
1

CS314s2- 27
TCP: Transmission Control Protocol
● IP is an unreliable datagram protocol

– congestion or transmission errors cause lost packets.
– multiple routes may lead to out-of-order delivery.

● If senders send too fast, routers or receivers
cannot keep up (making congestion worse).

● When many senders compete, capacity must
be fairly shared.

● TCP's job is to fix those three problems.
– flow control
– retransmission after errors

2

Two approaches to flow control
● Rate Control - sender determines the maximum

safe sending rate and never exceeds it.
● Sliding Window - sender sends up to a

“window” full of data but then pauses for an
acknowledgement.
– Window size is adjusted dynamically to match

network capacity.
● Window size is also known as "credit".

– Missing acknowledgement causes retransmission.
● TCP is a sliding window protocol.

3

Transmit
window

Packets “in flight” in the network

Sliding windows in action

Ready for Receive
user window

Output queue of packets

Input queue of packets
To
user

From
user

Windows increase as
throughput increases.

Must wait

Time

At full speed, these
packets add up to the
delay-bandwidth product.

4

Cranking up to speed
● TCP starts slowly

– Initial window size is small
– Send packets until window is empty
– Increase window size as data flow accelerates
– Decrease window size if data flow slows down
– Retransmit when acknowledgments don't arrive

● Note that when A is talking to B and B is talking to A,
the paths may be asymmetric, so TCP windows work
independently in the two directions.

● Note that TCP transmits a stream of bytes as far as
user programs are concerned, broken up into
segments by TCP itself.

5

Why is this better than rate control?
● The sliding window approach works over an enormous

range of speeds.
– It was designed in the days of 9600 baud modems, and it

works (with some tuning) in the days of 10 Gbit links.
– Rate control works best in fixed-speed networks.

● It works reasonably well as router load increases
towards 100%.
– Sharing between thousands or millions of competing TCP

sessions is reasonably fair.
– Rate control has real trouble sharing fairly at that scale.

● Retransmission fits naturally into TCP
– Rate control protocols have to “break step” to deal with

retransmissions

6

TCP connection phases
● A TCP connection has three main phases:

– Establishment
– Data transfer
– Disconnection

● One end (the “listener”) has to be willing to
accept incoming TCP connections, and the
other end (the “initiator”) has to choose to start.

● The listener is listening to a specific port
number which serves as a meeting point.
– IP address + port number = Layer 4 address

7

Connection establishment
Initiator Listener
Send SYN
Wait
 Send SYN
 Send ACK
 Wait
Send ACK
Connection OK
 Connection OK
● Note that whoever goes first, there is one SYN and

one ACK in each direction.
● This will work even if both initiate simultaneously

8

Disconnection
 A B
Send FIN
Wait
 Send FIN
 Send ACK
 Wait
Send ACK
Closed
 Closed
● Doesn't matter which end closes first.

● If one end dies, a timeout will eventually close the other end.

9

TCBs
● During connection establishment, each end creates a

TCB (transmission control block) data structure.
– A TCB links the user program at each end to the TCP process.

● Typical TCB contents:
– local and remote port numbers for this connection
– current send and receive window sizes
– pointers into the send and receive buffers
– status of send and receive sequence numbers

● To understand this we need to look at the TCP header
format.
– The TCP header follows the IP header in a packet, when Protocol

Number (IPv4) or Next Header (IPv6) is 6.

10

TCP header
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Zero Padding							
+-+								
data segment ...								
+-+

● Protocol Number or Next Header is 6

11

TCP header fields (1)
● Port numbers - used to find TCBs at each end
● Sequence number

– the sequence number of the first data byte in this TCP segment.
– goes up by 1 for each data byte sent on the connection.
– initialised in SYN packet.

● Acknowledgement number
– only valid in ACK packet.
– next sequence number the sender of the segment is expecting
– in other words, sending Ack Number 12345 means “I have

correctly received up to byte 12344.”
– a duplicate ACK means “I've still only received up to byte 12344.”

12

TCP header fields (2)
● Data offset

– Size of TCP header in 32 bit words
● URG - urgent bit (not too important)
● ACK - this is an ACK packet
● PSH - push bit (kick received data to the user)
● RST - reset bit (emergency disconnect)
● SYN - SYN packet (“synchronise sequence numbers”)
● FIN - FIN packet (“finished”, starts normal disconnect)

13

TCP header fields (3)
● Window

– The number of data bytes beginning with the one indicated in the
acknowledgment field which the sender of this segment is willing
to accept.

● Checksum (next slide)
● Urgent pointer (not too important)
● Options

– For example, specify maximum receive segment size.

14

TCP checksum
● This is the primary protection against transmission

errors in the Internet.
– 16 bit one's complement of the one's complement sum of all 16 bit

words in the TCP header and data.
– If a segment contains an odd number of bytes to be

checksummed, the last byte is padded on the right with zeros to
form a 16 bit word for checksum purposes. (The pad is not
transmitted as part of the segment.)

– While computing the checksum, the checksum field itself is
replaced with zeros.

– The checksum also covers a “pseudo header” conceptually
prefixed to the TCP header. This pseudo header contains the
Source & Destination IP Addresses, the Protocol or Next Header
Number, and TCP segment length.

15

Sequence number state
at sender and receiver

Sent & ACKed Sent but no ACK May be sent Must queue

RCV.NXT increasing
 seq. number

RCV.WND

Received & ACKed Reception allowed Forbidden

SND.UNA SND.NXT increasing
 seq. number

SND.WND

Time

16

TCP data transfer phase
● After SYN/ACK, the two ends know initial sequence

numbers and initial window sizes.
● Both ends may start sending, as long as they stay

within the allowed sending window.
– sending a segment moves SND.NXT along
– receiving an ACK for a given sequence number moves SND.UNA

along
– if SND.NXT = SND.UNA+SND.WND, wait.

● Both ends receive.
– when a segment arrives, increase RCV.NXT and send ACK
– if RCV.NXT reaches end of window (i.e. RCV.WND=0), only ACKs

will be treated. Incoming data is discarded and not ACKed.

17

Adjusting the Window
● The size of the send window (SND.WND) decides how

much data can be sent without waiting for an ACK.
– SND.WND must be decreased when things are going slowly, and

can be increased when things are going well.
– SND.WND tracks RCV.WND via ACK messages
– The algorithm for adjusting RCV.WND is the most critical feature

of a TCP implementation and has been modified many times.
● See comments below on congestion control

18

Algorithm for Send Window to track
Receive Window

● Variables
SND.NXT - next sequence number to be sent
SND.WND - current send window size
LatestAckSeq - acknowledgement number in latest ACK
CurrentSeq - sequence number of segment carrying ACK
AckWindow - receiver's window size in ACK
PreviousSeq, PreviousAck - from previous window update

● Algorithm
if LatestAckSeq ≤ SND.NXT then # waiting for ACKs
if (PreviousSeq < CurrentSeq or # don't use stale
 (PreviousSeq = CurrentSeq # window size
 and PreviousAck ≤ LatestAckSeq))
then {SND.WND := AckWindow; # update window
 PreviousSeq := CurrentSeq;
 PreviousAck := LatestAckSeq;}

Background slide

19

Retransmission
● If an ACK does not arrive within a certain timeout, all

segments since the previous ACK will be
retransmitted.
– no difference whether packet was discarded due to congestion or

lost due to transmission fault or checksum error.
– can be optimised with “Selective ACK” to avoid retransmitting

correctly received segments.
● The retransmission timeout is dynamically calculated.

– Typically by measuring a running average Round Trip Time (RTT)
between sending a segment and receiving its ACK.

– Then set the timeout to, say, 2xRTT.

20

Clarification about
delay-bandwidth product

● The one way delay in a TCP session is roughly half the RTT.
● Therefore, the delay-bandwidth product is roughly

 throughput x RTT
 2

● The TCP window size in a stable state is roughly

 throughput x RTT

 which is double the delay-bandwidth product, because the window
has to allow for ACKs to come back.
– 'roughly' because the outbound delay (for data) and the return (for

ACKs) will never be exactly equal.
– some web references get this wrong.

21

Congestion control
● TCP as described above is “greedy” - it will pump as

much data as the path will take.
– With millions of connections, this leads to “congestive collapse”

where saturated routers must discard most packets.
● Modern TCPs use various techniques to avoid this, all

of which amount to being “good neighbours.”
– Slow Start: start small and expand window gently.
– Congestion Avoidance: when duplicate ACKs indicate that later

segments were lost, limit number of (re)transmissions.
– Fast Recovery: after 3 duplicate ACKs, retransmit once and wait.

If still no ACK, revert to Slow Start.
● Modern routers keep an eye out for greedy “cheats”

and selectively discard their packets.

22

A day in the life of a TCP session
● User A: Listen (portA)
● User B: Open (AddressA, portA)
● SYN/ACK exchange
● Data transfer phase

– User A: Send (DataA) Retransmission,
– User B: Receive (DataA) windowing, and
– User B: Send (DataB) congestion
– User A: Receive (DataB) control
– (repeat as required by application) as needed.

● User B: Close
● FIN/ACK exchange
● User A: Listen (portA)

23

References
● Shay 11.4
● Any of the TCP/IP books listed for IPv4
● RFCs:

– RFC 793, the original definition
– Many advisory RFCs and other publications on

implementation techniques to tune performance.
(Implementing TCP is not for amateurs!)

– RFC 2460 (IPv6) modifies checksum formula.
– RFC 3168 adds Explicit Congestion Notification to

TCP and IP.
– RFC 4614 is a roadmap for TCP specifications.

