
Chapter 5

JAVA COLLECTIONS FRAMEWORK

A collection is an object that groups multiple objects. Collections are used to store, re-
trieve and manipulate data. Collections usually represent natural groupings, e.g., a Bridge
hand (a collection of cards) or an address book (name to address mappings).
You should already be familiar with the idea of collections, if you’ve used the Java data
structures such asVector, Hashtable, or even arrays. These were different imple-
mentations of collections, but not aframework. The Java collections framwork is a unified
architecture for representing and manipulating collections. It provides a group of inter-
faces and contracts which implementations must follow, as well as some sample imple-
mentations.

5.1 Generic Programming

Consider the following example:

public static String verb() {
String[] verbs = {"eat", "eradicate" };
return oneof(verbs);

}

The function of this method is to choose between the the available “verbs”. This requires a
trivial implementation ofoneof—choosing a random element of the array—but requires
that the words are always provided in an array.
Changing the origin of the words, such as reading them from an external source such as a
file or a network requires extensive modification of theverb method in order to provide
the correct data structure. There is an even larger problem if the list of words is too large
to fit into memory. In this case providing an array becomes an impossibility.
As well as that, the modifications toverb are not reusable: you cannot take direct ad-
vantage of work carried out previously by others, nor can others directly reuse your work.

207

208 COMPSCI.220FT

So the effort that went into reading the words from a file or the network may have to be
repeated for the next task (such as modifyingnoun).

5.1.1 Interfaces and implementations

When the code that does the work is swamped by the implementation, it is time to separate
the two. Separation means using aninterface and providingimplementations of that in-
terface. Interfaces specify operations without giving any code. Implementations provide
concrete code for the operations required by the interfaces.

5.1.2 Polymorphic algorithms

The last thing that is required for generic programming is polymorphic algorithms. These
are algorithms which depend only on the interfaces, and not on any details of the imple-
mentations. This means that the code for these algorithms should work unchanged if the
implementation changes.

5.1.3 Benefits

Improves program speed and quality Programs can be easily tuned by changing im-
plementations to suit a particular application

Fosters software reuse New implementations which conform to existing interfaces are
by their nature reusable. The same is true of new polymorphic algorithms.

5.2 The Collections Framework

The idea of the Collections Framework is to provide a generic framework for collections
of data. There are several advantages that having such a framework provides in addition
to the advantages of generic programming mentioned previously.

Encourage interoperability the collections interfaces become the common method of
passing collections back and forth.

Reduce programming effort by providing useful data structures, programmers can con-
centrate on the work their code needs to do, rather than the plumbing.

Reduce effort to learn new APIs many applications naturally use collections as input
and output. By providing the collections framework, such applications can make
use of existing APIs, rather than providing a mini-API for dealing with their collec-
tions.

COMPSCI.220FT 209

Reduce effort to design new APIs because applications can make use of collections,
they can make use of the existing collections APIs.

In theory this sounds very positive, but in the past collections frameworks have been
difficult to use, because there have been too many classes and interfaces to learn to be
able to use the framework to the full advantage.
The Java Collections Framework has the advantages that the framework is a small set of
interfaces. Sample implementations are provided as well as adapter classes to minimize
the effort required to use the framework and to write new implementations of the classes,
which users (including you!) are encouraged to do.

5.2.1 What is a collection?

Put simply, a collection is a group of objects. To achieve the advantages of generic pro-
gramming, various operations on collections need to be provided to users. By using an
example of an array, everything needed for basic collections can be observed.

...
Object [] a = new Object[...];
...
for (int i = 0; i < a.length; i++) {

... = a[i];
a[i] = ...;

}
...

The code fragment has examples of:

A collection of items The array has space to hold a group of objects of a specific type.

A method of allocating space The constructor.

An iterator The for-loop variablei allows iteration through the elements of the collec-
tion in a well defined order.

A method of obtaining the current item By use of an assignment statement.

A method for replacing the current item An assignment statement again, which can be
used for modifiable collections.

Of course, this example does not illustrate generic programming, and it is not a complete
example as it does not deal with collections which can grow or shrink in size.

210 COMPSCI.220FT

5.2.2 The Framework interfaces

There are six interfaces, in two hierarchies.

Collection least powerful, most general. Operations includesize, isEmpty,
contains, add, remove, iterator.

List an ordered collection. Elements can be accessed by an integer position.

Set, SortedSet a collection that cannot contain duplicates. Same operations as collection,
but is expected to prevent duplicates from occuring. Sorting determines the order
which an iterator provides the elements to the user.

Map, SortedMap (not a collection) an object that maps keys to values; i.e., like a list,
but elements can be accessed by a “key”, which can be any object.

Collection Map

Set List

SortedSet

SortedMap

Aside In general when providing and using collections, methods whichprovide collec-
tions should provide the most specific type of collection appropriate to the application,
while methods whichreceive a collection should expect the most general type of collec-
tion they are able to deal with. This increases the ability to reuse the code for different
applications.

5.3 Interface Contracts

A Collection is more than just an interface. Implementations are expected to con-
form to a certain standard of behaviour. An example of the expected behaviour is af-

COMPSCI.220FT 211

ter callingc.add(o) for aCollection c, c.contains(o) should returntrue.
The expectations of behaviour form acontract. Users of implementations expect them to
adhere to the contract. Another example of an interface contract is that forequals and
hashCode. If o1.equals(o2), then o1.hashCode() must be equal to
o2.hashCode().

5.4 The Interfaces in Detail

5.4.1 Collection

TheCollection class is the most general form of a collection. There are no imple-
mentations of this class in the framework. This class is used to pass around collections
when maximum generality is required. New implementations of collections which are not
covered by the other classes of the framework (such as abag of items which may contain
duplicates) can implement this interface directly.

public interface Collection {
// Basic Operations
int size();
boolean isEmpty();
boolean contains(Object element);
boolean add(Object element); // Optional
boolean remove(Object element); // Optional
Iterator iterator();

// Bulk Operations
boolean containsAll(Collection c);
boolean addAll(Collection c); // Optional
boolean removeAll(Collection c); // Optional
boolean retainAll(Collection c); // Optional
void clear(); // Optional

// Array Operations
Object[] toArray();
Object[] toArray(Object a[]);

}

Classes which implement this interface should also provide two constructors (there is no
way to enforce this in Java):

� A constructor which takes no arguments;

212 COMPSCI.220FT

� A constructor which takes aCollection as its sole argument.

The second of these two constructors is an operation to change the type of collection, for
example from aSet to aList, by copying the original into the new.

5.4.2 Iterators

An Iterator is similar to anEnumeration and replace them within the context of
the framework. Nonetheless there are important differences between anIterator and
anEnumeration:

� An iterator allows deletion of items from the collection with well defined semantics;

� The method names are different.

To give an idea of the differences, here is an example of enumerating the elements of a
Vector and iterating through the elements of aCollection

...
Vector v;
...
for (Enumeration e = v.elements(); e.hasMoreElements();) {

...
foo(e.nextElement());
...

}
...

compare the above with

...
Collection c;
...
for (Iterator i = c.iterator(); i.hasNext();) {

...
foo(i.next());
...

}
...

Another important difference betweenIterators andEnumerations is the ability of
Iterators tofail fast if the underlying structure of the collection changes, for instance
if a new item is added to an extensible list, while the user is iterating through the list. Un-
der such circumstances, the iterator is permitted to throw aConcurrentModification-
Exception.

COMPSCI.220FT 213

5.4.3 Implementing a Collection

Normally implementors of collections would subclass anAbstractCollection. The
abstract classAbstractCollection provides default methods for the collection in-
terfaces, in much the same way as the adapter classes in the Java AWT. To provide a read-
only collection, subclasses must provide implementations of thesize anditerator
methods. For modifiable collections, subclasses must also provideadd as well as ensur-
ing that theIterator returned by theiterator method implementsremove. The
default behaviour of the methods provided by theAbstractCollection is to throw
an exceptionOperationNotSupportedException.

The operationsadd andremove must return true if the collection changed as a result of
the operation. This is part of the contract for theCollection.

The two methods for providing arrays deserve mention here. The first, which takes no
arguments, provides an array of the exact size required to store the collection. The second
will allocate a new array if the one provided does not have sufficient space to store the
entire collection, or will pad the array withnull if the array is too large.

Keen observers will notice that the bulk operations in the class are optional to implement.
This is because they can be defined in terms of the operationsadd andremove, which
is how they are implemented in the abstract class.

5.4.4 Set

Sets are collections that cannot contain duplicate items. This interface is for the mathe-
maticalset abstraction.

Implementing aSet can be carried out by subclassing anAbstractSet in the same
way that a collection can be implemented by subclassing
AbstractCollection, with the additional constraint that the operations must adhere
to the set data model, i.e., the set must contain no duplicate items.

5.4.5 List

A List is an indexable collection. You should already be familiar with this type of data
structure from your previous Java programming experience; aVector and an array are
structures with similar properties. A list can contain duplicate elements, and it is possible
to insert or remove anywhere from the list.

Additional operations which take advantage of this ordering are:

214 COMPSCI.220FT

public Object get(int index)
public List subList(int fromIndex, int toIndex)
public int indexOf(Object o)
public int lastIndexOf(Object o)

// bulk operation
public boolean addAll(int index, Collection c)

// extra iterator methods
public ListIterator listIterator()
public ListIterator listIterator(int index)

// for modifiable lists
public Object set(int index, Object element)

// for resizable lists
public void add(int index, Object element)
public Object remove(int index)

protected void removeRange(int fromIndex, int toIndex)

which should all be reasonably self explanatory. Details can be found in the API docu-
mentation.

5.4.6 ListIterators

ListIterators are extensions ofIterators which allow the user to traverse lists in
either direction, and allow updating of the element at the current position of the iterator.
There are extra methods:

previous, hasPrevious, nextIndex (andpreviousIndex) for returning the
index which would be returned by the appropriate call tonext or previous,

set for updating the current element, and

add for adding an item to the list.

5.4.7 Adapter classes

The framework provides two abstract classes for list implementors:

AbstractList This provides default methods for implementations which are based on
indexable data structures.

COMPSCI.220FT 215

AbstractSequentialList This provides default methods for implementations based on
sequential structures, such as linked lists.

Implementations of lists which use these adapters must provide methods forget and
size, as well asset if the list is modifiable, andadd(int, Object) andremove
if the list is extendible. These adapters are different from the other abstract classes in the
framework in that they do not require the user provide anIterator, as it can be defined
in terms of get and remove. However, users of the
AbstractSequentialList must also provide an implementation of a
ListIterator.

The adapter classes also provide a way of quick failure for theIterator if the under-
lying structure changes, rather than displaying indeterminate behaviour, as happens by
default.

5.4.8 Map

Maps arenot Collections. They are somewhat analogous toHashtables, in that
items in theMap are accessed by akey object which is unique to theMap. Each key can
map to at most one value.

5.5 Sorting

For there to be valid implementations ofSortedSet andSortedMap, there needs to
be a standard method of comparing two objects for the purpose of providing a relative or-
dering between them. Sorting of primitive types is easy, there are predefined comparison
operators (such as< etc.) which can be used to determine the relative ordering between
two data items. However, it is not possible to haveCollections of primitive types,
we are required to use the classesInteger etc. For objects of non-primitive types there
are two methods which can be used:natural ordering andunnatural ordering.

5.5.1 Natural ordering

Classes which implement theComparable interface are said to have natural ordering.
These classes must provide a methodint compareTo(Object o).
o1.compareTo(o2) should return a value less than zero ifo1 is “less than”o2,
zero if o1 is “equal” too2, and greater than zero ifo1 is “greater than”o2. It is nor-
mally expected that natural ordering of objects is consistent with equals. This means that
o1.equals(o2) if and only if o1.compareTo(o2) == 0. One exception to this
is theBigDecimal class in the standard classes.

216 COMPSCI.220FT

When usingComparable objects withSortedSets, there may be unexpected be-
haviour if the natural ordering is inconsistent with equals. This is because the contracts for
Sets are defined in terms ofequals, and aSortedSet assumes that objects which are
equal according their natural ordering are also equal according to theequals method.
There is still well defined behaviour forSortedSets if the natural ordering is inconsis-
tent with equals, although such behaviour will violate the set contract.

5.5.2 Unnatural ordering

There is a problem with natural ordering, in that the provider of the classes you are using
must have implemented theComparable interface. If this has not been done, there are
two options:

� Create a subclass which implements this interface;

� Provide aComparator object which will determine an unnatural ordering be-
tween the objects.

The first solution can get a little tedious providing wrapper classes everytime you want
to create aCollection of a new class. It is usually simpler to implement the second
alternative.

TheComparator class is an abstract class which allows the comparison of two arbitrary
objects, although most often they are of the same type. Subclasses of
Comparatormust provide aint compare(Object o)which behaves in the same
way as thecompareTo method above.

The same expectations of consistency with equals apply to thecompare method, for the
reasons outlined in the previous section.

5.5.3 SortedSet and SortedMap

These are the same as theSet and Map except that the contracts guarantee that
Iterators return the items in sorted order. These classes will attempt to use natural
order by an appropriate typecast on their members, unless aComparator object is pro-
vided when constructing the collection.

There are some additional methods which take advantage of the ordering of the set or
map. Those forSet are listed here.

public Comparator comparator()
public SortedSet subSet(Object fromElement,

COMPSCI.220FT 217

Object toElement)
public SortedSet headSet(Object toElement)
public SortedSet tailSet(Object fromElement)
public Object first()
public Object last()

There are similar methods forMap.

The methodsubSet returns a view of the portion of this sorted set whose elements
range fromfromElement, inclusive, totoElement, exclusive. IffromElement
andtoElement are equal, the returned sorted set is empty. Changes made to the re-
turned set are reflected in the original.

If there are natural successors to elements in the sets, the bounds can be changed from
exclusive to inclusive and vice-versa, by replacing the appropriate boundary with its suc-
cessor.

The other subset methods behave in an identical manner with respect to
fromElement andtoElement respectively.

5.6 The Collections Class

As well as providing the interfaces and adapter classes, the collections framework also
includes a set of static methods for manipulating collections, including methods to search
lists, suffle lists, sort lists, as well as other general functions to manipulate collections.

There are also a set of factory methods for providing wrapper implementations to existing
collections:

Synchronized collections by default collections are unsynchronized. These methods
provide a synchronized version of the original collection. See COMPSCI 230
and/or COMPSCI 340 for explanation of synchronization.

Read-only collections These methods provide read-only views of existing collections

Finally, theCollections class provides a set of convenience implementations through
static variables and factory methods. These are commonly used abstractions for which it
is possible to provide fast implementations. There are two static variables,EMPTY LIST
andEMPTY SET, which are immutable empty lists and sets respectively. The factory
methods provide asingletonSet, which is an immutable set with one element, and
nCopies which is a lightweight immutable list containingn copies of a single object.

218 COMPSCI.220FT

5.7 General Purpose Implementations

The collection classes in Java provide some sample implementations of the interfaces.

Vector from JDK 1.0 has been retrofitted to comply with theList interface. There are
still methods for accessingEnumerations, etc, although some of the methods
have changed slightly to conform to the interface.

ArrayList, LinkedList implementations ofList using arrays and linked lists respec-
tively. TheLinkedList class provides extra methods which allow it to be used
as a stack or queue data structure.

HashMap, HashSet implementations of Map and Set which are based on
Hashtables. These implementations are not sorted.

WeakHashMap like aHashMap, except that it allows the keys to be garbage collected
while part of the map. Items accessed by garbage collected keys are removed from
the mapping.

TreeMap, TreeSet a sortedMap or Set based on a balanced tree data structure which
guarantees access inlogn time for the elementary operations.

5.8 Writing Your Own Collection Classes

This section will be explained by way of example with an implementation ofList, be-
cause it is the simplest. We will be adapting an array.

5.8.1 The data structure

The storage for the collection is (naturally enough) is an array. We can use the
toArray operation to provide the “copy” constructor, and the default constructor is
trivial. Note that the implementation makes use of the default methods provided by
AbstractList.

public class MyArrayList extends AbstractList {
private Object [] a;

public MyArrayList() {
a = new Object[0];

}

public MyArrayList(Collection c) {

COMPSCI.220FT 219

a = c.toArray();
}

}

5.8.2 get() and size()

These are also simple, implemented by adapting the array interface:

public Object get(int index) {
return a[index];

}

public int size() {
return a.length;

}

5.8.3 Modifiable collections and efficiency

As an exercise, implementset and make the methods fortoArray more efficient.

220 COMPSCI.220FT

