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Lectures 11 -12 
Security mechanisms

Brian Carpenter
Some slides originally from
Clark Thomborson

COMPSCI 314 S2C 2011 
Introduction (Shay 7.1)
Encryption (Shay 7.2-7.4)
Authentication (Shay 7.4-7.5)
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Security 101 
Properties of secure data: CIA

Confidentiality: no unauthorised user can read 
Integrity: no unauthorised user can write
Availability: all authorised users can read and write
Confidentiality - provided by encryption
Integrity - provided by authentication and cryptographic 

signature
Availability - means preventing denial of service attacks
For now we'll consider techniques for encryption and 

authentication.
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Security functions
The Gold Standard, and some additional functions:

Authentication: are you who you say you are?

All claims to identity can be verified.

Authorisation: who is permitted to do which operations to what?

Users can’t increase their own authority.

Auditing: what has happened on this system?

System administrators can investigate problems.

Identification: what human (or object) is this?

Different from authentication (a proof of an identity) or authorisation (a decision 
to allow an activity).

Non-repudiation: can you prove this event really did happen?

To learn more: Lampson, “Computer Security in the Real World”, IEEE 
Computer 37:6, June 2004.
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Network attacks (Stallman)
Modification or man in the middle: an attacker changes a 
message;
Interruption or denial of service: an attacker prevents delivery, 
often by floods of rubbish packets;
Fabrication or spoofing: an attacker injects a message;
Interception or eavesdropping: an attacker reads a message. 

Desired message flow Interruption

Interception Modification Fabrication

Desired message flow Interruption

Interception Modification Fabrication
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Who are these people anyway?
In many analyses of security algorithms, Alice and 
Bob are the two parties trying to communicate 
securely, and often Eve is the person trying to 
listen in or interfere.
See http://en.wikipedia.org/wiki/Alice_and_Bob for some 
other standard characters.

Apologies to anyone called Alice, Bob, Eve...

Alice Eve Bob 6

Darkside security (Thomborson)
One person's functional goal is another person's security 
threat – and vice versa.
Stallman's attack model is appropriate for Alice, in her 
traditional role in an analysis of communication security.

Alice is talking to Bob.
Eve is trying to eavesdrop: she poses a threat to the 

confidentiality of Alice's conversation.
Mallory is trying to modify messages, posing a threat to 

the integrity of Alice's conversation.

Let's consider Eve's point of view...
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Source: http://xkcd.com/177/, reproduced with permission (http://xkcd.com/license.html).
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Evading Walter

If Alice is a prisoner, she cannot communicate with Bob 
unless she has permission from Walter (her warden).
Stegocommunication threat: Alice might find a 

surreptitious way to communicate with Bob.
Have you ever wondered about the stegomessages which 

might be sent, without your knowledge, by your computer? 
 

Using open-source code can mitigate this threat...
Do you trust the person who compiled the code you are 

using?
Do you trust the people who wrote the compiler? 

http://doi.acm.org/10.1145/358198.358210
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Evading Mallory

If Alice doesn't have a right to integrity in her messaging...
Threat: Alice might add error-correcting codes to her 

messages, which would allow Bob to “undo” Mallory's 
modifications.

Many of your documents have metadata which could reveal 
information you would not want to reveal.   

Many lawyers have learned, the hard way, never to send 
contractual offers in MS Word format.

How can you be confident that Alice (your word-
processing software, or your OS) won't actually 
preserve some information you “delete” from a 
document or a filesystem?
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Evading Daniel

What if Alice doesn't have a right to availability in her 
messaging?
Threat: Alice might find a way to evade Daniel, whose 

goal is to deny service.
If your computer or browser (Alice) is taken over by malware, 

will you be able to shut off its communications?   

You can easily unplug a wired-Ether connection... but can 
you shut down all of the comm channels on your 
cellphone or PDA?

What can you do if your computer or cellphone doesn't 
respond to its “off” switch?
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Evading Fabian

What if Bob doesn't have the right to know that it was 
actually Alice who sent the message signed “Alice”?
Threat: Alice might find a way to sign her messages so 

that Fabian (a fabricator) can not fool Bob.
I don't have a white-hat scenario for this threat... can you 

think of one?

The point I'm trying to make in these last few slides is that 
“Security” is not a well-defined property, until you assign 
roles to participants and decide who is wearing a “white-
hat”!
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Back to CIA...

Most networks are designed for the “CIA” goals:
Security goal #1: confidentiality for Alice & Bob
Security goal #2: integrity for Alice & Bob
Security goal #3: availability for Alice & Bob

It seems to be infeasible to achieve all three goals.
In the usual design for a “secure communication system”,

availability is compromised, and
Alice and Bob gain (partial) confidentiality with encryption. 

 Eve can tell that Alice & Bob are sending messages to 
each other, but she can't understand what the 
messages mean.
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Encryption = coding with a secret

Coding schemes are designed to be decoded by 
an algorithm that is widely known.
Encryption schemes are codes which need secret 
knowledge to decode them.
Xibu jt uijt tjnqmf fodszqujpo?

cyphertext
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Types of Secrets...

The decoding algorithm might be a secret.
“Security by obscurity”: a bad idea (unless it's your 

only option)
A generally-known algorithm might require a 
secret input: the decoding “key”.
Xibu jt uijt tjnqmf fodszqujpo?
What is this simple encryption?
The algorithm is "go back N letters"
The secret knowledge (the key) is "N=1" plaintext

or cleartext
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Encryption and decryption

Packet
fodszqujpo

Decryption
algorithm

Plaintext
encryption

Encryption
algorithm

Plaintext
encryption

Secret
knowledge

for decryption

Secret
knowledge

for encryption

Without the secret knowledge (key), an intruder on the network 
cannot understand the packet, and cannot change it or insert a 
new one without being detected.

RECEIVERSENDER

NETWORK

Ciphertext
fodszqujpo

Ciphertext
fodszqujpo
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Terminology

Call the plaintext (the message) P
The encryption algorithm is E
Its secret knowledge is a key k
The ciphertext C = E

k
(P)

The decryption algorithm is D
Its secret knowledge is a key k'
The plaintext P = D

k'
(C)

By definition, P = D
k'
(E

k
(P))
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The Caesar code
Probably the oldest cryptographic algorithm
E is: go forward N letters in the alphabet, rotating 
from Z to A.
k is N
D is: go back N letters in the alphabet, rotating 
from A to Z.
k' is N
When k = k' we speak of a symmetric-key 
algorithm or a shared key. Both ends must know 
the same secret key.
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What makes a good 
cryptographic algorithm?

Assuming it's widely used, there's no point in 
trying to keep the algorithms E and D secret.

Disclosing E and D can be beneficial.  See Tomlinson 
(1853) and Kerckhoffs (1887).

But you must keep your key secret!
A cryptographic system is called “strong” if 
experts believe no one will crack an encoded 
message within the next 20 years – not even 
using millions of computers trying all possible 
keys.

Is the Caesar code strong?
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How big should the key be?

Obviously this depends on the exact E and D algorithms, but 
assume that the attacker has a few supercomputers.
Let's assume (s)he can check one million keys per second.
That's 31,536,000,000,000 keys per year.

To be reasonably safe for 1000 years, you certainly need a 
pool of 31,536,000,000,000,000 keys to choose from.

That's almost 255 (a 55 bit binary number).
Modern cryptography goes further than that, as we'll see.
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Another simple algorithm:
Exclusive Or (XOR)

● XOR is a symmetric cryptographic algorithm:
P=110011, k=010101 → C=XOR(110011,010101)=100110
C=100110, k=010101 → P=XOR(100110,010101)=110011

● In this example there are 2
6
 = 64 possible keys, so it’s 

easy to find the key by trial and error.

The truth table for
XOR

a b XOR(a,b)
0 0 0
0 1 1
1 0 1
1 1 0
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Example: original DES* (1977)

Divide message into 64 bit blocks of plaintext
Encrypt each block with a 56 bit key
DES builds on simple XOR encryption using multiple 
cycles and transpositions to make the result more 
pseudo-random.
The encryption process includes 18 major steps, 
including transposition of bit strings and XOR between 
parts of the message and parts of the key
The output is a 64 bit block of ciphertext

* DES = Data Encryption  
              Standard 22

   Overview of DES

IP = Initial Permutation 
(transposition)
F = "Feistel" function  (see Shay p. 
289 for more details)

FP = Final Permutation (swap and 
transposition, reverse of IP)

Thanks W
ikipedia!

XOR

Ciphertext
(64 bits)

Plaintext (64 bits)

Key
(56 bits)

23

Cracking DES

DES should be very hard to crack without knowing 
the 56 bit key. So let’s consider trial and error...

256 seems like a big number of trials! That’s 
72,057,594,037,927,936. Is it enough?
Apparently not! In July 1998, the EFF*'s 
DES cracker (Deep Crack) broke a DES key in 56 
hours.  Cost: $250,000US.

* EFF = Electronic Frontier  
             Foundation
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Block vs. Stream Ciphers
DES is a block cipher – it produces 64-bit blocks
   of cipher text from 64-bit blocks of cleartext.

If Alice encrypts the same cleartext M under the same
key k, she'll get the same ciphertext E

k
(M).

Alice must change keys more often than she sends 
the same cleartext block.
Otherwise she'll reveal information about her “repeated 

blocks” to Eve.  (See the next slide.)
Alice wants to send long messages without worrying 

about repeats and key-changes.
She really wants a stream cipher, not a block cipher.
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Cryptanalysis: Repeated Blocks
If we DES-encode all 64-bit blocks of a picture (in 
bitmap format) under the same key...

http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation,

http://www.isc.tamu.edu/~lewing/linux/
26

A Quick-and-Dirty Stream Cipher
CBC = Cipher Block Chaining

Before each 64-bit plaintext block P
n
 is encrypted,

XOR it with the previous cyphertext block C
n-1

Repeated blocks are now very rare, so the trivial 
pattern-matching attack of the previous slide fails.

A clever attacker can still guess a pattern of repeats...
Alice should not repeat herself, if she's using a

CBC cipherstream and is worried about a
clever Eve.  
Alice should compress her cleartext before encrypting it.
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Triple DES 

Basically, apply DES three times running, so that 
C = E

k3
(D

k2
(E

k1
(P)))

where E is DES encryption and D is DES 
decryption
if k1=k2=k3 this is single DES for backwards compatibility
Triple DES is still regarded as reasonably safe, 
but is slow, especially in software-only 
implementations.
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Advanced Encryption Standard 
(AES)

Preferred to Triple DES due to longer keys and 
greater complexity
Also has better software performance
128 bit block cipher with 128, 192 or 256 bit keys
Mathematically complex 
like DES, involves transposition steps and XOR, but also 
includes substitution tables in each round
currently regarded as safe for all practical purposes
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Problems with symmetric keys
Both ends must know the same key

Doubles the risk of leaks
Can't determine who leaked the key

Initialisation problem: How can Alice send a key 
safely to Bob without encrypting it?

In practice: use an existing secure channel (post?, 
telephone?), monitor the first few uses of a new 
key, use Diffie-Hellman key-exchange, ...

If I want secure links to 100,000 customers, then I 
have to manage 100,000 keys!
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Asymmetric keys

Suppose I could decrypt using k' and tell all my 
customers to encrypt using k.
If I keep k' secret, nobody else can decrypt 
messages that were encrypted using k.
So if I receive a message encrypted with k saying 
"Today's AES key is 11011....011101" , only I can 
decrypt it, and the AES key is safe. 
In this case k is my public key (everybody knows 
it) and k' is my private key (nobody else knows it).
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RSA* algorithm
Choose two large prime numbers p and q
Let n = pq
Let n' = (p-1)x(q-1)
Find k which has no common factors with n'. 
k will be the encryption (public) key.
Find k' such that (kk'-1) is an exact multiple of n'.
k' will be the decryption (private) key.
Encryption consists of raising each block of the plaintext 
to the power k, modulo n.
Decryption consists of raising each block of the 
cyphertext to the power k', modulo n.

* Rivest, Shamir and Adleman
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Magic?

RSA is based on number theory and seems like 
magic, but it works. Go through the example in 
Shay, or look at the excellent Wikipedia entry.
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Two ways to use RSA keys
 Alice uses Bob's public key to encrypt a message to 
Bob; only Bob can decrypt it.
But anybody could pretend to be Alice!

 Alice uses her private key to encrypt a hash of her 
message; Bob uses Alice's public key to decrypt and 
check the hash value.
Only Alice can perform this encryption, so the encrypted hash 
is a digital signature.
If the hash matches, Bob knows that Alice sent the message 
and nobody changed it.
More magic: in fact, Alice uses RSA decryption to "encrypt" 
the hash, and vice versa.
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Cryptographic Hash Functions
These are functions somewhat like a checksum or CRC, 
but designed for cryptographic use.
Input is any length of message, and output is a fixed length 
hash value (at least 128 bits).
Its mathematical design is not aimed at bit error detection, 
like a normal CRC, but at resistance to attack or detection 
of forgery.
In particular it should be very hard to create a fraudulent 
message that has the same hash as the genuine message

SHA-256 and SHA-512 are commonly used, and still seem 
secure, but are nearing the end of their useful life.  
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2
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Signing a message: overview

RSA

SignatureMessage

Hash function

Hash'

If Hash = Hash', Bob can be
sure the message came from
Alice and was not changed.

Alice's
Public key

RSA

SignatureMessage

Hash function

Hash

Message

Alice's
Private key

Network

Alice

Bob

Hash
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What problems do Alice and Bob 
face?

At the start, they can trust nothing - any message 
could be forged or read by Eve. They have to 
assume that:
Eve can see all their packets.
Eve can store packets and play them back later.
Eve can send her own packets with forged IP addresses.
Eve has a lot of computing power.
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The importance of authentication

We could spend the whole semester on security, 
but will focus on authentication.
“Source authentication” (that a message was sent 
by a given source, and not tampered with) is the 
key to preventing most types of attack:
detects modification and spoofing of messages
prevents repudiation of genuine messages
helps detection of floods of invalid messages
helps to secure the sending of encryption keys across an 
initially insecure channel
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How to authenticate that Bob is Bob

We assume that Eve is trying to pretend to be 
Bob.
A message that merely says "I'm Bob" proves 
nothing... and might be suspicious!  (Would Bob 
really send such a message?)
A message signed with Bob's private key, that 
Alice can check with Bob's public key, is OK.
But a message saying "Hi, I'm Bob and here's my 
public key", signed with the correspnding private 
key, isn't OK. Why not?
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Who do you trust?
If www.BobsWebSite.org lists Bob's public key, 
are you willing to believe it?
If yes:
How do you know that Eve didn't create that web site?
How do you know that Eve didn't hack that web site, 
even if it's one that Bob created?
Are you sure you aren't looking at 
www.BobsWebS1te.org?
Really, you can only trust a public key from a 
highly reputable source.  (But... how do you 
identify a reputable source??!)
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Trust and Trustworthiness
Security analysts distinguish “trust” from 
“trustworthiness”.
If Alice believes that she has a valid copy of Bob's 
public key, then she “trusts” this key whenever 
she relies on it (i.e. to verify a message from Bob).
If Alice actually has Bob's public key, then her 
reliance on the validity of this key is appropriate – 
we say this key is “trustworthy”.
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What can Alice do with a trusted 
public key for Bob?

Check that it really is Bob who's sending messages to 
her and that they are unchanged (since Eve cannot forge 
Bob's RSA signature).
Prove later, to herself, and to anyone else who trusts this 
key, that Bob really did send a message (since Alice 
cannot forge Bob's RSA signature).
Send a secure message to Bob providing a symmetric 
key for AES encryption (since Eve cannot read a 
message encrypted with Bob's public key).
Efficiently discard any flood of bogus messages from 
Daniel (since Daniel cannot forge anybody else's RSA 
signature)
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A simple authentication protocol
Problem: Convince a bank called Bob that you 
really are a customer called Alice.
Notation:  
E is RSA encryption
D is RSA decryption
a, a' are Alice's public and private keys
b, b' are Bob's public and private keys
thus E

a
(P) is plaintext P encrypted with Alice's public key, 

etc.
t
a
, t

b
 are clock times on Alice's and Bob's clocks
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Does this work?

Bank "Bob"

Public key b
Private key b'

Clock reads t
b

Customer "Alice"

Public key a
Private key a'

Clock reads t
a

2) E
a
("Alice", t

a
, t

b
)

3) E
b
("Alice", t

b
)

1) E
b
("Alice", a, t

a
)

 Alice provides her key and timestamp
 Bob confirms timestamp and adds his own
 Alice confirms Bob's timestamp
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What did Bob and Alice learn?
Bob knows that "Alice" knew his public key

Bob knows a public key for "Alice"

Bob knows that "Alice" received his timestamp

Alice knows that Bob knows her public key

Alice knows that Bob received her timestamp

Eve couldn't decipher the messages, but could store them

Has Alice proved her identity to Bob's server? (Authentication)

Is Alice allowed to use Bob's service? (Authorization)

Can Eve use a copy of message 3 to gain service?  (Eavesdrop, 
then Replay; or Intercept, then Inject)

What is the value of the timestamps?
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Authentication pitfalls

How does Alice know she's talking to the genuine 
Bob?
This needs a source of trust for Bob's public key, typically 
an X.509 certificate
How does Alice convince Bob she's the genuine 
Alice?
Typically this needs a reliable shared secret. The 
simplest kind is a pre-arranged password sent over an 
encrypted channel (e.g. encrypted with Bob's public key).

46

X.509 certificate
This is a document that is 
cryptographically signed by 
a trusted third party known 
as a CA (Certification 
Authority). 
Apart from the signature 
and administrative material, 
it contains the public key.
("X.509" identifies a 
particular international 
standard.)
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Trust is recursive

Instead of trusting Bob's web site, Alice now has 
to trust Bob's CA.
Web browsers have the public keys for reputable 
CAs built into them.
Now Alice has to trust the web browser.
So she has to trust the download site where the 
web browser came from.
Which means trusting the download site's CA.
Trust is not easy...
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Summary on encryption and 
authentication

We've seen how symmetric and asymmetric  
encryption systems work.
They can be used to create secure channels and 
to check message authenticity.
They can be used to build authentication 
protocols, but only based on some prior 
knowledge (a public key) and on some trusted 
third party.
We'll see specific examples (TLS and SSH) later.


