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CS314 - 25

TCP: Transmission Control Protocol

! IP is an unreliable datagram protocol
" congestion or transmission errors cause lost packets

" multiple routes may lead to out-of-order delivery

! If senders send too fast, routers or receivers cannot 
keep up (making congestion worse)

! When many senders compete, capacity must be fairly 
shared

! TCP's job is to fix those three problems
" flow control

" retransmission after errors
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Two approaches to Flow Control

! Rate Control - sender determines the maximum safe 
sending rate and never exceeds it

! Sliding Window - sender sends up to a “window” full of 
data but then pauses for an acknowledgement

" Window size is adjusted dynamically to match network 
capacity

! Window size is also known as "credit"

" Missing acknowledgement causes retransmission

! TCP is a sliding window protocol
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Cranking up to speed

! TCP starts slowly
" Initial window size is small

" Send packets until window is empty

" Increase window size as data flow accelerates

" Decrease window size if data flow slows down

" Retransmit when acknowledgments don't arrive

! Note that when A is talking to B and B is talking to A, the 
paths may be asymmetric, so TCP windows work 
independently in the two directions

! Note that TCP transmits a stream of bytes as far as user 
programs are concerned, broken up into segments by TCP 
itself
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Why is this better than rate control?
! The sliding window approach works over an enormous 

range of speeds
" It was designed in the days of 9600 baud modems, and it 

works (with some tuning) in the days of 10 Gb/s links
" Rate control works best in fixed-speed networks

! It works reasonably well as router load increases 
towards 100%
" Sharing between thousands or millions of competing TCP 

sessions is reasonably fair
" Rate control has real trouble sharing fairly at that scale

! Retransmission fits naturally into TCP
" Rate control protocols have to “break step” to deal with 

retransmissions
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TCP connection phases

! A TCP connection has three main phases:
" Establishment
" Data transfer
" Disconnection

! One end (the “listener”) has to be willing to accept 
incoming TCP connections, and the other end (the 
“initiator”) has to choose to start

! The listener is listening to a specific port number which 
serves as a meeting point

" IP address + port number = Layer 4 address
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Connection establishment

! Note that whoever goes first, there is one SYN and 
one ACK in each direction
! This will work even if both initiate simultaneously

! Listener's SYN and ACK are usually sent in a single packet

Initiator   Listener

Send SYN 

Wait

                                                                                  Send SYN

                                                                                Send ACK

                                                                                             Wait

Send ACK

Connection OK

                                                                             Connection OK
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Disconnection

! Doesn't matter which end closes first
! If one end dies, a timeout will eventually close the other end

! B may continue to send bytes from its buffer before sending its FIN

   A   B

Send FIN 

Wait

                                                                                  Send ACK

                                                                                Send FIN

Closed                                                                                      

Send ACK

                                                                                      Closed
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TCBs
! During connection establishment, each end creates a 

TCB (transmission control block) data structure
" A TCB links the user program at each end to the TCP process

! Typical TCB contents:
" local and remote port numbers for this connection

" current send and receive window sizes

" pointers into the send and receive buffers

" status of send and receive sequence numbers

! To understand this we need to look at the TCP header 
format
" The TCP header follows the IP header in a packet, when Protocol 

Number (IPv4) or Next Header (IPv6) is 6
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TCP header

 0                   1                   2                   3   

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|          Source Port          |       Destination Port        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                        Sequence Number                        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                    Acknowledgment Number                      |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Data |           |U|A|P|R|S|F|                               |

| Offset| Reserved  |R|C|S|S|Y|I|            Window             |

|       |           |G|K|H|T|N|N|                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|           Checksum            |         Urgent Pointer        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                    Options                    | Zero Padding  |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                     data segment                           ...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

! Protocol Number or Next Header is 6
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TCP header fields (1)

! Port numbers - used to find TCBs at each end
! Sequence number

" the sequence number of the first data byte in this TCP segment

" goes up by 1 for each data byte sent on the connection

" initialised in SYN packet (random value)

! Acknowledgement number
" only valid in ACK packet

" next sequence number the sender of the segment is expecting

" in other words, sending Ack Number 12345 means “I have 
correctly received up to byte 12344”

" a duplicate ACK means “I've still only received up to byte 12344”
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TCP header fields (2)

! Data offset

" Size of TCP header in 32 bit words

! URG - urgent bit (not too important)

! ACK - this is an ACK packet

! PSH - push bit (kick received data to the user)

! RST - reset bit (emergency disconnect)

! SYN - SYN packet (“synchronise sequence numbers”)

! FIN - FIN packet (“finished,” starts normal disconnect)
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TCP header fields (3)

! Window

" The number of data bytes beginning with the one indicated in the 
acknowledgment field which the sender of this segment is willing 
to  accept

! Checksum (next slide)

! Urgent pointer (not too important)

! Options

" For example, specify maximum receive segment size
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TCP checksum

! This is the primary protection against transmission 
errors in the Internet
" 16 bit one's-complement of the one's-complement sum of all 16 bit 

words in the TCP header and data 

" If a  segment contains an odd number of bytes to be 
checksummed, the last byte is padded on the right with zeros to 
form a 16 bit word for checksum purposes.  (The padding is not 
transmitted as part of the segment)

" While computing the checksum, the checksum field itself is 
replaced with zeros

" The checksum also covers a “pseudo header” conceptually 
prefixed to the TCP header. This pseudo header contains the 
Source & Destination IP Addresses, the Protocol or Next Header 
Number, and TCP segment length
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Sequence number state at sender and receiver

Sent & ACKed             Sent but no ACK             May be sent              Must queue

RCV.NXT                                                                      increasing
                                                                                     seq. number      
              RCV.WND

Received & ACKed                     Reception allowed                             Forbidden

SND.UNA                        SND.NXT                                      increasing 
                                                                                              seq. number      
              SND.WND
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TCP data transfer phase

! After SYN/ACK, the two ends know initial sequence 
numbers and initial window sizes

! Both ends may start sending, as long as they stay 
within the allowed sending window
" sending a segment moves SND.NXT along

" receiving an ACK for a given sequence number moves SND.UNA 
along

" if SND.NXT = SND.UNA+SND.WND,  wait

! Both ends receive
" when a segment arrives, increase RCV.NXT and send ACK

" if RCV.NXT reaches end of window (i.e. RCV.WND=0), only ACKs 
will be treated. Incoming data is discarded and not ACKed
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Adjusting the Window

! The size of the send window (SND.WND) decides how 
much data can be sent without waiting for an ACK

" SND.WND must be decreased when things are going slowly, and 
can be increased when things are going well

" SND.WND tracks RCV.WND via ACK messages

" The algorithm for adjusting RCV.WND is the most critical feature 
of a TCP implementation and has been modified many times

! See comments below on congestion control
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Algorithm for Send Window to track Receive  Window
! Variables
SND.NXT - next sequence number to be sent

SND.WND - current send window size

LatestAckSeq - acknowledgement number in latest ACK 

CurrentSeq - sequence number of segment carrying ACK

AckWindow - receiver's window size in ACK

PreviousSeq, PreviousAck - from previous window update

! Algorithm
if LatestAckSeq <= SND.NXT then # waiting for ACKs

if (PreviousSeq < CurrentSeq or # don't use stale

   (PreviousSeq == CurrentSeq #   window size

    and PreviousAck <= LatestAckSeq))

then {SND.WND := AckWindow; # update window

      PreviousSeq := CurrentSeq;

      PreviousAck := LatestAckSeq;}

Background slide
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Retransmission

! If an ACK does not arrive within a certain timeout, all 
segments since the previous ACK will be retransmitted

" no difference whether packet was discarded due to congestion or 
lost due to transmission fault or checksum error

" can be optimised with “Selective ACK” to avoid retransmitting 
correctly received segments

! The retransmission timeout is dynamically calculated

" Typically by measuring a running average Round Trip Time (RTT) 
between sending a segment and receiving its ACK

" Then set the timeout to, say, 2xRTT
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Clarification about delay-bandwidth product

! The one-way delay in a TCP session is roughly half the RTT
! Therefore, the delay-bandwidth product is roughly 

                           bandwidth x RTT 
                                   2

! The TCP window size in a stable state is roughly 

                           bandwidth x RTT

    which is double the delay-bandwidth product, because the window 
has to allow for ACKs to come back

" 'roughly' because the outbound delay (for data) and the return (for 
ACKs) will never be exactly equal

" some web references get this wrong
   

! bandwidth = link transmission rate (b/s)
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Congestion control
! TCP as described above is “greedy” - it will pump as much 

data as the path will take
" With millions of connections, this leads to “congestive collapse” 

where saturated routers must discard most packets

! Modern TCPs use various techniques to avoid this, all of 
which amount to being “good neighbours”
" Slow Start: start small and expand window gently

" Congestion Avoidance: when duplicate ACKs indicate that later 
segments were lost, limit number of (re)transmissions

" Fast Recovery: after 3 duplicate ACKs, retransmit once and wait. 
If still no ACK, revert to Slow Start

! Modern routers keep an eye out for greedy “cheats” and 
selectively discard their packets
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! User A: Listen (portA)
! User B: Open (AddressA, portA)
! SYN/ACK exchange
! Data transfer phase

" User A: Send (DataA)   Retransmission,

" User B: Receive (DataA)     windowing, and

" User B: Send (DataB)   congestion

" User A: Receive (DataB)   control

" (repeat as required by application)   as needed
! User B: Close
! FIN/ACK exchange
! User A: Listen (portA)

A day in the life of a TCP session
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References
! Shay 11.4
! Any of the TCP/IP books listed for IPv4
! RFCs:

" RFC 793, the original definition

" Many advisory RFCs and other publications on 
implementation techniques to tune performance.
(Implementing TCP is not for amateurs!)

" RFC 2460 (IPv6) modifies TCP’s checksum formula

" RFC 3168 adds Explicit Congestion Notification to 
TCP and IP

" RFC 4614 is a roadmap for TCP specifications


