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TCP: Transmission Control Protocol
● IP is an unreliable datagram protocol

– congestion or transmission errors cause lost packets.
– multiple routes may lead to out-of-order delivery.

● If senders send too fast, routers or receivers 
cannot keep up (making congestion worse).

● When many senders compete, capacity must 
be fairly shared.

● TCP's job is to fix those three problems.
– flow control
– retransmission after errors
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Two approaches to flow control
● Rate Control - sender determines the maximum 

safe sending rate and never exceeds it.
● Sliding Window - sender sends up to a 

“window” full of data but then pauses for an 
acknowledgement.
– Window size is adjusted dynamically to match 

network capacity.
● Window size is also known as "credit".

– Missing acknowledgement causes retransmission.
● TCP is a sliding window protocol.
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Cranking up to speed
● TCP starts slowly

– Initial window size is small
– Send packets until window is empty
– Increase window size as data flow accelerates
– Decrease window size if data flow slows down
– Retransmit when acknowledgments don't arrive

● Note that when A is talking to B and B is talking to A, 
the paths may be asymmetric, so TCP windows work 
independently in the two directions.

● Note that TCP transmits a stream of bytes as far as 
user programs are concerned, broken up into 
segments by TCP itself.
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Why is this better than rate control?
● The sliding window approach works over an enormous 

range of speeds.
– It was designed in the days of 9600 baud modems, and it 

works (with some tuning) in the days of 10 Gbit links.
– Rate control works best in fixed-speed networks.

● It works reasonably well as router load increases 
towards 100%.
– Sharing between thousands or millions of competing TCP 

sessions is reasonably fair.
– Rate control has real trouble sharing fairly at that scale.

● Retransmission fits naturally into TCP
– Rate control protocols have to “break step” to deal with 

retransmissions
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TCP connection phases
● A TCP connection has three main phases:

– Establishment
– Data transfer
– Disconnection

● One end (the “listener”) has to be willing to 
accept incoming TCP connections, and the 
other end (the “initiator”) has to choose to start.

● The listener is listening to a specific port 
number which serves as a meeting point.
– IP address + port number = Layer 4 address
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Connection establishment
Initiator Listener
Send SYN 
Wait
                                                                                  Send SYN
                                                                                Send ACK
                                                                                             Wait
Send ACK
Connection OK
                                                                             Connection OK
● Note that whoever goes first, there is one SYN and 

one ACK in each direction.
● This will work even if both initiate simultaneously
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Disconnection 
   A     B
Send FIN 
Wait
                                                                                  Send FIN
                                                                                Send ACK
                                                                                             Wait
Send ACK
Closed
                                                                            Closed
● Doesn't matter which end closes first.

● If one end dies, a timeout will eventually close the other end.



9

TCBs
● During connection establishment, each end creates a 

TCB (transmission control block) data structure.
– A TCB links the user program at each end to the TCP process.

● Typical TCB contents:
– local and remote port numbers for this connection
– current send and receive window sizes
– pointers into the send and receive buffers
– status of send and receive sequence numbers

● To understand this we need to look at the TCP header 
format.
– The TCP header follows the IP header in a packet, when Protocol 

Number (IPv4) or Next Header (IPv6) is 6.
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TCP header
 0                   1                   2                   3   
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          Source Port          |       Destination Port        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Sequence Number                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Acknowledgment Number                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Data |           |U|A|P|R|S|F|                               |
| Offset| Reserved  |R|C|S|S|Y|I|            Window             |
|       |           |G|K|H|T|N|N|                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           Checksum            |         Urgent Pointer        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Options                    | Zero Padding  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     data segment                           ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

● Protocol Number or Next Header is 6
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TCP header fields (1)
● Port numbers - used to find TCBs at each end
● Sequence number

– the sequence number of the first  data byte in this TCP segment.
– goes up by 1 for each data byte sent on the connection.
– initialised in SYN packet.

● Acknowledgement number
– only valid in ACK packet.
– next sequence number the sender of the segment is expecting
– in other words, sending Ack Number 12345 means “I have 

correctly received up to byte 12344.”
– a duplicate ACK means “I've still only received up to byte 12344.”
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TCP header fields (2)
● Data offset

– Size of TCP header in 32 bit words
● URG - urgent bit (not too important)
● ACK - this is an ACK packet
● PSH - push bit (kick received data to the user)
● RST - reset bit (emergency disconnect)
● SYN - SYN packet (“synchronise sequence numbers”)
● FIN - FIN packet (“finished”, starts normal disconnect)
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TCP header fields (3)
● Window

– The number of data bytes beginning with the one indicated in the 
acknowledgment field which the sender of this segment is willing 
to  accept.

● Checksum (next slide)
● Urgent pointer (not too important)
● Options

– For example, specify maximum receive segment size.
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TCP checksum
● This is the primary protection against transmission 

errors in the Internet.
– 16 bit one's complement of the one's complement sum of all 16 bit 

words in the TCP header and data. 
– If a  segment contains an odd number of bytes to be 

checksummed, the last byte is padded on the right with zeros to 
form a 16 bit word for checksum purposes.  (The pad is not 
transmitted as part of the segment.)

– While computing the checksum, the checksum field itself is 
replaced with zeros.

– The checksum also covers a “pseudo header” conceptually 
prefixed to the TCP header. This pseudo header contains the 
Source & Destination IP Addresses, the Protocol or Next Header 
Number, and TCP segment length.
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Sequence number state
at sender and receiver

Sent & ACKed             Sent but no ACK             May be sent              Must queue

RCV.NXT                                                            increasing
                                                                            seq. number        
            

RCV.WND

Received & ACKed                     Reception allowed                             Forbidden

SND.UNA                        SND.NXT                                      increasing 
                                                                                              seq. number     
               

SND.WND

Time
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TCP data transfer phase
● After SYN/ACK, the two ends know initial sequence 

numbers and initial window sizes.
● Both ends may start sending, as long as they stay 

within the allowed sending window.
– sending a segment moves SND.NXT along
– receiving an ACK for a given sequence number moves SND.UNA 

along
– if SND.NXT = SND.UNA+SND.WND, wait.

● Both ends receive.
– when a segment arrives, increase RCV.NXT and send ACK
– if RCV.NXT reaches end of window (i.e. RCV.WND=0), only ACKs 

will be treated. Incoming data is discarded and not ACKed.
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Adjusting the Window
● The size of the send window (SND.WND) decides how 

much data can be sent without waiting for an ACK.
– SND.WND must be decreased when things are going slowly, and 

can be increased when things are going well.
– SND.WND tracks RCV.WND via ACK messages
– The algorithm for adjusting RCV.WND is the most critical feature 

of a TCP implementation and has been modified many times.
● See comments below on congestion control
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Algorithm for Send Window to track 
Receive Window

● Variables
SND.NXT - next sequence number to be sent
SND.WND - current send window size
LatestAckSeq - acknowledgement number in latest ACK 
CurrentSeq - sequence number of segment carrying ACK
AckWindow - receiver's window size in ACK
PreviousSeq, PreviousAck - from previous window update

● Algorithm
if LatestAckSeq ≤ SND.NXT then # waiting for ACKs
if (PreviousSeq < CurrentSeq or # don't use stale
   (PreviousSeq = CurrentSeq #   window size
    and PreviousAck ≤ LatestAckSeq))
then {SND.WND := AckWindow; # update window
      PreviousSeq := CurrentSeq;
      PreviousAck := LatestAckSeq;}

Background slide
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Retransmission
● If an ACK does not arrive within a certain timeout, all 

segments since the previous ACK will be 
retransmitted.
– no difference whether packet was discarded due to congestion or 

lost due to transmission fault or checksum error.
– can be optimised with “Selective ACK” to avoid retransmitting 

correctly received segments.
● The retransmission timeout is dynamically calculated.

– Typically by measuring a running average Round Trip Time (RTT) 
between sending a segment and receiving its ACK.

– Then set the timeout to, say, 2xRTT.
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Clarification about 
delay-bandwidth product

● The one way delay in a TCP session is roughly half the RTT.
● Therefore, the delay-bandwidth product is roughly 

                           throughput x RTT 
                                   2

● The TCP window size in a stable state is roughly 

                           throughput x RTT

    which is double the delay-bandwidth product, because the window 
has to allow for ACKs to come back.
– 'roughly' because the outbound delay (for data) and the return (for 

ACKs) will never be exactly equal.
– some web references get this wrong.
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Congestion control
● TCP as described above is “greedy” - it will pump as 

much data as the path will take.
– With millions of connections, this leads to “congestive collapse” 

where saturated routers must discard most packets.
● Modern TCPs use various techniques to avoid this, all 

of which amount to being “good neighbours.”
– Slow Start: start small and expand window gently.
– Congestion Avoidance: when duplicate ACKs indicate that later 

segments were lost, limit number of (re)transmissions.
– Fast Recovery: after 3 duplicate ACKs, retransmit once and wait. 

If still no ACK, revert to Slow Start.
● Modern routers keep an eye out for greedy “cheats” 

and selectively discard their packets.
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A day in the life of a TCP session
● User A: Listen (portA)
● User B: Open (AddressA, portA)
● SYN/ACK exchange
● Data transfer phase

– User A: Send (DataA) Retransmission,
– User B: Receive (DataA)   windowing, and
– User B: Send (DataB) congestion
– User A: Receive (DataB) control
– (repeat as required by application) as needed.

● User B: Close
● FIN/ACK exchange
● User A: Listen (portA)
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References
● Shay 11.4
● Any of the TCP/IP books listed for IPv4
● RFCs:

– RFC 793, the original definition
– Many advisory RFCs and other publications on 

implementation techniques to tune performance.
(Implementing TCP is not for amateurs!)

– RFC 2460 (IPv6) modifies checksum formula.
– RFC 3168 adds Explicit Congestion Notification to 

TCP and IP.
– RFC 4614 is a roadmap for TCP specifications.


