. The certificate is cryptographically signed by a trusted
certificate authority using its public key

« Following these negotiations, no 3™ party can intercept or
inject traffic

20



Socket References

« Shay 12.2 (TLS is in 7.5)

» See your favourite Unix book or
http://www.rt.com/man/

« With IPv6: RFC 3493 (and 3542)

» The Wikipedia article on Berkeley sockets is pretty
good (but doesn't use getaddrinfo)

* POSIX standard: IEEE Std. 1003.1-2004 Standard for
Information Technology -- Portable Operating System
Interface (POSIX)

See http://www.unix.org/version3/ieee_std.html

21



