CS314 - 28
Basic Internet Applications

« An application is anything useful that runs over a
transport protocol, or even over raw |IP

 \We've already seen some: DNS and DHCP for
example. Routing protocols also run over UDP or TCP

e Other basic apps include
- Telnet and SSH
- FTP
- SMTP
- SNMP

Types of Application

* The Internet is intrinsically a peer-to-peer network
- peer = "one that is of equal standing with another”
- anybody can send packets to anybody
* Applications are often classified as client/server or peer-to-

peer (p2p)
- client/server: a client program starts by asking the server to
respond; client and server have different roles
- p2p: each system starts by discovering the others. Systems
may act as clients and servers for each other
- Even a p2p application probably needs some designated
servers (e.g. Skype login server)

- Some applications are hard to classify (think about this when
we discuss SMTP)

Telnet

e |nsecure line-mode interaction over the network
(remote login)

- sends what you type, over TCP
- returns what the other end responds with

— more or less transparent transmission of ASCI|
characters

- login password travels in the clear, hence highly
discouraged unless you want your password made
public

— Telnet server listens on TCP port 2310

Secure Shell (a.k.a. SSH)

e Secure line-mode interaction

— Can also be used for secure file transfer
- SSH server listens on TCP port 22

- Remote user is authenticated using public key
cryptography

- Server and client software establish an encrypted
channel

- Interaction (or file transfer) uses that channel

SSH Architecture

 Three main components:

- SSH Transport Layer Protocol
 Runs over TCP

* Provides server authentication, data confidentiality
(encryption), and data integrity

- User Authentication

* Runs over SSH Transport Layer

e Authenticates the client-side user to the server
- Connection Protocol

* Runs over an encrypted, authenticated SSH transport
connection

* Multiplexes the connection into several logical channels

Notional Message Structure

IP header

TCP header

SSH transport header

client auth. header
(implied - no bits)

SSH channel header

Payload data

e Blue - unprotected
* Yzllow - authenticated and encrypted
* Magenta - message authentication code

* Notional view, because
- SSH messages may be streamed across multiple TCP segments
- Payloads for several channels may come in sequence
- SSH headers are rather simple (and there is no auth. header)

SSH Messages

« All start with a code byte, e.g. a channel header + data
IS simply:

byte SSH MSG CHANNEL DATA
uint32 recipient channel
string data

where string is a uint32 containing the number of data
bytes, followed by the data
(SSH_MSG_CHANNEL_DATA has value 94 . Many SSH message

types are defined, each with a name and a corresponding
numeric value)

Transport Establishment

* Two or three round trips, exchanging SSH messages
of various types

Version number exchange
- version needs to be 2.0 today

Key exchange

- negotiate use of strongest mutually acceptable encryption
algorithm

- negotiate choice of Message Authentication Code (MAC)
algorithm

— server authenticates itself via shared secret or certificate

Compression negotiation

- built into key exchange dialogue
- optional

User Authentication

» Transport negotiation creates a safe connection
— Server is authenticated but client is unknown
- Next step is to authenticate the client (user)

* Client sends SSH messages like

byte SSH MSG USERAUTH REQUEST

string user name in ISO-10646 UTF-8 encoding
string service name in US-ASCIIT

string method name in US-ASCII

method specific fields

After iteration to find a method that the server accepts,
server will finally reply
byte SSH_MSG_USERAUTH SUCCESS

* The user is now authenticated on the safe connection
- Hence, no authentication headers needed in following messages

SSH Cryptography and Authentication

« SSH can support many encryption algorithms

- Must include 3DES-CBC
- Should support AES128-CBC

« SSH can support many message integrity (MAC)
algorithms

— Must include HMAC-SHA1
e Client authentication methods include

- Public key (client uses private key to sign authentication request)

- Password (client sends text password, within SSH encryption)

10

SSH Channel Establishment

* Transport negotiation followed by user authentication
creates a fully trustworthy connection

- Final step before sending data is to open individual channels over

that connection
- The most common case is a remote login (shell) channel
- Other options include X11, TCP/IP port forwarding, and secure

FTP
e Opening a channel needs an SSH message such as
byte SSH_MSG_CHANNEL OPEN
string "session"
uint32 sender channel
uint32 initial window size
uint32 maximum packet size

- SSH channels run a simple window mechanism to avoid buffer
overflows (but rely on TCP for flow control & retransmission)

11

FTP: File Transfer Protocol

« Same generation as Telnet, i.e. insecure (passwords in the
clear, no crypto, etc.)
 FTP client (user) and server exchange control messages

and data over separate TCP connections

- Commands and replies are sent in ASCII text using Telnet format
- FTP server listens on TCP ports 21 (control) and 20 (data)

 FTP user can request file transfer between two other
systems

User

/ Control flows \

Server A — = Server B

Data flow

Important FTP commands

« USER - username for login

 PASS - password for login (unprotected)
« CWD -cd

« QUIT

« PORT - change host address and port number for incoming
data from its default value

 PASYV (“passive”) - tell server to wait for data connection
(instead of initiating it)
- PORT and PASV can combine to start “triangle” transfer
 TYPE - Binary, ASCII, etc. (ASCII is 7-bit characters!)
« RETR pathname (“retrieve”) - open and send a file
« STORE pathname - receive and store a file

13

Secure File Transfer
o Standard FTP is unprotected

« SCP is an old solution (remote copy over SSH)

e SFTP is sometimes

- Simple File Transfer Protocol (obsolete, insecure)

- SSH File Transfer Protocol (available with SSH, but not
formally standardised, and not FTP over SSH)

* There is of course a way of securing FTP with TLS
(RFC 4217)

14

SMTP: Simple Mail Transfer Protocol

Simple? Not really

- 76 pages in the RFC, plus another 51 pages for mail message
format

Another TCP application (port 25)

Used for one mail server to forward mails to another,

and for user agents to submit mail to their own server
- Not used for mail delivery to user agents

SMTP transports a mail object

- A mail object contains an envelope and content

- The content is what you can see with 'view message source' in
most mail agents

- The envelope is formed by a series of SMTP commands
expressed in 7-bit ASCI|I

15

Mail overview

MX (mail exchange)
records in the DNS tell
mail servers where to

send mail for User Agent 2
*@example.com t
SMTP is a
Mail S A client/server protocol
ail Server \used between peers.
SMTP

Mail Server B | p Mail Server C

POPB‘(/:;/(POP3
SMTP

IMAP

User Agent 1

User Agent 4 User Agent 3

SMTP commands (simplified)

« EHLO - opening command from client side
- SMTP servers take client role when sending
- HELO - obsolete version of EHLO

« MAIL FROM: <reverse-path>

- <reverse-path> is the source mail address, to be used for
returning errors - not for normal replies

« RCPT TO: <user@example.com>

- destination mail address
- multiple recipients = multiple RCPT commands

 DATA

- Start of message body
- Originally 7 bit ASCII based; now “8 bit clear” is negotiable

- End of body is <CRLF>.<CRLF>

17

SNMP: Simple Network Management Protocol

« Large networks don't run themselves - they need
constant monitoring, and frequent configuration
updates

« SNMP is one way this can be achieved from a central
point

« SNMP features:

- Real time status monitoring
- Alerts when something goes wrong

- SET commands for configuration
(However, routers etc. are usually configured using
a command line interface, typically over SSH)

18

SNMP Model

Operator ‘ iiiiiiiiii
\

Shared information model
“MIB” — ‘
Management Information dataBase |

- y
__§
=

MIBs and SMI

« A MIB module describes in machine-readable form the
information model for managing a particular device or
protocol

MIBs are written in a format called SMI (Structure of
Management Information) using ASN.1 syntax

ASN.1 (Abstract Syntax Notation 1) was part of OSI

A MIB module must be syntactically correct, just like a
program, so that manager and agent can parse it

Manager and agent must use exactly the same MIB

The agent contains code to map MIB objects to and from
real-world objects

The semantics of MIB objects is often expressed as a
comment; that's where code has to be written

20

Background side . Sample extract from the MIB for IP

IP-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE,

Integer32, Counter32, IpAddress,
mib-2, Unsigned32, Counteré64,
zeroDotZero FROM SNMPv2-SMI

ipSystemStatsInAddrErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current

DESCRIPTION
"The number of input IP datagrams

discarded because the IP address in their IP
header's destination field was not a valid address
to be received at this entity."
::= { ipSystemStatsEntry 9 }
21

SNMP messages

 Normally runs over UDP
- short messages

- must do no harm if lost or repeated, e.g. set value=4 is OK,
increment value is unsafe

 Message types (simplified)

- GET

- GET-NEXT } (ask for object value(s)

- GET-BULK

- RESPONSE (reply to a GET)

- SET (set an object value)

- TRAP (alert message from agent)

 Messages include object names and data values as appropriate
(according to MIB syntax, mapped in a defined way into binary)

22

SNMP Message Flow

Operator / \
| Shared information model
‘ “MIB” — ‘
T] Management Information dataBase |
e - -
~ [
RESPONSE |
SNMP manager TRAP \
\ |
/A R
N GET-NEXT SNMP agent
GET-BULK
SET
Management Managed system
database (e.g. router)
<« T

References

e Shay 11.5

e SSH - RFC 4251, 4252, 4253, 4254, 4256, 4250
« FTP - RFC 959 (and updates)

« SMTP - RFC 2821

- RFC 2822 for message formats
« SNMP - RFC 3410 (SNMPv3 intro), RFC 3416 (protocol)

- RFC 2578 (SMIv2)

24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

