
Information Theory
Peter Fenwick
COMPSCI 314

January 29, 2004

Note that this document is intended as a
summary of some of the basic results of
information theory, rather than as a for-
mal text. Most results are therefore just
quoted, rather than formally proved.

1 Introduction

Much computing deals with the representation, trans-
mission or storage of information. A frequent ques-
tion is “How much space is needed to store this infor-
mation?”, or, equivalently, “How long does it take to
transmit this information?” Matters such as this are
dealt with by Information Theory and Coding The-
ory, introduced by Claude Shannon in 1948 in his
papers A Mathematical Theory of Communication. 1

To handle these problems we consider a general
information transmission system, as shown in Fig-
ure 1; remember that storage (movement in time) is
equivalent to transmission (movement in space).

• The source generates a stream of information,
where information may be loosely defined as
anything that changes the knowledge or un-
derstanding of something. (A formal definition
will be given later.) The information is usually
a stream of symbols, chosen from some source
coding alphabet. Thus we may have letters from
the standard alphabet {a, b, c, d, . . . , z}, bits
from the binary alphabet {0, 1}, or digits from
the numerals {0, 1, 2, . . . , 9}.
The source is described by both its alphabet
and the probabilities of its emitted symbols,
such as

{P (a), P (b), P (c), P (d), . . .}

The information associated with receiving a sym-
bol is related to the surprise; an expected sym-
bol conveys little information, while an unex-
pected one may convey a lot of information.

• The coder converts the stream of source sym-
bols into a stream of symbols from a code al-

1The basic references on Information Theory are –
R.V. Hartley (Bell Sys. Tech. Journ., Vol 7, p 535 1928), and
C. Shannon (Bell Sys. Tech. Journ., Vol 27, pp 379 & 623,
1948).

phabet, which is usually but not necessarily bi-
nary. Thus an ASCII coder converts letters etc
into binary codewords, such as A → 100 0001 or
9 → 011 1001.

A good coder is matched to both the source
alphabet (and its symbol probabilities) and to
the channel. Some important cases are –

– An error correcting coder adds redundant
information so that the decoder can re-
cover correct data, even if the channel adds
noise and corrupts the transmitted data.

– A lossless compressor uses redundancy in
the source to reduce the volume of encoded
or transmitted data, while still allowing
the decoder to recover the original source
data exactly, bit by bit. Lossless compres-
sors are often used for program distribu-
tion, such as LZW, BZIP and GZIP.

– A lossy compressor reduces that data vol-
ume, but only so that a human observer
sees the decoder output as acceptably close
to the original. These compressors are used
for pictures or sound, such as MP3, JPEG
and MPEG, generally where the recovered
data is interpreted by humans.

• The channel carries the encoded information
shifted in either space (data transmission) or
time (data recording & playback). The channel
will usually have a limited bandwidth or bit rate
(its capacity) and may introduce noise.

• The decoder must simply reverse the coder,
delivering data acceptably close to the source
output, despite any noise or limitations of the
channel. (“Acceptably close” is a nice vague
term!)

• The sink is expected to receive the decoded
information and use it in some sensible way.

2 Information and Sources

Consider the information content (I) of a message of
n symbols, each describing an event (E) which occurs
with a probability of P (E). Then

1

Source Coder Channel Decoder Sink- - - -

Noise

?

Figure 1: Information transmission system

• I increases as n increases

• as P (E) → 0, I →∞ (unexpected outcome)

• if P (E) = 1 then I = 0 (outcome certain)

• if two messages of n1 and n2 symbols are con-
catenated, the resulting information is added,
i.e. I = I1 + I2

Accordingly, we say that being told that an event
has occurred with a probability P (E) gives us the
information

I(E) = log
1

P (E)
= − log P (E)

In most cases the logarithms are to the base 2, and the
information measure is in “binary units” or “bits”,
which are not to be confused with a “binary digit” or
bit2. A binary digit may convey more or less than one
binary unit of information; on average it will usually
convey less, but never more than one binary unit.

2.1 Zero Memory Information Source

This is a convenient model of a simple mechanism
which generates information. The successive sym-
bols are chosen from some fixed source alphabet S
according to some fixed probabilities.

S = {s1, s2, s3, . . . , sn}

Note that S may denote either the source or the al-
phabet. For the simplest case assume that the sym-
bols are statistically independent – this gives the zero-
memory source. This source is completely described
by its symbol probabilities P (s1), P (s2), P (s3), . . . ,
P (sn).
For each symbol si we receive information

I(si) = log
1

P (si)
2The two uses of the term bit are both firmly established,

despite the confusion that results. The conflict is puzzling, be-
cause both terms were devised at about the same time (1946),
by workers in the same group at Bell Laboratories.

with probability P (si), giving information for that
symbol of

I(si) = Pi log
1

P (si)

The average information received per symbol is
known as the Entropy of the source and is denoted
by

H(S) =
∑

i

P (si) log
1

P (si)

For a source of q symbols H(S) ≤ log q, with equality
if and only if all symbols are equiprobable.

For the important case of a zero-memory binary
source S = {0, 1}, with P (1) = ω (omega) and P (0) =
1 − ω = ω, the entropy is zero for ω = 0 and ω = 1,
and is a maximum of H = 1.0 at ω = ω = 0.5. The
Entropy Function H = P log2

1
P is an important tab-

ulated function in Information Theory and is given
later in Table 1.

The information theory entropy H is related to
the thermodynamic entropy S; both are functions of
the logarithmic probabilities. But the true relation-
ship is difficult and confusing and has led to much
spurious and misleading speculation. Beware!

2.2 Extensions of Sources

An extension of a source is that new source which
results when the emitted symbols are considered in
groups. Thus for the binary source {0,1}, the first
three extensions have alphabets {0, 1}, {00, 01, 10,
11} and {000, 001, 010, 011, 100, 101, 110, 111}. The
nth extension of a source S of q symbols is denoted
by Sn. Sn has an alphabet of qn symbols, where each
is a sequence of n symbols from S. It is both obvious
and easily proven that H(Sn) = nH(S). In other
words the entropy of the nth extension of a source is
n times the entropy of the source itself.

2.3 Markov Sources

The symbols of many practical sources are not in-
dependent, but have probabilities which depend on

2

the preceding symbol(s). For an mth order Markov
source, the symbol si occurs with a probability which
is a function of the preceding m symbols, according
to the conditional probabilities P (si|sj1 , sj2 , . . . , sjm

).
Markov sources are of little importance in simple In-
formation Theory, but are crucial to more advanced
applications, and data compression.

2.4 Structure of Language

A good example of a Markov source is ordinary text.
Consider an alphabet of 27 symbols (26 letters and
space).

1. Zero memory source with equiprobable sym-
bols.
Then H(S) = log2(27) = 4.75 bits/letter.

2. Zero memory source with probabilities
H(S) = 4.05 bits/letter

3. First-order Markov source, from digraph
frequencies H(S) = 3.32 bits/letter.
It is easy to generate text according to first-
order Markov statistics. Take a book and choose
a letter at random; this becomes the first emit-
ted symbol. Then search through the text for
the next occurrence of that letter and choose
the following letter as the next symbol. Repeat
the process of searching for the next occurrence
of the last-emitted symbol and taking the letter
which immediately follows it.

4. Second-order Markov source,
H(S) = 3.1 bits/letter

In fact the entropy of English is found to be from
0.6 to 1.3 bits per letter. (A good text or lossless com-
pressor can be expected to get about 2.0 bits/letter,
including punctuation and upper/lower case.)

Again, a reasonably simple experiment is sufficient
to estimate the entropy of English. It requires two
people, the first with a book which is not known to
the second person. The second person tries to guess
what is next – it may be a letter, a word, or even
a phrase. Each question and “Yes/No” answer cor-
responds to one bit of information, and each letter
of the text is a source symbol. Guessing may con-
tinue until a correct answer, or may stop after say
5–6 attempts for a symbol.

3 Noiseless Coding

A code is a mapping of symbols from a source alphabet
S{s1, s2, s3, . . . sn} into a sequence of symbols from

the code alphabet X{x1, x2, x3, . . . xv}. In general the
two alphabets are different. The term “code” may
also refer to the set of “codewords”, as defined below.

3.1 Classification of Codes

Block code each symbol of S maps into a fixed se-
quence of codewords of symbols chosen from X.

Non-singular code a block code with all code words
distinct.

Uniquely decodeable code the nth extension of
the code is non-singular for all finite n

Instantaneous code no complete codeword is a pre-
fix of another codeword from that code.

Comma code a code in which all codewords (ex-
cept perhaps for the longest) end with a special
symbol pattern

3.2 Kraft Inequality

A necessary and sufficient for the existence of an in-
stantaneous code with word lengths `1, `2, . . . `q, in
an alphabet of r symbols is that

q∑
i=1

r−`i ≤ 1 Kraft Inequality

This shows only whether an instantaneous code is
possible for the given codeword lengths, but it may
help in the construction of a code. For example, to
construct a binary code for a decimal source which
emits mostly 0s and 1s.

Firstly, code 0 and 1 (the two most probable sym-
bols) as 0 → 0 and 1 → 10. If the other symbols are
of length `i, then by the Kraft inequality

q∑
i=1

2−`i ≤ 1

If all of the other symbols are assumed to be of the
same length m, then, by the Kraft inequality,

2−1 + 2−2 + 8× 2−m ≤ 1

whence m = 5. The 8 less-probable symbols are all
encoded as a ‘11’ prefix ahead of a 3-bit binary num-
ber and the complete code is then

3

0 → 0
1 → 10
2 → 11000
3 → 11001
4 → 11010
5 → 11011
6 → 11100
7 → 11101
8 → 11110
9 → 11111

3.3 Average Code Length

If we encode a set of q symbols with probability Pi

into codewords of length `i, the average length, L,
of the code is L =

∑
Pi`i. It is easily shown that if

we encode in an alphabet of r symbols and measure
the entropy Hr(S) in base-r units that Hr(S) ≤ L.
Thus the average code length cannot be less than the
entropy of the source. We get equality if

Pi = r−`i , or `i = logr

1
Pi

for all i

This is an important result, as it relates a relatively
abstract Information Theory measure, the entropy,
to a much more “practical” value, the average length
of the code.

Furthermore, using an alphabet of r symbols, if
we select the length of the ith symbol as

logr

1
Pi
≤ `i < logr

1
Pi

+ 1.

Multiply by Pi and sum over all i to get

Hr(S) ≤ L < Hr(S) + 1.

Now apply to the n-th extension of S, considered as
a source to obtain

Hr(Sn) ≤ Ln < Hr(Sn) + 1

Thus
nHr(S) ≤ Ln < nHr(S) + 1

or
Hr(S) ≤ Ln

n
< Hr(S) +

1
n

.

Now, Ln/n is the average number of code symbols
per symbol of S, giving

lim
n→∞

Ln

n
= Hr(S) Shannon’s First Theorem

Shannon’s First Theorem shows that we can approach
the ideal by coding extensions of the source.

3.4 Compact, or noiseless, coding

3.4.1 Huffman code

The Huffman code is the most important of the com-
pact codes. To construct a Huffman code, the sym-
bols are first ranked in order of probability. Then,
successively combine the two symbols of lowest prob-
ability to form a new composite symbol, eventually
building a tree where each node has the probability
of all those nodes beneath it. The branching ratio
of each node is equal to the number of symbols in
the code alphabet. The code for each symbol is de-
rived by tracing the path from the root to its leaf,
and noting the direction taken at each node.

Considering the source with probabilities 1
4 and

3
4 (and noting that it is often useful to scale to inte-
ger probabilities), the code for the first extension is
clearly (remembering that 0s and 1s are interchange-
able)

si Pi code
A 3 0
B 1 1

The codes for the second and third source exten-
sions are then –

si Pi Code

AA 9 16 0

AB 3 7 10

BA 3 4 110

BB 1 111##
##

##

Huffman Code for second extension

si Pi Code

AAA 27 64 0

BAA 9 18 37 100

ABA 9 101

AAB 9 19 110

ABB 3 6 10 11100

BAB 3 11101

BBA 3 4 11110

BBB 1 11111

�

((((((

�
�

��

��

��

Huffman Code for third extension

The code efficiency η (eta) may be defined as the
ratio H(S)/L. For this source the values are –

4

H(S1) = 0.8113 L1 = 1.0000 η = 0.8113
H(S2) = 1.6226 L2 = 1.6875 η = 0.9615
H(S3) = 2.4338 L3 = 2.4688 η = 0.9859
H(S4) = 3.2451 L4 = 3.2734 η = 0.9913
H(S5) = 4.0564 L5 = 4.0889 η = 0.9921

3.4.2 Shannon-Fano code

Another, older, code is the Shannon-Fano code. Once
again, rank the symbols in decreasing probability.
But now divide the symbols into two groups of ap-
proximately equal probability: allocate the top group
a digit 1 and the lower group a digit 0. Continue fur-
ther dividing each group until all groups are of size 1
and then collect the code digits. In general the “cut”
will be within a symbol; the preferred group for that
symbol may be obvious, but in case of doubt include
the symbol in the group of smaller probability to ob-
tain the best balance in the cut3. The Shannon-Fano
code is generally inferior to the Huffman code, but
may be more amenable to theoretical analysis.

As an example the Shannon-Fano code for the 3rd
extension above is

si Pi Code

AAA 27 00

BAA 9 01

ABA 9 100

AAB 9 101

ABB 3 1100

BAB 3 1101

BBA 3 1110

BBB 1 1111

�
��

�

�����
��

�

�����
��
�

��������
Shannon-Fano Code for third extension

The average length of this code is L = 2.5938, and
its efficiency is η = 0.9383; the Shannon-Fano code
is therefore less efficient than the Huffman code. In
this case the Shannon-Fano codes for the first two
extensions of this source are identical to the Huffman
codes, but the code for the third extension (as above)
is inferior to that for the second extension.

(At first sight it looks as though the Shannon-Fano
code should be more efficient, because its longest
codewords are all shorter than those of the Huffman
code. But the most frequent codeword is shorter for
the Huffman code, and this is enough to tip the bal-
ance.)

Especially with Huffman codes, the efficiency usu-
3This rule is not well defined, which is major problem with

the Shannon-Fano code.

ally tends to 1 quite quickly as extensions are coded4.

4 Information Channels

The channel, the path from the source to the receiver,
will usually perturb the signal, i.e. is noisy. For sim-
plicity we usually deal with binary channels, which
accept only the binary digits {0, 1}. We will consider
two types.

• A Binary Erasure Channel accepts binary sym-
bols {0,1} and delivers the symbols {0, 1, X},
where any error becomes the “X”, or don’t-
know symbol. An example is a channel which
is subject to fading, or a channel where each
symbol has a parity check.

• A Binary Symmetric Channel (BSC) delivers
only 0s and 1s, but with a finite, and symmetri-
cal, probability of corruption or error. The im-
mediate concern here is not with how to trans-
mit the information, but with the theoretical
limits on the possible data rates.

A channel is defined by three things, its input
alphabet A {a1, a2, . . . , ar}, its output alphabet B
{b1, b2, . . . , bs} and lastly the conditional probabili-
ties P (bj |ai) of receiving the symbol bj when ai is
sent.

P (bj) =
∑

i

P (bj |ai)P (ai)

A Binary Symmetric Channel with error probabil-
ity p is defined by the channel matrix below, where
p = (1 − p) and p = P (0|1) = P (1|0) and p =
P (0|0) = P (1|1). (

p p
p p

)

An alternative definition of a Binary Symmetric
Channel uses the transition diagram –

t t
t t

1 1

0 0

A B

�
�

�
��@

@
@

@R
-

-
p

p

p

p

Transition diagram for BSC
4Because the codeword length must be a whole number of

bits, we sometimes find that efficiency decreases slightly for
some higher extensions, in apparent violation of the rule.

5

4.1 Channel Capacity

Our main interest in channels is, firstly, that they
exist and are described as shown above and, sec-
ondly, that it is possible to calculate a theoretical
limit to the information transmission capacity of a
noisy channel. This limit is known as the Channel
Capacity.

A very important result, which will not be proved,
is the “Fundamental Theorem of Information The-
ory” –

It is possible to transmit information through
a noisy channel with an arbitrarily small
probability of error if, and only if, the rate
of information is less than channel capac-
ity.

A very simple derivation of the channel capacity
is now given. Assume that we have an information
source A sending over a noisy channel and that the
system includes a “compensator” mechanism which
indicates when the channel output is in error: the
error indication may be regarded as another infor-
mation source E. The channel can deliver output at
a specified rate and corresponds to an information
source B. (Note that it is the output bit rate B that
is defined by the physical channel, rather than the
input rate.) Some of the information from B is used
for error indication (source E), and the remainder is
available for information from A.

H(B) = H(A) + H(E)

P (bj) =
∑

i

P (ai)P (bj |ai) can get H(B)

P (e1) =
∑
i 6=j

P (ai)P (bj |ai) output in error

P (e0) =
∑
i=j

P (ai)P (bj |ai) output correct

From these formulæ we can calculate H(B) and
H(E), and therefore H(A), the maximum amount of
information which the channel can accept. This tech-
nique gives the information which can be transmitted
for given source statistics; the maximum information
is defined as the channel capacity and occurs, for a
BSC, when the source symbols are equiprobable. For
a non-symmetric channel, transmission at the channel
capacity occurs at some other source symbol proba-
bilities.

For example, a binary source P (0) = 0.75, P (1) =
0.25 transmits over a channel with error probability

0.1 at a maximum rate of 100 bit/s (binary digits,
not binary units).

Firstly calculate the probabilities of the received
symbols, P (B) to give the received information rate.

P (B = 0) = 0.75× 0.9 + 0.25× 0.1 = 0.7
P (B = 1) = 0.75× 0.1 + 0.25× 0.9 = 0.3

Thus H(B) = 0.8813, giving 88.13 bit/s informa-
tion from the channel.

Now calculate the information rate needed to cor-
rect the errors. P (E = 0) = 0.9 and P (E = 1) = 0.1
from the channel definition, whence H(E) = 0.4690.
The total information delivered is 88.13 bit/s, but of
this 0.4690×100 = 46.9 bit/s is taken by error correc-
tion. This leaves 41.23 bit/s as the available Channel
Capacity.

For equiprobable source symbols H(B) = 1.0 and
H(E) = 0.4690; the channel capacity is only 53%
that of a quiet channel. With an error rate of 0.01,
the capacity is 92% (8% loss), and an error rate of
0.001 gives a capacity of 98.86% (1.14% loss).

5 Continuous Information
Systems

In many information systems the signals can assume
a continuous spectrum of values rather than just a
few (e.g. 2 in a binary system). These systems are
characterised by the bandwidth W , the signal power
P , and the noise power N .

The Sampling Theorem states that a signal oc-
cupying a bandwidth W can be completely specified
by 2W independent samples per unit time. Thus to
digitise a standard telephone channel with a band-
width of 3100Hz, we need at least 6200 samples per
second. In fact the normal telephone sample rate is
8000 samples per second, which is somewhat above
the “Nyquist” limit.

As a very crude determination of the capacity of a
noisy information channel, note that the noise limits
the accuracy with which we can measure the signal
power. If the signal power is P and the noise power
is N , we can distinguish 1 + P

N signal levels. If these
are encoded, a single “state” of the signal can convey
log(1 + P

N) bits of information. As we can establish
W states per second the total information capacity,
C, is

C = W log(1 +
P

N
) bits/second.

(This answer is correct, but for the wrong reason!

6

While we can establish 2W states per second, the na-
ture of noise actually means that we can distinguish
fewer than (1 + P

N) states. The two errors cancel.)
This result is probably the one most important

consequence of Shannon’s Information theory as it
shows that it is possible to “trade off” noise against
bandwidth, or vice versa.)

The rigorous proof involves noting that a signal
of bandwidth W lasting for a time T can be charac-
terised by 2WT numbers (“samples”). A particular
signal can be considered as an ordered set of 2WT
numbers which defines a point in a Cartesian space
of 2WT dimensions. It can be shown that the dis-
tance from the origin to any point is related to the
signal energy E by

d2 = 2WE
= 2WTP P is average signal power

Noise forces each signal point to be surrounded
by an area of uncertainty which forms an n-sphere
of radius

√
2WTN . The received signals have an av-

erage power of (P + N) and lie on an n-sphere of
radius

√
2WT (P + N). A signal point is uniquely

decodeable if and only if it is enclosed by only 1 noise
n-sphere centred on a valid signal point. (Compare
with Hamming distances in the discrete case.)

The volume of an n-sphere of radius r in n dimen-
sions is proportional to rn, and has almost all of its
volume near the surface5. The signal n-spheres each
have a volume proportional to

√
(P + N)2WT and

the noise n-spheres
√

N2WT . The number of identifi-
able messages is the number of noise n-spheres which

will fit into the signal n-sphere, or M =
√

(P+N
N)2WT ;

the channel capacity is C = log2
M
T bits/second.

Thus C ≤ W log2(1 + P
N)

and in fact C = W log2(1 + P
N)

It can be shown that the function which transmits
the maximum entropy/unit time is one which approx-
imates a noise source for any input message, i.e. the
frequency spectrum is flat and independent of the in-
formation and there is little correlation between ad-
jacent sample representations.

In general it is found that if the noise has some
identifiable characteristic, we can transmit the max-
imum information by using a form of modulation
which mimics the noise, but in some known way.

5Consider dV/dr, even for a 3-sphere. If the skin of an
orange has a thickness of 20% of the radius, the radius of the
flesh is 80% and its volume is 0.83 = 0.512). The flesh (80% of
radius) then contains only 50% of the volume, and there seems
to be nothing left after the orange has been peeled.

The practical result of this theory in practical
telecommunications is that a telephone channel with
bandwidth of 3100Hz can transmit reliable data at
considerably more than 3100 bits/second, provided
that we have a suitably good signal/noise ratio, and
that we use an efficient modulation technique.

6 Text Compression

NOTE: only LZW as in the textbook is examinable
for COMPSCI 314 S1 C in 2004. None of the other
material here will be examined.

Huffman and Shano-Fano Codes are clearly suit-
able for compressing text. However they must encode
with high-order extensions for good performance and
need a priori symbol probabilities for the extended
codes. Such information is not easy to obtain. While
some workers have used adaptive Huffman coding,
there are now much better text compressors. Most
compressors learn from the incoming data, and auto-
matically adapt with no prior assumptions about its
structure and statistics.

6.1 LZ-77 Ziv-Lempel Compressors

These use a “window” on the last few thousand bytes
of text and search that window for strings match-
ing the incoming text. Each match is replaced by a
pointer to the previous occurrence of that string, ie a
[displacement, length] pair. Characters which do not
match are encoded as literals. The compressed out-
put is thus a mixture of string pointers and literals.

Writing literals as themselves, and enclosing phrase
pointers in braces as {displ, length}, the text

the car on the left hit the car i left
could be encoded as –

the car on {11,4}left hit {24,8}i{19,5}

Variations of LZ-77 compression lie mainly in the
coding methods. One example of a (non-standard)
LZ-77 encoding has four entities in the code –

0 single literal byte, copied without change
1 8-bit pointer, say [6, 2] (6 disp, 2 len)
2 16-bit pointer, say [11,5] (11 disp, 5 len)
3 24-bit pointer, say [15, 9] (15 disp, 9 len)

Each collection of 4 entities is preceded by a single
“flag” byte which has 4 2-bit flags to indicate the
nature of the following entities.

Most production data file compressors (such as
GZIP and WinZip, but not BZIP and BZIP2) use ver-
sions of the LZ-77 algorithm.

7

A A A A A

B B B B B

C C C C C

D D D D D

0.0

0.6

0.8

0.9

1.0

A
A
A
A
A
A
A
A
A
A

!!!!!

L
L
L
L
L
L
L
L
L
L
L
L
L

�
�

�
�

��

A
A
A
A
A
A
A
A
A
A

!!!!!

Symbol
High Limit
Low Limit

B

0.60
0.80

D
0.80
0.78

A
0.792
0.780

B
0.7896
0.7872

. . .

Figure 2: Example of Arithmetic Coding

6.2 LZ-78 and LZW compressors

Another important family of compression algorithms
(LZ-78) build a dictionary of known phrases and emit
dictionary indices rather than string pointers. The
LZW variant of the LZ-78 algorithm is fully described
in the text and lecture notes.

LZ-78 compressors generally give rather poorer
compression than their LZ-77 counterparts, but are
rather more amenable to theoretical analysis. The
Unix compress utility is the main example of an LZ78
or LZW compressor.

6.3 Statistical Compressors

More powerful compression techniques analyze the
statistics of the input text and determine inter-symbol
dependencies. These are generally the most effective
compressors, but often use large amounts of memory
and processing. Most statistical compressors build
tables or models of symbols that have been seen in
previous contexts. For example, given the context
‘ th’ (where represents a space), it is most un-
likely that the next symbol will be anything other
than {a, e, i, o, u, r, y}. But we always need a special
escape symbol (say ø) to be emitted if an unexpected
symbol is found; the symbols in this context become
{a, e, i, o, u, r, y, ø}, which can at worst be all repre-
sented in 3 bits.

Usually the frequent symbols are given shorter
codes, according to their statistics (as in Huffman

codes). But in general, a statistical compressor will
use the context of a symbol to reduce the number of
possible symbols, predict their frequencies, and allow
shorter codes to be used. The context order corre-
sponds to the order of a Markov information source,
as considered earlier.

A good example is arithmetic compression, which
involves transforming the input text into a single num-
ber of very high precision. It can be shown that arith-
metic compressors are optimal and encode arbitrarily
close to the source entropy. Arithmetic compressors
are often the final stage of a more complex compres-
sor, especially ones that analyze the contexts of sym-
bols and predict probable symbols within each con-
text.

Assume an alphabet {A,B, C, D} with relative
symbol probabilities {0.6, 0.2, 0.1, 0.1}, as in Fig. 2.
We encode the symbols as numbers in the ranges
A (0− 0.6]; B (0.6− 0.8]; C (0.8− 0.9]; D (0.9− 1.0],
where the upper limit is in all cases excluded from
the range.

If the first symbol is a B, we know that the code
value Z must be such that 0.6 ≤ Z < 0.8 and encode
the second symbol within this range. If the second
symbol is D, the range becomes 0.78 ≤ Z < 0.8; for
the third symbol A, the range becomes 0.78 ≤ Z <
0.792, and so on.

As the encoding proceeds, high order digits be-
come constant and independent of any later symbols.
These digits are then emitted as the compressed data,
and the range is magnified as far as possible while

8

keeping 0 ≤ Z < 1. The ranges may be prede-
fined and fixed (Order-(-1) compressor) or adjusted
by symbol frequencies as the compression proceeds
(Order-0). More advanced compressors allow for con-
ditional probabilities based on the the preceding char-
acter (Order-1), or even more (Order-N). These PPM
(Prediction by Partial Matching) compressors are among
the best known.

Also as coding proceeds, the symbol frequencies
are updated according to the processed data so that
the symbol statistics and data encoding reflect the
data.

Decoding involves checking the current code value
against the range for each byte, emitting the correct
byte, subtracting its lower limit and adjusting the
range of the number.

The best compressors achieve about 2.0 bits/byte,
averaged over a reference corpus of files.

6.4 Burrows Wheeler compression

Both LZ-7x and PPM compressors process the data
sequentially, symbol by symbol. The Burrows Wheeler
compressors by contrast process the data in blocks of
perhaps 1 million bytes (which is often the whole file).

The BW algorithm descriptions refer to Figure 3.

6.4.1 The compression

Take the input string and write all of its cyclic rota-
tions to form a square matrix. Sort the matrix rows
into increasing lexicographic order. Emit the sym-
bols in the last column, and also the index of the row
with the original input.

The sorting collects together similar contexts; be-
cause similar contexts probably have similar symbols,
there tend to be only a few emitted symbols in any
neighbourhood of the transmitted data. This locality
is captured by a recency or Move-To-Front recoding.
(How many different symbols have occurred since this
one was last seen?)

In this example the emitted string is pssmipissii
which after MTF recoding becomes ps0mi313010, with
many small values and, often, runs of zeros. These
recoded values are finally compressed by a Huffman
or arithmetic coder. (Most text files have about 60%
zeros after MTF recoding. The MTF value n typi-
cally occurs with probability P (n) ∝ n−2.)

sym- context Index sym- con- link
bol bol text
p imississip 1 p i... 5
s ippimissis 2 s i... 7
s issippimis 3 s i... 10
m ississippi 4 m i... 11

→ i mississipp 5 i m... 4
p pimississi 6 p p... 1
i ppimississ 7 i p... 6
s sippimissi 8 s s... 2
s sissippimi 9 s s... 3
i ssippimiss 10 i s... 8
i ssissippim 11 i s... 9

Figure 3: The forward and reverse transformations

6.4.2 The decompression

The first steps of decompression reverse firstly the
statistical coding and then the MTF recoding. This
recovers the permuted symbols which are the last col-
umn of the matrix, as above.

To recover the data note first that the matrix
columns are permutations of one another. The first
column (which has the trailing contexts of the emit-
ted symbols) is recovered by sorting the symbols. We
therefore have {symbol, context} pairs for each of the
permuted symbols, which match first to first, second
to second, and so on.

In this example link the first i context to the first
i data and so on for all the i’s, and similarly for
the m, p’s and s’s in order, building the last column
of Figure 3. Traversing this list from any starting
position gives a corresponding rotation of the input
text or, equivalently, the following context of that
symbol. The emitted row index (5 in this case) just
selects that context that happens to be the original
unrotated data.

(If all of this seems like magic, well it isn’t really.
But the Burrows Wheeler algorithm is very subtle
and elegant. And, quite incidentally, David Wheeler
worked on the very first computers and wrote his first
computer programs in about 1948! He published this
algorithm in 1994.)

Burrows Wheeler compressors are fast and give
excellent compression. They are not quite as good
as the best PPM compressors, but are very close.
The BZIP2 compressor is widely used for program
distribution.

9

P P log2
1
P

0.00 0.0000 0.0100 0.0179 0.0251 0.0319 0.0382 0.0443 0.0501 0.0557 0.0612
0.01 0.0664 0.0716 0.0766 0.0815 0.0862 0.0909 0.0955 0.0999 0.1043 0.1086
0.02 0.1129 0.1170 0.1211 0.1252 0.1291 0.1331 0.1369 0.1407 0.1444 0.1481
0.03 0.1518 0.1554 0.1589 0.1624 0.1659 0.1693 0.1727 0.1760 0.1793 0.1825
0.04 0.1858 0.1889 0.1921 0.1952 0.1983 0.2013 0.2043 0.2073 0.2103 0.2132
0.05 0.2161 0.2190 0.2218 0.2246 0.2274 0.2301 0.2329 0.2356 0.2383 0.2409
0.06 0.2435 0.2461 0.2487 0.2513 0.2538 0.2563 0.2588 0.2613 0.2637 0.2662
0.07 0.2686 0.2709 0.2733 0.2756 0.2780 0.2803 0.2826 0.2848 0.2871 0.2893
0.08 0.2915 0.2937 0.2959 0.2980 0.3002 0.3023 0.3044 0.3065 0.3086 0.3106
0.09 0.3127 0.3147 0.3167 0.3187 0.3207 0.3226 0.3246 0.3265 0.3284 0.3303
0.10 0.3322 0.3341 0.3359 0.3378 0.3396 0.3414 0.3432 0.3450 0.3468 0.3485
0.11 0.3503 0.3520 0.3537 0.3555 0.3572 0.3588 0.3605 0.3622 0.3638 0.3654
0.12 0.3671 0.3687 0.3703 0.3719 0.3734 0.3750 0.3766 0.3781 0.3796 0.3811
0.13 0.3826 0.3841 0.3856 0.3871 0.3886 0.3900 0.3915 0.3929 0.3943 0.3957
0.14 0.3971 0.3985 0.3999 0.4012 0.4026 0.4040 0.4053 0.4066 0.4079 0.4092
0.15 0.4105 0.4118 0.4131 0.4144 0.4156 0.4169 0.4181 0.4194 0.4206 0.4218
0.16 0.4230 0.4242 0.4254 0.4266 0.4278 0.4289 0.4301 0.4312 0.4323 0.4335
0.17 0.4346 0.4357 0.4368 0.4379 0.4390 0.4401 0.4411 0.4422 0.4432 0.4443
0.18 0.4453 0.4463 0.4474 0.4484 0.4494 0.4504 0.4514 0.4523 0.4533 0.4543
0.19 0.4552 0.4562 0.4571 0.4581 0.4590 0.4599 0.4608 0.4617 0.4626 0.4635
0.20 0.4644 0.4653 0.4661 0.4670 0.4678 0.4687 0.4695 0.4704 0.4712 0.4720
0.21 0.4728 0.4736 0.4744 0.4752 0.4760 0.4768 0.4776 0.4783 0.4791 0.4798
0.22 0.4806 0.4813 0.4820 0.4828 0.4835 0.4842 0.4849 0.4856 0.4863 0.4870
0.23 0.4877 0.4883 0.4890 0.4897 0.4903 0.4910 0.4916 0.4923 0.4929 0.4935
0.24 0.4941 0.4947 0.4954 0.4960 0.4966 0.4971 0.4977 0.4983 0.4989 0.4994
0.25 0.5000 0.5006 0.5011 0.5016 0.5022 0.5027 0.5032 0.5038 0.5043 0.5048
0.26 0.5053 0.5058 0.5063 0.5068 0.5072 0.5077 0.5082 0.5087 0.5091 0.5096
0.27 0.5100 0.5105 0.5109 0.5113 0.5118 0.5122 0.5126 0.5130 0.5134 0.5138
0.28 0.5142 0.5146 0.5150 0.5154 0.5158 0.5161 0.5165 0.5169 0.5172 0.5176
0.29 0.5179 0.5182 0.5186 0.5189 0.5192 0.5196 0.5199 0.5202 0.5205 0.5208
0.30 0.5211 0.5214 0.5217 0.5220 0.5222 0.5225 0.5228 0.5230 0.5233 0.5235
0.31 0.5238 0.5240 0.5243 0.5245 0.5247 0.5250 0.5252 0.5254 0.5256 0.5258
0.32 0.5260 0.5262 0.5264 0.5266 0.5268 0.5270 0.5272 0.5273 0.5275 0.5277
0.33 0.5278 0.5280 0.5281 0.5283 0.5284 0.5286 0.5287 0.5288 0.5289 0.5291
0.34 0.5292 0.5293 0.5294 0.5295 0.5296 0.5297 0.5298 0.5299 0.5299 0.5300
0.35 0.5301 0.5302 0.5302 0.5303 0.5304 0.5304 0.5305 0.5305 0.5305 0.5306
0.36 0.5306 0.5306 0.5307 0.5307 0.5307 0.5307 0.5307 0.5307 0.5307 0.5307
0.37 0.5307 0.5307 0.5307 0.5307 0.5307 0.5306 0.5306 0.5306 0.5305 0.5305
0.38 0.5305 0.5304 0.5304 0.5303 0.5302 0.5302 0.5301 0.5300 0.5300 0.5299
0.39 0.5298 0.5297 0.5296 0.5295 0.5294 0.5293 0.5292 0.5291 0.5290 0.5289
0.40 0.5288 0.5286 0.5285 0.5284 0.5283 0.5281 0.5280 0.5278 0.5277 0.5275
0.41 0.5274 0.5272 0.5271 0.5269 0.5267 0.5266 0.5264 0.5262 0.5260 0.5258
0.42 0.5256 0.5255 0.5253 0.5251 0.5249 0.5246 0.5244 0.5242 0.5240 0.5238
0.43 0.5236 0.5233 0.5231 0.5229 0.5226 0.5224 0.5222 0.5219 0.5217 0.5214
0.44 0.5211 0.5209 0.5206 0.5204 0.5201 0.5198 0.5195 0.5193 0.5190 0.5187
0.45 0.5184 0.5181 0.5178 0.5175 0.5172 0.5169 0.5166 0.5163 0.5160 0.5157
0.46 0.5153 0.5150 0.5147 0.5144 0.5140 0.5137 0.5133 0.5130 0.5127 0.5123
0.47 0.5120 0.5116 0.5112 0.5109 0.5105 0.5101 0.5098 0.5094 0.5090 0.5087
0.48 0.5083 0.5079 0.5075 0.5071 0.5067 0.5063 0.5059 0.5055 0.5051 0.5047
0.49 0.5043 0.5039 0.5034 0.5030 0.5026 0.5022 0.5017 0.5013 0.5009 0.5004
0.50 0.5000 0.4996 0.4991 0.4987 0.4982 0.4978 0.4973 0.4968 0.4964 0.4959
0.51 0.4954 0.4950 0.4945 0.4940 0.4935 0.4930 0.4926 0.4921 0.4916 0.4911
0.52 0.4906 0.4901 0.4896 0.4891 0.4886 0.4880 0.4875 0.4870 0.4865 0.4860
0.53 0.4854 0.4849 0.4844 0.4839 0.4833 0.4828 0.4822 0.4817 0.4811 0.4806
0.54 0.4800 0.4795 0.4789 0.4784 0.4778 0.4772 0.4767 0.4761 0.4755 0.4750
0.55 0.4744 0.4738 0.4732 0.4726 0.4720 0.4714 0.4708 0.4702 0.4696 0.4690
0.56 0.4684 0.4678 0.4672 0.4666 0.4660 0.4654 0.4648 0.4641 0.4635 0.4629
0.57 0.4623 0.4616 0.4610 0.4603 0.4597 0.4591 0.4584 0.4578 0.4571 0.4565
0.58 0.4558 0.4551 0.4545 0.4538 0.4532 0.4525 0.4518 0.4511 0.4505 0.4498
0.59 0.4491 0.4484 0.4477 0.4471 0.4464 0.4457 0.4450 0.4443 0.4436 0.4429
0.60 0.4422 0.4415 0.4408 0.4401 0.4393 0.4386 0.4379 0.4372 0.4365 0.4357
0.61 0.4350 0.4343 0.4335 0.4328 0.4321 0.4313 0.4306 0.4298 0.4291 0.4283
0.62 0.4276 0.4268 0.4261 0.4253 0.4246 0.4238 0.4230 0.4223 0.4215 0.4207
0.63 0.4199 0.4192 0.4184 0.4176 0.4168 0.4160 0.4152 0.4145 0.4137 0.4129
0.64 0.4121 0.4113 0.4105 0.4097 0.4089 0.4080 0.4072 0.4064 0.4056 0.4048
0.65 0.4040 0.4031 0.4023 0.4015 0.4007 0.3998 0.3990 0.3982 0.3973 0.3965
0.66 0.3956 0.3948 0.3940 0.3931 0.3923 0.3914 0.3905 0.3897 0.3888 0.3880
0.67 0.3871 0.3862 0.3854 0.3845 0.3836 0.3828 0.3819 0.3810 0.3801 0.3792
0.68 0.3783 0.3775 0.3766 0.3757 0.3748 0.3739 0.3730 0.3721 0.3712 0.3703
0.69 0.3694 0.3685 0.3676 0.3666 0.3657 0.3648 0.3639 0.3630 0.3621 0.3611
0.70 0.3602 0.3593 0.3583 0.3574 0.3565 0.3555 0.3546 0.3537 0.3527 0.3518
0.71 0.3508 0.3499 0.3489 0.3480 0.3470 0.3460 0.3451 0.3441 0.3432 0.3422
0.72 0.3412 0.3403 0.3393 0.3383 0.3373 0.3364 0.3354 0.3344 0.3334 0.3324
0.73 0.3314 0.3305 0.3295 0.3285 0.3275 0.3265 0.3255 0.3245 0.3235 0.3225
0.74 0.3215 0.3204 0.3194 0.3184 0.3174 0.3164 0.3154 0.3144 0.3133 0.3123
0.75 0.3113 0.3102 0.3092 0.3082 0.3072 0.3061 0.3051 0.3040 0.3030 0.3020
0.76 0.3009 0.2999 0.2988 0.2978 0.2967 0.2956 0.2946 0.2935 0.2925 0.2914
0.77 0.2903 0.2893 0.2882 0.2871 0.2861 0.2850 0.2839 0.2828 0.2818 0.2807
0.78 0.2796 0.2785 0.2774 0.2763 0.2752 0.2741 0.2731 0.2720 0.2709 0.2698
0.79 0.2687 0.2676 0.2664 0.2653 0.2642 0.2631 0.2620 0.2609 0.2598 0.2587
0.80 0.2575 0.2564 0.2553 0.2542 0.2530 0.2519 0.2508 0.2497 0.2485 0.2474
0.81 0.2462 0.2451 0.2440 0.2428 0.2417 0.2405 0.2394 0.2382 0.2371 0.2359
0.82 0.2348 0.2336 0.2325 0.2313 0.2301 0.2290 0.2278 0.2266 0.2255 0.2243
0.83 0.2231 0.2219 0.2208 0.2196 0.2184 0.2172 0.2160 0.2149 0.2137 0.2125
0.84 0.2113 0.2101 0.2089 0.2077 0.2065 0.2053 0.2041 0.2029 0.2017 0.2005
0.85 0.1993 0.1981 0.1969 0.1957 0.1944 0.1932 0.1920 0.1908 0.1896 0.1884
0.86 0.1871 0.1859 0.1847 0.1834 0.1822 0.1810 0.1797 0.1785 0.1773 0.1760
0.87 0.1748 0.1736 0.1723 0.1711 0.1698 0.1686 0.1673 0.1661 0.1648 0.1635
0.88 0.1623 0.1610 0.1598 0.1585 0.1572 0.1560 0.1547 0.1534 0.1522 0.1509
0.89 0.1496 0.1484 0.1471 0.1458 0.1445 0.1432 0.1420 0.1407 0.1394 0.1381
0.90 0.1368 0.1355 0.1342 0.1329 0.1316 0.1303 0.1290 0.1277 0.1264 0.1251
0.91 0.1238 0.1225 0.1212 0.1199 0.1186 0.1173 0.1159 0.1146 0.1133 0.1120
0.92 0.1107 0.1093 0.1080 0.1067 0.1054 0.1040 0.1027 0.1014 0.1000 0.0987
0.93 0.0974 0.0960 0.0947 0.0933 0.0920 0.0907 0.0893 0.0880 0.0866 0.0853
0.94 0.0839 0.0826 0.0812 0.0798 0.0785 0.0771 0.0758 0.0744 0.0730 0.0717
0.95 0.0703 0.0689 0.0676 0.0662 0.0648 0.0634 0.0621 0.0607 0.0593 0.0579
0.96 0.0565 0.0552 0.0538 0.0524 0.0510 0.0496 0.0482 0.0468 0.0454 0.0440
0.97 0.0426 0.0412 0.0398 0.0384 0.0370 0.0356 0.0342 0.0328 0.0314 0.0300
0.98 0.0286 0.0271 0.0257 0.0243 0.0229 0.0215 0.0201 0.0186 0.0172 0.0158
0.99 0.0144 0.0129 0.0115 0.0101 0.0086 0.0072 0.0058 0.0043 0.0029 0.0014

Table 1: The Entropy Function H(P) = P log2
1
P

10

