
CS314s1 - lectures 12-23
Low level protocols, routing

Dr Brian Carpenter
● 12, 13 – Security mechanisms
● 14 -16 – Link control, flow control
● 17 -19 – Ethernet, wireless
● 20, 21 – Bridges, switches, VLANs
● 22, 23 – Routing

– Dates: 3, 7, 10, 21, 28 April, 1, 5, 8 May.
– Term test on 24 April
– Approximately covers Shay 7.1-7.5, 8, 9 (not 9.6), 10
– Assignments 2 and 3
– Questions: brian@cs.auckland.ac.nz or room 303s.587

(most days between 10 a.m. and 4 p.m.) 2

About the level of detail
● I sometimes give more technical details than

the text books, because I want all students to
feel that they can see how the various
protocols could be coded in a programming
language.

● The level of detail given in Shay should be
sufficient for the exam questions.

3

Lectures 12, 13:
Security mechanisms

 ● Introduction (Shay 7.1)
● Encryption (Shay 7.2-7.4)
● Authentication (Shay 7.4-7.5)

4

Security 101
Properties of secure data: CIA

● Confidentiality: no unauthorised user can read
● Integrity: no unauthorised user can write
● Availability: all authorised users can read and write
Confidentiality - provided by encryption
Integrity - provided by authentication and cryptographic

signature
Availability - means preventing denial of service attacks
For now we'll consider techniques for encryption and

authentication.

5

Security functions
● The Gold Standard, and some additional functions:
● Authentication: are you who you say you are?

– All claims to identity can be verified.
● Authorisation: who is permitted to do which operations to what?

– Users can’t increase their own authority.
● Auditing: what has happened on this system?

– System administrators can investigate problems.
● Identification: what human (or object) is this?

– Different from authentication (a proof of an identity) or authorisation (a
decision to allow an activity).

● Non-repudiation: can you prove this event really did happen?
➔ To learn more: Lampson, “Computer Security in the Real World”, IEEE

Computer 37:6, June 2004. 6

Types of attack
● Modification or man in the middle: an attacker changes a

message;
● Interruption or denial of service: an attacker prevents

delivery, often by floods of rubbish packets;
● Fabrication or spoofing: an attacker injects a message;
● Interception or eavesdropping: an attacker reads a

message.

Desired message flow Interruption

Interception Modification Fabrication

Desired message flow Interruption

Interception Modification Fabrication

7

Encryption is more than coding
● Coding schemes are designed to be decoded

by an algorithm.
● Encryption schemes also need special

knowledge to decode them.
● Uijt jt b wfsz tjnqmf fodszqujpo

8

Encryption is more than coding
● Coding schemes are designed to be decoded

by an algorithm.
● Encryption schemes also need special

knowledge to decode them.
● Uijt jt b wfsz tjnqmf fodszqujpo
● This is a very simple encryption
● The algorithm is "go back N letters"
● The special knowledge is "N=1"

9

Encryption and decryption

Packet
fodszqujpo

Decryption
algorithm

Plaintext
encryption

Encryption
algorithm

Plaintext
encryption

Special
knowledge

for decryption

Special
knowledge

for encryption

Without the special knowledge, an intruder on the network cannot
understand the packet, and cannot change it or insert a new one
without being detected.

RECEIVERSENDER

NETWORK

Ciphertext
fodszqujpo

Ciphertext
fodszqujpo

10

Terminology
● Call the plaintext (the message) P
● The encryption algorithm is E

– Its special knowledge is a key k
– The ciphertext C = E

k
(P)

● The decryption algorithm is D
– Its special knowledge is a key k'
– The plaintext P = D

k'
(C)

– By definition, P = D
k'
(E

k
(P))

11

The Caesar code
● Probably the oldest cryptographic algorithm
● E is: go forward N letters in the alphabet,

rotating from Z to A.
– k is N

● D is: go back N letters in the alphabet, rotating
from A to Z.
– k' is N

● When k = k' we speak of a symmetric-key
algorithm or a shared key. Both ends must
know the same secret key. 12

What makes a good
cryptographic algorithm?

● Assuming it's widely used, there's no point in
trying to keep the algorithms E and D secret.
– But you must keep your key secret

● It must be very hard (i.e. need thousands or
more years of computing), even with complete
knowledge of the algorithm, to try out all
possible keys.

● Is the Caesar code a good algorithm?

13

How big should the key be?
● Obviously this depends on the exact E and D algorithms, but

considering that the attacker might be using a room full of
supercomputers, let's assume (s)he can check one million keys
per second.

● That's 31,536,000,000,000 keys per year.
● To be reasonably safe for 1000 years, you certainly need a

pool of 31,536,000,000,000,000 keys to choose from.
● That's almost 255

● Modern cryptography goes further than that, as we'll see.

14

Example: original DES (1977)
● Divide message into 64 bit blocks of plaintext
● Encrypt each block with a 56 bit key

– The encryption process includes 18 major steps,
including transposition of bit strings and XOR
between parts of the message and parts of the key

– The output is a 64 bit block of ciphertext

15

Why DES uses XOR
● Note that XOR is in itself a simple symmetric

cryptographic algorithm
P=110011, k=010101 → C=XOR(110011,010101)=100110
C=100110, k=010101 → P=XOR(100110,010101)=110011
● What DES does is build on this property using

multiple cycles and transpositions to make the
result more pseudo-random

● Hard to crack without knowing the 56 bit key.
– Is 56 bits enough? 16

 Overview of DES
● IP = Initial Permutation

(transposition)
● F = "Feistel" function (see Shay

p. 289 for more details)
● FP = Final Permutation (swap

and transposition, reverse of IP)
● In July 1998, the EFF's

DES cracker (Deep Crack) broke
a DES key in 56 hours. Cost:
$250,000.

Thanks W
ikipedia!

XOR

Ciphertext
(64 bits)

Plaintext (64 bits)

Key
(56 bits)

17

One step harder - DES-CBC
● CBC = Cipher Block Chaining
● Before each 64 bit plaintext block P

n
 is

encrypted, XOR it with the previous cyphertext
block C

n-1
 to add extra variability.

● After DES was broken, the first
countermeasure was to use DES-CBC.

● Then...

18

Triple DES
● Basically, apply DES three times running, so

that C = E
k3

(D
k2

(E
k1

(P)))

● where E is DES encryption and D is DES
decryption
– if k1=k2=k3 this is single DES for backwards

compatibility
● Triple DES is still regarded as reasonably safe,

but is slow, especially in software-only
implementations.

19

Advanced Encryption Standard
(AES)

● Preferred to Triple DES due to longer keys and
greater complexity
– Also has better software performance

● 128 bit block cipher with 128, 192 or 256 bit
keys

● Mathematically complex
– like DES, involves transposition steps and XOR,

but also includes substitution tables in each round
– currently regarded as safe for all practical purposes

20

The problem with symmetric keys
● Both ends must know the same key
● Doubles the risk of leaks
● Need to send the key initially from A to B, and

how do you send the key in complete safety?
● If I need secure links to 100,000 customers I

have to manage 100,000 keys

21

Asymmetric keys
● Suppose I could decrypt using k' and tell all my

customers to encrypt using k.
● If I keep k' secret, nobody else can decrypt

messages that were encrypted using k.
● So if I receive a message encrypted with k

saying "Today's AES key is 11011....011101" ,
only I can decrypt it, and the AES key is safe.

● In this case k is my public key (everybody
knows it) and k' is my private key (nobody else
knows it). 22

RSA* algorithm
● Choose two large prime numbers p and q and multiply

them together: n = pq
● Find k which has no common factors with

n' = (p-1)x(q-1). k will be the encryption (public) key.
● Find k' such that (kk'-1) is an exact multiple of n'. k'

will be the decryption (private) key.
● Encryption consists of raising each block of the

plaintext to the power k, modulo n.
● Decryption consists of raising each block of the

cyphertext to the power k', modulo n.

* Rivest, Shamir and Adleman

23

Magic?
● RSA is based on number theory and seems

like magic, but it works. Go through the
example in Shay, or look at the excellent
Wikipedia entry.

24

Two ways to use RSA keys
1. Alice uses Bob's public key to encrypt a message to

Bob; only Bob can decrypt it.
● But anybody could pretend to be Alice!

2. Alice uses her private key to encrypt a hash of her
message; Bob uses Alice's public key to decrypt and
check the hash value.
● Only Alice can perform this encryption, so the

encrypted hash is a digital signature.
● If the hash matches, Bob knows that Alice sent the

message and nobody changed it.
● More magic: in fact, Alice uses RSA decryption to

"encrypt" the hash, and vice versa.

25

Cryptographic Hash Functions
● A hash is a function somewhat like a checksum or

CRC, but designed for cryptographic use.
– Input is any length of message, and output is a fixed

length hash value (at least 128 bits).
● Its mathematical design is not aimed at bit error

detection, like a normal CRC, but at resistance to
attack or detection of forgery.
– In particular it should be very hard to find a fraudulent

message that has the same hash as the genuine
message

– Preferred hash functions today are called SHA-224,
SHA-256, SHA-384, SHA-512 26

Signing a message: overview

RSA

SignatureMessage

Hash function

Hash'

If Hash = Hash', Bob can be
sure the message came from
Alice and was not changed.

Alice's
Public key

RSA

SignatureMessage

Hash function

Hash

Message

Alice's
Private key

Network

Alice

Bob

Hash

27

Who are Alice and Bob anyway?
● In many analyses of security algorithms, Alice

and Bob are the two parties trying to
communicate securely, and often Eve is the
person trying to listen in or interfere
– Apologies to anyone called Alice, Bob or Eve...

Alice Eve
Bob

28

What problems do Alice and Bob
face?

● At the start, they can trust nothing - any
message could be forged or read by Eve. They
have to assume that:
– Eve can see all their packets.
– Eve can store packets and play them back later.
– Eve can send her own packets with forged IP

addresses.
– Eve has a lot of computing power.

29

The importance of authentication
● We could spend the whole semester on

security, but will focus on authentication.
● Authentication that a message was sent by a

given source and not tampered with is the key
to preventing most types of attack:
– detects modification and spoofing of messages
– prevents repudiation of genuine messages
– helps detection of floods of invalid messages
– helps to secure the sending of encryption keys

across an initially insecure channel 30

How to authenticate that Bob is Bob
● We have to assume that Eve is trying to

pretend to be Bob.
● So a message saying "I'm Bob" is suspect.
● A message signed with Bob's private key, that

Alice can check with Bob's public key, is OK.
● But a message saying "Hi, I'm Bob and here's

my public key", signed with the correspnding
private key, isn't OK. Why not?

31

Who do you trust?
● If www.BobsWebSite.org lists Bob's public key,

are you willing to believe it?
● If yes:

– How do you know that Eve didn't create that web
site?

– How do you know that Eve didn't hack that web
site, even if it's one that Bob created?

– Are you sure you aren't looking at
www.BobsWebS1te.org?

● Really, you can only trust a public key from a
highly reputable source.

32

What can Alice do with a reputable
public key for Bob?

● Check that it really is Bob who's sending messages to
her and that they are unchanged (since Eve cannot
forge Bob's RSA signature).

● Prove later that he really did send them (since Alice
cannot forge Bob's RSA signature).

● Send a secure message to Bob providing a symmetric
key for AES encryption (since Eve cannot read a
message encrypted with Bob's public key).

● Efficiently discard any flood of bogus messages from
Eve (since she cannot forge anybody else's RSA
signature)

33

A simple authentication protocol
● Problem: Convince a bank called Bob that you

really are a customer called Alice.
● Notation:

– E is RSA encryption
– D is RSA decryption
– a, a' are Alice's public and private keys
– b, b' are Bob's public and private keys
– thus E

a
(P) is plaintext P encrypted with Alice's

public key, etc.
– t

a
, t

b
 are clock times on Alice's and Bob's clocks

34

Does this work?

Bank "Bob"

Public key b
Private key b'

Clock reads t
b

Customer "Alice"

Public key a
Private key a'

Clock reads t
a

2) E
a
("Alice", t

a
, t

b
)

3) E
b
("Alice", t

b
)

1) E
b
("Alice", a, t

a
)

1) Alice provides her key and timestamp
2) Bob confirms timestamp and adds his own
3) Alice confirms Bob's timestamp

35

What did Bob and Alice learn?
● Bob knows that "Alice" knew his public key
● Bob knows a public key for "Alice"
● Bob knows that "Alice" received his timestamp
● Alice knows that Bob knows her public key
● Alice knows that Bob received her timestamp
● Eve couldn't decipher the messages, but could store them
● Has Alice proved her identity to Bob's server? (Authentication)
● Is Alice allowed to use Bob's service? (Authorization)
● Can Eve use a copy of message 3 to gain service?

(Eavesdrop, then Replay; or Intercept, then Inject)
● What is the value of the timestamps?

36

Authentication pitfalls
● How does Alice know she's talking to the

genuine Bob?
– This needs a source of trust for Bob's public key,

typically an X.509 certificate
● How does Alice convince Bob she's the

genuine Alice?
– Typically this needs a reliable shared secret. The

simplest kind is a pre-arranged password sent over
an encrypted channel (e.g. encrypted with Bob's
public key).

37

X.509 certificate
● This is a document that

is cryptographically
signed by a trusted third
party known as a CA
(Certification Authority).

● Apart from the signature
and administrative
material, it contains the
public key.

● ("X.509" identifies a
particular international
standard.) 38

Trust is recursive
● Instead of trusting Bob's web site, Alice now

has to trust Bob's CA.
● Web browsers have the public keys for

reputable CAs built into them.
● Now Alice has to trust the web browser.
● So she has to trust the download site where

the web browser came from.
● Which means trusting the download site's CA.
● Trust is not easy...

39

Summary on encryption and
authentication

● We've seen how symmetric and asymmetric
encryption systems work.

● They can be used to create secure channels
and to check message authenticity.

● They can be used to build authentication
protocols, but only based on some prior
knowledge (a public key) and on some trusted
third party.

● We'll see specific examples (TLS and SSH)
later.

