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CS314s2 - lectures 22-31
How the Internet works

Dr Brian Carpenter
● 22, 23 – Routing 
● 24, 25 – IP version 4, DNS
● 26 – IP version 6
● 27 – Transport protocols: TCP
● 28 –  Transport protocols: UDP; Sockets
● 29 – Applications (SSH, FTP, SMTP,...)
● 30 – Applications (HTTP and the Web)
● 31 – Summary

– Dates: 25, 27, 28 Sept., 2, 4, 5, 9, 11, 12, 16 Oct.
– Approximately covering Shay chapters 10.4 to 12
– Questions: brian@cs.auckland.ac.nz or room 303s.587 

(most days between 10 a.m. and 4 p.m.) 2

About the level of detail
● I tend to give more technical details than the 

text books, because I want all students to feel 
that they can see how the various protocols 
could be coded in a programming language.
– I will also give some advanced references, which 

are for interest only and quite optional.
● The level of detail given in Shay or Halsall 

should be sufficient for the exam questions.
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CS314s2- 22/23
Routing algorithms and protocols

● This is quite a hard topic.
● In two lectures, we can only scratch the surface 

to explain principles.
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Topics 
● Routing – the problem
● Approaches
● Algorithms

– Dijkstra 
– Bellman-Ford

● Protocols
– RIP
– OSPF
– BGP

● Final points
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Routing – related to distance 

● How do we connect devices
– In the same room?
– In the next room? (tens)                   Cable/radio boundary

– In the next building? (100s)              + Admin boundary

– In the next department?                 + Funding boundary

– In the next campus? (1000s)            + Political boundary

– In the next country? (millions)

– In the next continent? (billions) Distance, logical 
separation, cost and 
numbers increase; must 
share costs and cables
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Routing – the problem (1)
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Terminology note
● This sort of picture shows what mathematicians 

call a graph, and there is a lot of graph theory.
● A graph consists of numbered vertices 

connected by arcs:
    V1→V2 would be the arc from vertex 1 to 2

● For a program, a graph can be thought of as an 
array of vertices and a matrix of arcs
– of course, not all arcs exist; R2→R3 does not exist 

so its matrix entry will be zero.
● We will not dig deeply into graph theory here 8

Graphs in programs
● Representing a graph:

– Ordered list of vertex names:
V1='A', V2='R1',...V22='R99',V23='X',V24='Y'

– List of arcs (i.e. a sparse matrix)
Ai =(Vs, Vd, W) 

● (source, destination, and a parameter for each arc)
● A path through the graph is represented by an 

ordered list of arcs
– “Walking the graph” means an algorithm that starts 

at a given vertex and builds paths by searching the 
list of arcs that meet up (the destination of one arc 
is the source of the next).
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Routing – the problem (2)
● Choose the best path from A to X, knowing (at A) only 

the logical address of X.
● “Best” could mean

– Smallest number of hops
– Shortest time delay
– Least congested
– Cheapest
– Administratively allowed
– Easiest to discover
– Any combination of the above

● Solution must be reasonably quick and guaranteed to 
avoid loops and deadlocks 10

Routing – the problem (3)
● The real network is massive 

– Thousands of nodes on campus, millions per 
country, hundreds of millions worldwide.

● The real network is constantly changing
– Nodes, routers and links added or removed 

constantly
– View of network will be different in different places

● Therefore, algorithms must be scaleable, 
dynamic and distributed
– Central static route computation only works for 

small, very stable networks
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Approaches to dynamic routing
● Confine routing intelligence to specialised router boxes 

– End-systems mainly send  everything to their default router

● Routers build connectivity maps and exchange routing 
information with their neighbours

● Two major approaches
– Distance vector routing: router informs neighbours 

of its best paths. Each router calculates best paths 
for itself based on neighbour's paths.

– Link state routing:  router exchanges link status info 
with its neighbours. Each router relies on accuracy 
of its neighbours' status info in calculating best 
paths through the whole map.
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DV Routing: Bellman-Ford algorithm
● Router computes a table of its “distance” to each other 

router in the same network
– Distance 1 = 1 hop, 2 = 2 hops etc.

● Sends this table to its neighbours
● Recomputes its own table using tables from its 

neighbours
● Works, but

– Sending complete tables doesn't scale well and is 
slow to converge after a change

– “Link down” condition can lead to loops, as the 
“distance” increases towards infinity
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Bellman-Ford: the computation (1)
● Compute the shortest path from R1 to all Rn 

knowing the topology of the router graph
– Initialize each distance D(R1,Rn)=∞, except 
D(R1,R1)=0

– For each arc Rx→Ry in the graph (starting with R1)
  if D(R1,Ry)>D(R1,Rx)+1
 then D(R1,Ry):= D(R1,Rx)+1

– At this point, each D(R1,Rn)is the length of the 
shortest path from R1 to Rn

– The algorithm also keeps track of the “next hop” 
router from R1 for the path
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Bellman-Ford: the computation (2)
– That dealt with paths from R1. For complete routing 

tables, run again starting from R2, R3...
– Note that algorithm processes every arc times 

every node!
– The “+1” above is a simplification where all paths 

have equal weight. It should be a weight W(x,y) to 
allow for administrative preferences for certain links:
  if D(R1,Ry)>D(R1,Rx)+W(x,y)
 then D(R1,Ry):=D(R1,Rx)+W(x,y)

– W(x,y)<0 is allowed by the algorithm, but can lead 
to loops, which can be detected if any  
D(R1,Ry)>D(R1,Rx)+W(x,y)condition exists 
after the algorithm ends
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Bellman-Ford paths
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Link State Routing: Dijkstra algorithm
● Also called “shortest path first” or “SPF”
● First we'll describe the algorithm in the abstract
● Then a few comments
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Dijkstra: the computation
– Initialize each distance D(R1,Rn)=∞, except 
D(R1,R1)=0

– Mark all D's as tentative, except D(R1,R1)as final
– For each arc Rx→Ry in the graph (starting with R1)

  if D(R1,Ry)>D(R1,Rx)+W(x,y)
 then D(R1,Ry):=D(R1,Rx)+W(x,y)

– When all paths to Ry have been checked, Ry is 
removed from scanning of graph and its current 
D(R1,Ry) is marked as final

● i.e. we only minimise the path to Ry once; in Bellman-Ford we did it 
for every path through Ry

– W(x,y)<0 is not allowed 
18

Dijkstra paths (snapshot)
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CS314 traditional Dijkstra example: 
progressive evaluation
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Link State: Comments
● Algorithm processes many fewer arcs than Bellman-

Ford – once a distance is final  that node is no longer 
considered
– Whether this saving matters depends on size of graph and frequency of 

changes

● Also, each node receives neighbours' link state tables 
so doesn't have to start from D(R1,Rn)=∞
– Trust neighbours' path lengths – OK if you can trust your neighbours

● Link State versus Distance Vector was quite a battle in 
the technical community some years ago, so we have 
a variety of routing protocols in service today. We'll 
talk about three: RIP (DV), OSPF (LS) and BGP 
(modified DV).
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RIP: Routing Information Protocol
● The original Internet DV protocol for on-site use

– Remember that in real life, Bellman-Ford is 
executed as a distributed algorithm – each router 
computes the paths from itself to others.

– Thus, each router keeps a table of destinations:
● IP address of destination
● IP address of first hop towards destination
● Interface number for first hop
● Distance metric for destination
● Timestamp when entry was last updated

– The router's complete distance vector can be read 
out of this table 22

R1 and its interfaces
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Interface 1

Interface 2

Interface 3 (Ethernet)
Subnet 10.1.2.*

Subnet 192.0.2.*
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Notional Initial DV table for R1
Name Dest IP Interface Distance Timestamp

R1 192.0.2.1 0.0.0.0 0 0 0
R2 192.0.2.2 0.0.0.0 1 ∞ 0
R3 192.0.2.3 0.0.0.0 2 ∞ 0
A 10.1.2.3 0.0.0.0 3 ∞ 0
B 10.1.2.5 0.0.0.0 3 ∞ 0
C 10.1.2.17 0.0.0.0 3 ∞ 0

1st hop IP

Notes:
● R1 points to itself using the loopback address and distance zero.
● The other distances are set to infinity.
● R1 also shows itself as the 1st hop to its neighbours.
● All timestamps are initialized before we start.
● In practice, end systems like A, B, C don't run RIP; the router can 
discover them on the LAN and is pre-configured with the 
summarised destination....

24

Actual Initial DV table for R1
Name Dest IP Interface Distance Timestamp

R1 192.0.2.1 0.0.0.0 0 0 0
R2 192.0.2.2 0.0.0.0 1 16 0
R3 192.0.2.3 0.0.0.0 2 16 0
None 10.1.2.* 0.0.0.0 3 1 0

1st hop IP

Notes:
● There is no way out of configuring this externally; the router cannot 
guess any of it.
● In reality, destinations are address + bit mask; A, B and C can be 
summarised as address 10.1.2.0, mask 255.255.255.0 . This means 
all addresses from 10.1.2.0 to 10.1.2.255 .
● 10.1.2.* stands for  10.1.2.0, mask 255.255.255.0 .
● RIP uses 16 as infinity
● Now  we have a simple distance vector that can be passed to R2 
and R3.
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RIP messages from router to router
    0                   1                   2                   3 3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Command (1)   | Version (1)   |           unused              |
   +---------------+---------------+-------------------------------+
   | Address Family Identifier (2) |        Route Tag (2)          |
   +-------------------------------+-------------------------------+
   |                         IP Address (4)                        |
   +---------------------------------------------------------------+
   |                         Subnet Mask (4)                       |
   +---------------------------------------------------------------+
   |                         Next Hop (4)                          |
   +---------------------------------------------------------------+
   |                         Metric (4)                            |
   +---------------------------------------------------------------+

Get used to this form of protocol data unit drawing – it's how 
all basic Internet standards show bits and bytes. This shows 
24 bytes in 6 rows of 4 bytes.
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RIP protocol fields
● Command

– 1: request sending of neighbour's DV
– 2: response including sender's DV

● Version
– Version of RIP in use – should be 2

● AFI
– 2 for IPv4

● Route tag
– A value that distinguishes routes within the RIP domain from 

routes that go outside the RIP domain (e.g. wide area routes)
● Address and mask  – as above
● Next hop address – if not the current router

– Zero means the default route via current router
● Metric 

– A value up to 15 (number of hops)
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Why is infinity equal to 16?
● By convention, RIP considers a metric of 16 to 

be infinity.
● Real networks should never be designed so 

that any normal path needs 16 hops
– Even my messy example has at most 8 hops

● By having a low value for “infinity”, RIP will not 
waste too many cycles when re-computing 
routes after a link breakage
– Even if a destination has become unreachable, we 

will stop looking for a path when the length exceeds 
15 28

Constructing a RIP packet for R1 (1)
Command: (2) 00000010
Version: (2) 00000010
Unused: 00000000 00000000
AFI,tag: (2+2) 00000000 00000010 00000000 00000000
R1's address: 11000000 00000000 00000010 00000001
Mask: (none) 00000000 00000000 00000000 00000000
Next hop:(self) 00000000 00000000 00000000 00000000
Metric: (0) 00000000 00000000 00000000 00000000
AFI,tag: (2+2) 00000000 00000010 00000000 00000000
R2's address: 11000000 00000000 00000010 00000010
Mask: (none) 00000000 00000000 00000000 00000000
Next hop:(self) 00000000 00000000 00000000 00000000
Metric: (16) 00000000 00000000 00000000 00010000

Background slide
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Constructing a RIP packet for R1 (2)
AFI,tag: (2+2) 00000000 00000010 00000000 00000000
R3's address: 11000000 00000000 00000010 00000011
Mask: (none) 00000000 00000000 00000000 00000000
Next hop:(self) 00000000 00000000 00000000 00000000
Metric: (16) 00000000 00000000 00000000 00010000
AFI,tag: (2+2) 00000000 00000010 00000000 00000000
LAN address: 00001010 00000001 00000010 00000000
Mask: 11111111 11111111 11111111 00000000
Next hop:(self) 00000000 00000000 00000000 00000000
Metric: (1) 00000000 00000000 00000000 00000001

Background slide
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How RIP operates
● Each router sends its full DV in one or more Response 

messages
– On startup
– Every 30 seconds
– Whenever something changes (e.g. a link goes down) 
– When a Request message is received

● Recalculates its DV whenever it receives a Response
– Which includes running Bellman-Ford algorithm

● That is enough for all routers to have up-to-date 
routing tables
– Unless rate of changes is too great for the messages and 

calculations to keep up
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Comments on RIP
● We've skipped some details.
● Obviously, RIP messages are quite noisy with 

many unused bits.
● Convergence time can be large when 

conditions are bad (e.g. recovering from power 
failure in a building)

● RIP therefore doesn't work well in large, 
complex networks.

● Generally, OSPF is considered better these 
days.
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OSPF: Open Shortest Path First
● A common Internet LS protocol for on-site use

– Dijkstra is executed as a distributed algorithm – 
each router computes its own shortest paths.

– Conceptually, OSPF runs within a finite domain 
known as an Autonomous System (AS).

● It distinguishes routers from networks  within the AS.
● Networks can be stub or transit networks.

– Each router keeps a Link State database,
– The router's Link State Advertisements (LSAs) to its 

neighbours can be read out of this database.
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OSPF conceptual model
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Contents of Link State database
● The vertices in the network graph will be: 
N1, N2, N3, R1, R2, R3, R21

● Arcs will be  Rx→Ry, Nx→Ry or Rx→Ny 
(never Nx→Ny)

● For each destination, LS database lists 
● IP address (and mask) of destination
● IP address of first hop towards destination
● Interface number for first hop
● Distance metric for destination

● External networks (outside the AS) will typically 
have large metrics
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Splitting very large AS's
● OSPF already allows an AS to contain logically 

separate networks.
● For a large campus, it is possible to split the AS 

into logically separate “areas” which each run 
their own SPF computations.
– Reduces overhead within each area
– Area 0 then acts as a campus backbone
– Inter-area routes cross the backbone

● More efficient operation in a large network
– Glitches in one department don't affect another 36

Flavours of OSPF router
● Internal

– Connected to LANs and links within an Area

● Designated
– When >1 routers on a LAN, one is designated to send LSAs

● Area Border
– Connected to the backbone Area and at least one normal Area. 

Computes routes for each.

● Backbone
– Connected to the backbone Area

● AS Boundary
– Connected to the outside world
– Advertises routes to external networks
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Areas help neat layout
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OSPF message types
1  Hello                  Discover/maintain neighbours
2  Database Description Summarise database contents
3  Link State Request     Request database download
4  Link State Update     Send database update
5  Link State Ack        Acknowledge an update

                                     (not abbreviated as LSA)

● Link State Updates carry the LSAs (Link State 
Advertisements) of the sending router and LSAs from its 
upstream routers.

● Within an Area, LSAs describe link state in detail, 
similar to RIP

● Beyond an Area, LSAs summarise routes per network

39

What causes an LSA to be updated?
● Its lifetime expires
● Interface up/down
● Designated router for a LAN changes
● Change of state of neighbour router
● Intra-area route changes in border router
● Inter-area route changes
● Border router attaches to new area
● Backbone topology change (virtual route change)
● External route change
● AS Boundary router down 40

What's in an OSPF LSA
● Five types of LSA:

1      Router-LSAs – link state for each interface
2      Network-LSAs – routers for a transit subnet
3,4    Summary-LSAs – inter-Area link state
5      AS-external-LSAs – external link state
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Main items in a Router-LSA
LS type = 1 ;indicates router-LSA Link State
Link State ID = 192.0.2.1     ;R1's Router ID
Advertising Router = 192.0.2.1 ;R1's Router ID
       #links = 2
               Link ID = 192.0.2.3     ;IP address of Desig. Rtr.
               Link Data = 192.0.2.1   ;R1's IP interface to net
               Type = 2              ;connects to transit net
               metric = 1

               Link ID = 10.1.2.0    ;IP Network number
               Link Data = 255.255.255.0  ;Network mask
               Type = 3                ;connects to stub net
               metric = 2

Background slide
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Main items in a Network-LSA
LS type = 2                  ;indicates network-LSA Link State
Link State ID = 192.0.2.3 ;IP address of Desig. Rtr.
Advertising Router = 192.0.2.3 ;R3's Router ID
        Network Mask = 255.255.255.0
               Attached Router = 192.0.2.3    ;Router ID
               Attached Router = 192.0.2.1    ;Router ID
               Attached Router = 192.0.2.2    ;Router ID
               

Background slide
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How OSPF operates
● Each router sends its LSAs in one or more Link State 

Update messages
– When timer expires
– Whenever an LSA changes 
– When a LS Request message is received

● Recalculates its LSAs whenever it receives an LSU 
Response
– Which includes running Dijkstra algorithm

● That is enough for all routers to have up-to-date 
routing tables

● We've skipped many details.
– Convergence times and scaleability significantly better than RIP
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BGP4: Border Gateway Protocol v4
● The Internet distinguishes two main classes of 

routing protocols
– Interior Gateway Protocols (IGPs) used within an 

organisation or campus, e.g., RIP or OSPF
– Exterior Gateway Protocols (EGPs) used between 

organisations or campuses, e.g. BGP4 
● BGP4 has no competition today.
● EGPs are also sometimes called Inter-Domain Routing 

(IDR) protocols
● BGP4 is a modified Distance Vector protocol, 

sometimes called a Path Vector protocol
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The problem BGP solves
● Assume every site is running an IGP (OSPF or 

an alternative). The world now needs to find 
routes to the site, for a set of networks, e.g. 
     192.0.2.*, 192.0.3.*, 130.216.*.*

● A site may have several unrelated address blocks.
● A consumer ISP looks like a site
● In the world, there are hundreds of 1000s of sites

● How can any site find routes to any other site?
● Starting point: the default route 0.0.0.0 in the IGP points 

to a site exit router
● The ISP accepts packets via an ingress router
● It needs IGP routes to its customer sites and BGP routes 

to everything else
46

Site and ISP topology
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BGP4 AS Paths
● BGP formalises the concept of Autonomous 

System
● Over-simplifying, each ISP and each major customer has 

an AS number.
● Several ASs can in fact be federated so they appear 

externally as a single AS.
● An AS path is basically a list of AS numbers 

that leads to a given destination 
● A destination is a network address/mask, usually called a 

prefix in BGP
● 130.216/16 means a 16 bit prefix: 130.216.0.0 with mask 

255.255.0.0
48

AS topology
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About AS numbers
● An AS path to 130.216/16 will end with

..., AS38022, AS9431
● AS numbers are currently 16 bits but will be 

expanded to 32 bits, since >43,000 have been 
handed out already.
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BGP messages
● Open

– Sent when a link to a neighbour BGP speaker 
comes up

● Update
– Routing information (see below)

● Notification
– Sent when a link to a neighbour BGP speaker is 

intentionally closed
● Keepalive
Note – no Request message in BGP
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BGP update messages
● BGP speakers send updates to their BGP 

neighbours
● They contain various attributes per destination

– Origin of information (IGP or EGP)
– AS Path
– IP address of next hop (if not the sender of the 

update)
– Unreachable (if announcing a path failure)
– Metric (only within an AS; BGP does not weight links)
– Community (see below)
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BGP communities
● BGP supports routing policies instead of 

weights.
● The community attribute, if used, acts as a label 

for a group of destinations, so that policy rules 
can be applied to the group.

● Artificial example rule: do not use paths to this community 
that include AS5168.
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BGP operation
● When a BGP router receives an update

● It filters the update according to local policy rules, 
discarding AS paths that its policy rejects.

● Then runs Bellman-Ford over the resulting DV table (but 
uses AS path length as the metric, hence the phrase 
“path vector”).

● Then generates update messages for its other 
neighbours.

● When a BGP router observes a link failure
● It updates its DV table, runs Bellman-Ford, and 

generates update messages for its neighbours.
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Aggregation
● Today's global BGP4 table has about 230,000 

entries (>5 per AS number).
– See history at http://bgp.potaroo.net/

● It's only that small because BGP aggregates 
adjacent prefixes in a binary tree.
– 192.0.2.0/24 and 192.0.3.0/24 can be aggregated 

as 192.0.2.0/23, etc.
– Two prefixes that share an AS path are aggregated 

if possible, before advertising the path.
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BGP in practice
● BGP4 is the routing protocol that makes the 

Internet work.
– Without BGP aggregation, the Internet would have 

melted down many years ago, with several times 
more entries in the global table.

– Today, hardware improvements are roughly 
keeping up with growth.

– But the number of dynamic updates is some cause 
for concern. What if updates start to arrive faster 
than they can be processed and passed on to the 
neighbours?
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Missing topics: MPLS and IS-IS
● No time in this course to discuss MPLS 

(MultiProtocol Label Switching).
– This is a “layer 2.5” technique for building semi-

permanent switched paths across a backbone 
network.

– Used today by many ISPs underneath the traditional 
IGP/EGP router layer.

● We also haven't discussed IS-IS
(Intermediate System - Intermediate System).
– An alternative to OSPF used by many ISPs.
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RIBs and FIBs – building a router
● RIB: Routing Information dataBase

– The routing table resulting from RIP, OSPF, BGP4, etc.
– Generally, it's computed and accessed by software.

● FIB: Forwarding Information dataBase
– A simple table that tells the hardware which interface to send 

a packet on:
– IP Address – Mask  –  Interface number
– Generally written by software, and read by specialist hardware 

operating at line speed (100 Mbps to several Gbps)
– At 1 Gbps you have ~4 microseconds to process a packet, so 

the FIB lookup must take a fraction of a microsecond.

Background slide
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Handling congestion

● Normally, networks are designed to avoid such 
bottlenecks, but sometimes bursts of traffic will cause 
congestion and buffer overflow.
– Buffer overflow at both ends of a link could cause deadlock, with 

both ends unable to send to the other.
● IP is an “unreliable” protocol - congested routers  

discard excess traffic unpredictably when buffers fill up.
– We'll discuss later how this affects upper layer protocols

R25
1 Gbps3 x 1 Gbps

More packets arrive than 
can be forwarded
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Routing – related to distance 

● How do we connect devices
– In the same room?
– In the next room? (tens)                   Cable/radio boundary

– In the next building? (100s)              + Admin boundary

– In the next department?                 + Funding boundary

– In the next campus? (1000s)            + Political boundary

– In the next country? (millions)

– In the next continent? (billions) Distance, logical 
separation, cost and 
numbers increase; must 
share costs and cables

Hubs, switches

OSPF

BGP

MPLS
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References
● Shay 10.3 to 10.8
● Advanced text book (completely optional):

Interconnections (2nd edition)
by Radia Perlman (Addison-Wesley)
Published 1999 but still unbeaten

● The technical specs for all Internet protocols are published free as 
numbered “RFCs” (originally “Request for Comment”). They make 
tough reading and are completely optional for this course. 
http://www.rfc-editor.org/rfcsearch.html
– RIP: RFC 1723
– OSPF: RFC 2328
– BGP4: RFC 4271


