
1

CS314 -26

UDP: User Datagram Protocol,
Other Transports, Sockets

! IP is an unreliable datagram protocol
" congestion or transmission errors cause lost packets

" multiple routes may lead to out-of-order delivery

! UDP delivers exactly this service to user programs
! If senders

" send too fast, routers or receivers cannot keep up (making
congestion worse);

" compete, capacity must be fairly shared

! UDP cannot solve these problems in any way

2

UDP header

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Destination Port |

+-+

| Length | Checksum |

+-+

| data ...

+-+

! Protocol Number or Next Header is 17 (decimal)

3

UDP header fields

! Port numbers - used to find TCBs at each end
" Note that source port is optional. Since there is no concept of a

connection in UDP, it may not be needed

! Length
" length in bytes of UDP header plus data

" ill-advised to exceed the available MTU

! Checksum
" 16-bit one's complement of the one's complement sum of a

pseudo header of information from the IP header, the UDP
header, and the data, padded with zero bytes at the end (if
necessary) to make a multiple of two bytes

" Pseudo-header is the same as for TCP

4

A day in the life of a UDP packet

" User A: Listen (portA)

" User B: Send (AddressA, portA, DataB)

" User A: Receive (DataB)

" User A: Listen (portA)

! That's if the packet gets through the network. If it
happens to be discarded due to congestion or error,
we get:

" User A: Listen (portA)

" User B: Send (AddressA, portA, DataB)

 ... and the rest is silence

5

Why is UDP useful?
! Because UDP offers no error recovery and no error

notification, it may appear useless
! In fact, on a network less than 100% busy, UDP packets

usually get delivered. But a UDP-based application must
include its own timeouts and error recovery. Mostly, it's
easier to use TCP instead

! Important UDP applications include
" DHCP
" DNS
" RIP
" SNMP (simple network management protocol)

 which can all survive lost packets. Each listens on a well-
known port number

6

References for UDP

! A few words in Shay 11.4

! Any of the TCP/IP books listed for IPv4

! RFCs:

" RFC 768, the original definition

" RFC 2460 (IPv6) modifies UDP’s checksum formula

7

Other transport protocols

! RTP - Real time Transmission Protocol

! SCTP - Stream Control Transmission Protocol

! DCCP - Datagram Congestion Control Protocol

! And related: ECN - Explicit Congestion Notification

8

RTP - mainly for audio/video streams
! RTP data packets run over UDP on an even-numbered

port
" normally a port number above 16384

" RTSP (RT Streaming Protocol) is layered on top of RTP

! RTCP (RTP Control Protocol) runs over UDP on the next-
higher (odd-numbered) port

! RTP provides
" Payload-type identification

" Sequence numbering

" Time stamping for synchronisation and jitter management

" Delivery monitoring

! But with the unreliability issues of UDP
" Video or audio codecs must allow for this

9

SCTP

! A reliable, congestion-friendly protocol that has
learned much from TCP

! Main differences:
" Both ends can have multiple IP addresses, and the SCTP

connection can switch between addresses (for example, in case
of a routing failure for one of the addresses)

" SCTP supports multi-streaming, i.e. separate virtual connections
within the main SCTP connection

! Intended use was reliable connectivity for telephony
signalling over the Internet
" But SCTP is quite general in applicability

" Quite new and not widely used yet

Background slide

10

DCCP

! DCCP behaves like a halfway house between UDP
and TCP

" TCP's reliability and in-order delivery features introduce delays
that are not OK for audio/video

" UDP's lack of congestion management causes network saturation
when demand exceeds capacity

" DCCP establishes a connection (like TCP) and reports packet
delivery (unlike UDP). It does not retransmit on error or attempt
in-order delivery (like UDP and unlike TCP)

" DCCP offers two congestion management approaches

" Also makes use of ECN (next topic)

" Quite new and not widely used yet

Background slide

11

ECN

! Makes use of bits 6 and 7 in the IPv6 Traffic Class field
or the IPv4 Differentiated Services field
" 00 - ECN not in use

" 01 - unused

" 10 - ECT flag

" 11 - CE flag

! ECT means “sender is ECN-capable”
! CE means “router is congested” and is interpreted by

the receiving transport protocol
! A transport protocol that supports ECN will invoke a

“slow down” mechanism when it receives a CE flag
" Quite new and not widely used yet

Background slide

12

Other Transport References

! RTP - Shay 11.4, RFC 3550

! RTSP - RFC 2326

! SCTP - RFC 4960

! DCCP - RFC 4340, 4341, 4342

! ECN - RFC 3168

13

Sockets

! All transport protocols need a mechanism for upper
layer software to access the transport

! The general concept is a notional “socket” that the
application plugs into, embodied as a Socket API

" Originated as “Berkeley sockets” on 4.2BSD Unix

" Standard API is defined as part of Posix standard

! API includes calls to resolve DNS names into IP
addresses, open and close sockets, and send and
receive data

" Plus many socket options for various purposes

14

Socket API overview
(not a programmer's guide)

! socket is a function that creates a new socket data

structure and returns a handle for it.

mySocket = socket(domain,type,proto)

domain is AF_INET for IPv4, AF_INET6 for IPv6

type is SOCK_STREAM for TCP,

 SOCK_DGRAM for UDP

proto is IPPROTO_IP as a default

! close(mySocket) gets rid of a socket

15

Finding addresses (1)

! gethostbyname()is a function that takes a DNS

name as a string and returns a structure containing the
corresponding IP address

! In other words, it invokes the DNS resolver and the
whole DNS lookup process

! Works well in an IPv4 network with one IP address per
DNS name

! Inadequate for an IPv4/IPv6 network with multiple
addresses per name

16

Finding addresses (2)

! getaddrinfo() overcomes the shortcomings of

gethostbyname() for IPv4/IPv6 coexistence

! Allows user to express IPv6 preference
! Note that it doesn't return “the” address. The code that calls
getaddrinfo is supposed to choose from a set of

addresses
" by default, assume addresses are ordered by system preference

" if the first address doesn't answer, try the next one...

! The user code is more complex than with gethostbyname,

but results in more robust application behaviour when there
is any kind of network problem

17

Finding addresses (3)

! An AF_INET6 socket can be used for IPv6 or

IPv4

" if a “mapped” address like ::FFFF:10.1.2.3 is used,
the socket will automatically use IPv4

! Shay 11.3 is wrong to suggest that routers recognise
these addresses - it is the sending host that decides to
use IPv4 when mapped addresses are used with a
socket

! The socket option IPV6_V6ONLY will force a

socket to work only in IPv6 mode

18

Getting ready to talk

! bind() assigns an address to a socket

! listen() asks a socket to listen for incoming

connections (TCP) or datagrams (UDP)

! connect() launches a connection (TCP

SYN/ACK), or connects a program to a local
socket (UDP)

" shutdown() disconnects (TCP FIN/ACK)

! accept()accepts an incoming connection

request (TCP)

19

Talking

! send() and recv()calls

" and variants, or use write() and read()

! Streaming mode for TCP - no relationship between
individual send/recv calls and individual TCP

segments

" Hence the PUSH option in TCP, to force data into the
receiver

! Datagram mode for UDP - one send/recv for each

datagram, and lost datagrams are truly lost

" checksum errors give error returns from recv()

20

Securing the socket layer:
Transport Layer Security (TLS)

! Protects TCP sessions

" Earlier versions known as SSL

! Uses a handshake procedure to negotiate crypto algorithm

! Uses server's public key to securely negotiate keys for the
session

" server presents a certificate to the client, including its public
key. The certificate is cryptographically signed by a trusted
certificate authority using its public key

! Following these negotiations, no 3rd party can intercept or
inject traffic

21

Socket References

! Shay 12.2 (TLS is in 7.5)

! See your favourite Unix book or
http://www.rt.com/man/

! With IPv6: RFC 3493 (and 3542)

! The Wikipedia article on Berkeley sockets is pretty

good (but doesn't use getaddrinfo)

! POSIX standard: IEEE Std. 1003.1-2004 Standard for
Information Technology -- Portable Operating System
Interface (POSIX)
See http://www.unix.org/version3/ieee_std.html

