
1

CS314 - 25

TCP: Transmission Control Protocol

! IP is an unreliable datagram protocol
" congestion or transmission errors cause lost packets

" multiple routes may lead to out-of-order delivery

! If senders send too fast, routers or receivers cannot
keep up (making congestion worse)

! When many senders compete, capacity must be fairly
shared

! TCP's job is to fix those three problems
" flow control

" retransmission after errors

2

Two approaches to Flow Control

! Rate Control - sender determines the maximum safe
sending rate and never exceeds it

! Sliding Window - sender sends up to a “window” full of
data but then pauses for an acknowledgement

" Window size is adjusted dynamically to match network
capacity

! Window size is also known as "credit"

" Missing acknowledgement causes retransmission

! TCP is a sliding window protocol

3

Transmit
window

Packets “in flight” in the network

Sliding windows in action

Ready for Receive
user window

Output queue of packets

Input queue of packets

To
user

From
user

Window size increases as
throughput increases

Must wait

At full speed, these

packets add up to the

delay-bandwidth product

4

Cranking up to speed

! TCP starts slowly
" Initial window size is small

" Send packets until window is empty

" Increase window size as data flow accelerates

" Decrease window size if data flow slows down

" Retransmit when acknowledgments don't arrive

! Note that when A is talking to B and B is talking to A, the
paths may be asymmetric, so TCP windows work
independently in the two directions

! Note that TCP transmits a stream of bytes as far as user
programs are concerned, broken up into segments by TCP
itself

5

Why is this better than rate control?
! The sliding window approach works over an enormous

range of speeds
" It was designed in the days of 9600 baud modems, and it

works (with some tuning) in the days of 10 Gb/s links
" Rate control works best in fixed-speed networks

! It works reasonably well as router load increases
towards 100%
" Sharing between thousands or millions of competing TCP

sessions is reasonably fair
" Rate control has real trouble sharing fairly at that scale

! Retransmission fits naturally into TCP
" Rate control protocols have to “break step” to deal with

retransmissions

6

TCP connection phases

! A TCP connection has three main phases:
" Establishment
" Data transfer
" Disconnection

! One end (the “listener”) has to be willing to accept
incoming TCP connections, and the other end (the
“initiator”) has to choose to start

! The listener is listening to a specific port number which
serves as a meeting point

" IP address + port number = Layer 4 address

7

Connection establishment

! Note that whoever goes first, there is one SYN and
one ACK in each direction
! This will work even if both initiate simultaneously

! Listener's SYN and ACK are usually sent in a single packet

Initiator Listener

Send SYN

Wait

 Send SYN

 Send ACK

 Wait

Send ACK

Connection OK

 Connection OK

8

Disconnection

! Doesn't matter which end closes first
! If one end dies, a timeout will eventually close the other end

! B may continue to send bytes from its buffer before sending its FIN

 A B

Send FIN

Wait

 Send ACK

 Send FIN

Closed

Send ACK

 Closed

9

TCBs
! During connection establishment, each end creates a

TCB (transmission control block) data structure
" A TCB links the user program at each end to the TCP process

! Typical TCB contents:
" local and remote port numbers for this connection

" current send and receive window sizes

" pointers into the send and receive buffers

" status of send and receive sequence numbers

! To understand this we need to look at the TCP header
format
" The TCP header follows the IP header in a packet, when Protocol

Number (IPv4) or Next Header (IPv6) is 6

10

TCP header

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Destination Port |

+-+

| Sequence Number |

+-+

| Acknowledgment Number |

+-+

| Data | |U|A|P|R|S|F| |

| Offset| Reserved |R|C|S|S|Y|I| Window |

| | |G|K|H|T|N|N| |

+-+

| Checksum | Urgent Pointer |

+-+

| Options | Zero Padding |

+-+

| data segment ...

+-+

! Protocol Number or Next Header is 6

11

TCP header fields (1)

! Port numbers - used to find TCBs at each end
! Sequence number

" the sequence number of the first data byte in this TCP segment

" goes up by 1 for each data byte sent on the connection

" initialised in SYN packet (random value)

! Acknowledgement number
" only valid in ACK packet

" next sequence number the sender of the segment is expecting

" in other words, sending Ack Number 12345 means “I have
correctly received up to byte 12344”

" a duplicate ACK means “I've still only received up to byte 12344”

12

TCP header fields (2)

! Data offset

" Size of TCP header in 32 bit words

! URG - urgent bit (not too important)

! ACK - this is an ACK packet

! PSH - push bit (kick received data to the user)

! RST - reset bit (emergency disconnect)

! SYN - SYN packet (“synchronise sequence numbers”)

! FIN - FIN packet (“finished,” starts normal disconnect)

13

TCP header fields (3)

! Window

" The number of data bytes beginning with the one indicated in the
acknowledgment field which the sender of this segment is willing
to accept

! Checksum (next slide)

! Urgent pointer (not too important)

! Options

" For example, specify maximum receive segment size

14

TCP checksum

! This is the primary protection against transmission
errors in the Internet
" 16 bit one's-complement of the one's-complement sum of all 16 bit

words in the TCP header and data

" If a segment contains an odd number of bytes to be
checksummed, the last byte is padded on the right with zeros to
form a 16 bit word for checksum purposes. (The padding is not
transmitted as part of the segment)

" While computing the checksum, the checksum field itself is
replaced with zeros

" The checksum also covers a “pseudo header” conceptually
prefixed to the TCP header. This pseudo header contains the
Source & Destination IP Addresses, the Protocol or Next Header
Number, and TCP segment length

15

Sequence number state at sender and receiver

Sent & ACKed Sent but no ACK May be sent Must queue

RCV.NXT increasing
 seq. number
 RCV.WND

Received & ACKed Reception allowed Forbidden

SND.UNA SND.NXT increasing
 seq. number
 SND.WND

16

TCP data transfer phase

! After SYN/ACK, the two ends know initial sequence
numbers and initial window sizes

! Both ends may start sending, as long as they stay
within the allowed sending window
" sending a segment moves SND.NXT along

" receiving an ACK for a given sequence number moves SND.UNA
along

" if SND.NXT = SND.UNA+SND.WND, wait

! Both ends receive
" when a segment arrives, increase RCV.NXT and send ACK

" if RCV.NXT reaches end of window (i.e. RCV.WND=0), only ACKs
will be treated. Incoming data is discarded and not ACKed

17

Adjusting the Window

! The size of the send window (SND.WND) decides how
much data can be sent without waiting for an ACK

" SND.WND must be decreased when things are going slowly, and
can be increased when things are going well

" SND.WND tracks RCV.WND via ACK messages

" The algorithm for adjusting RCV.WND is the most critical feature
of a TCP implementation and has been modified many times

! See comments below on congestion control

18

Algorithm for Send Window to track Receive Window
! Variables
SND.NXT - next sequence number to be sent

SND.WND - current send window size

LatestAckSeq - acknowledgement number in latest ACK

CurrentSeq - sequence number of segment carrying ACK

AckWindow - receiver's window size in ACK

PreviousSeq, PreviousAck - from previous window update

! Algorithm
if LatestAckSeq <= SND.NXT then # waiting for ACKs

if (PreviousSeq < CurrentSeq or # don't use stale

 (PreviousSeq == CurrentSeq # window size

 and PreviousAck <= LatestAckSeq))

then {SND.WND := AckWindow; # update window

 PreviousSeq := CurrentSeq;

 PreviousAck := LatestAckSeq;}

Background slide

19

Retransmission

! If an ACK does not arrive within a certain timeout, all
segments since the previous ACK will be retransmitted

" no difference whether packet was discarded due to congestion or
lost due to transmission fault or checksum error

" can be optimised with “Selective ACK” to avoid retransmitting
correctly received segments

! The retransmission timeout is dynamically calculated

" Typically by measuring a running average Round Trip Time (RTT)
between sending a segment and receiving its ACK

" Then set the timeout to, say, 2xRTT

20

Clarification about delay-bandwidth product

! The one-way delay in a TCP session is roughly half the RTT
! Therefore, the delay-bandwidth product is roughly

 bandwidth x RTT
 2

! The TCP window size in a stable state is roughly

 bandwidth x RTT

 which is double the delay-bandwidth product, because the window
has to allow for ACKs to come back

" 'roughly' because the outbound delay (for data) and the return (for
ACKs) will never be exactly equal

" some web references get this wrong

! bandwidth = link transmission rate (b/s)

21

Congestion control
! TCP as described above is “greedy” - it will pump as much

data as the path will take
" With millions of connections, this leads to “congestive collapse”

where saturated routers must discard most packets

! Modern TCPs use various techniques to avoid this, all of
which amount to being “good neighbours”
" Slow Start: start small and expand window gently

" Congestion Avoidance: when duplicate ACKs indicate that later
segments were lost, limit number of (re)transmissions

" Fast Recovery: after 3 duplicate ACKs, retransmit once and wait.
If still no ACK, revert to Slow Start

! Modern routers keep an eye out for greedy “cheats” and
selectively discard their packets

22

! User A: Listen (portA)
! User B: Open (AddressA, portA)
! SYN/ACK exchange
! Data transfer phase

" User A: Send (DataA) Retransmission,

" User B: Receive (DataA) windowing, and

" User B: Send (DataB) congestion

" User A: Receive (DataB) control

" (repeat as required by application) as needed
! User B: Close
! FIN/ACK exchange
! User A: Listen (portA)

A day in the life of a TCP session

23

References
! Shay 11.4
! Any of the TCP/IP books listed for IPv4
! RFCs:

" RFC 793, the original definition

" Many advisory RFCs and other publications on
implementation techniques to tune performance.
(Implementing TCP is not for amateurs!)

" RFC 2460 (IPv6) modifies TCP’s checksum formula

" RFC 3168 adds Explicit Congestion Notification to
TCP and IP

" RFC 4614 is a roadmap for TCP specifications

