Chapter 5
JAVA COLLECTIONS FRAMEWORK

A collection is an object that groups multiple objects. Collections are used to store, re-
trieve and manipulate data. Collections usually represent natural groupings, e.g., a Bridge
hand (a collection of cards) or an address book (name to address mappings).

You should already be familiar with the idea of collections, if you've used the Java data
structures such agect or , Hasht abl e, or even arrays. These were different imple-
mentations of collections, but noframework. The Java collections framwork is a unified
architecture for representing and manipulating collections. It provides a group of inter-
faces and contracts which implementations must follow, as well as some sample imple-
mentations.

5.1 Generic Programming

Consider the following example:

public static String verb() {
String[] verbs = {"eat", "eradicate" };
return oneof (verbs);

}

The function of this method is to choose between the the available “verbs”. This requires a
trivial implementation obneof —choosing a random element of the array—but requires
that the words are always provided in an array.

Changing the origin of the words, such as reading them from an external source such as a
file or a network requires extensive modification of ttex b method in order to provide

the correct data structure. There is an even larger problem if the list of words is too large
to fit into memory. In this case providing an array becomes an impossibility.

As well as that, the modifications tcer b are not reusable: you cannot take direct ad-
vantage of work carried out previously by others, nor can others directly reuse your work.

207

208 COMPSCI.220FT

So the effort that went into reading the words from a file or the network may have to be
repeated for the next task (such as modifyiragin).

5.1.1 Interfacesand implementations

When the code that does the work is swamped by the implementation, it is time to separate
the two. Separation means usingiaterface and providingimplementations of that in-
terface. Interfaces specify operations without giving any code. Implementations provide
concrete code for the operations required by the interfaces.

5.1.2 Polymorphic algorithms

The last thing that is required for generic programming is polymorphic algorithms. These
are algorithms which depend only on the interfaces, and not on any details of the imple-
mentations. This means that the code for these algorithms should work unchanged if the
implementation changes.

5.1.3 Beng€fits

I mproves program speed and quality Programs can be easily tuned by changing im-
plementations to suit a particular application

Foster s software reuse New implementations which conform to existing interfaces are
by their nature reusable. The same is true of new polymorphic algorithms.

5.2 TheCollections Framework

The idea of the Collections Framework is to provide a generic framework for collections
of data. There are several advantages that having such a framework provides in addition
to the advantages of generic programming mentioned previously.

Encourage interoper ability the collections interfaces become the common method of
passing collections back and forth.

Reduce programming effort by providing useful data structures, programmers can con-
centrate on the work their code needs to do, rather than the plumbing.

Reduce effort to learn new APIs many applications naturally use collections as input
and output. By providing the collections framework, such applications can make
use of existing APIs, rather than providing a mini-API for dealing with their collec-
tions.

COMPSCI.220FT 209

Reduce effort to design new APIs because applications can make use of collections,
they can make use of the existing collections APIs.

In theory this sounds very positive, but in the past collections frameworks have been
difficult to use, because there have been too many classes and interfaces to learn to be
able to use the framework to the full advantage.

The Java Collections Framework has the advantages that the framework is a small set of
interfaces. Sample implementations are provided as well as adapter classes to minimize
the effort required to use the framework and to write new implementations of the classes,
which users (including you!) are encouraged to do.

521 What isacollection?

Put simply, a collection is a group of objects. To achieve the advantages of generic pro-
gramming, various operations on collections need to be provided to users. By using an
example of an array, everything needed for basic collections can be observed.

oject [] a = new bject[...];

for (int i =0; i < a.length; i++) {

|
2

ali] = ...

The code fragment has examples of:
A collection of items The array has space to hold a group of objects of a specific type.
A method of allocating space The constructor.

An iterator The for-loop variable allows iteration through the elements of the collec-
tion in a well defined order.

A method of obtaining the current item By use of an assignment statement.

A method for replacing the current item An assignment statement again, which can be
used for modifiable collections.

Of course, this example does not illustrate generic programming, and it is not a complete
example as it does not deal with collections which can grow or shrink in size.

210 COMPSCI.220FT

5.2.2 TheFramework interfaces
There are six interfaces, in two hierarchies.

Collection least powerful, most general. Operations inclusleze, i SEnpty,
cont ai ns,add, renove,iterator.

List an ordered collection. Elements can be accessed by an integer position.

Set, SortedSet a collection that cannot contain duplicates. Same operations as collection,
but is expected to prevent duplicates from occuring. Sorting determines the order
which an iterator provides the elements to the user.

Map, SortedMap (not a collection) an object that maps keys to values; i.e., like a list,
but elements can be accessed by a “key”, which can be any object.

Collection Map

List ‘ SortedMap

SortedSet

Aside In general when providing and using collections, methods whiokide collec-
tions should provide the most specific type of collection appropriate to the application,
while methods whichieceive a collection should expect the most general type of collec-

tion they are able to deal with. This increases the ability to reuse the code for different
applications.

5.3 Interface Contracts

A Col | ecti on is more than just an interface. Implementations are expected to con-
form to a certain standard of behaviour. An example of the expected behaviour is af-

COMPSCI.220FT 211

ter callingc. add(o) foraCol | ecti on c,c. contai ns(0) should returrt r ue.
The expectations of behaviour forntantract. Users of implementations expect them to
adhere to the contract. Another example of an interface contract is thedjf@l s and
hashCode. If o0l. equal s(02), then ol. hashCode() must be equal to
02. hashCode() .

54 Thelnterfacesin Detall

54.1 Collection

TheCol | ecti on class is the most general form of a collection. There are no imple-
mentations of this class in the framework. This class is used to pass around collections
when maximum generality is required. New implementations of collections which are not
covered by the other classes of the framework (suchbas af items which may contain
duplicates) can implement this interface directly.

public interface Collection {
/| Basic QOperations
int size();
bool ean i senpty();
bool ean cont ai ns(bj ect el enent);
bool ean add(Cbj ect el enent); /1 Optiona
bool ean renove(Object elenent); // Optiona
Iterator iterator();

/1 Bul k Operations

bool ean contai nsAll (Col |l ection c);

bool ean addAl | (Col | ection c); /'l Optional
bool ean renmoveAl | (Collection c); // Optional
bool ean retainAll (Collection c); // Optional
void clear(); /1 Optional

/'l Array Operations
Qbject[] toArray();
oj ect[] toArray(Cbject al[]);

}

Classes which implement this interface should also provide two constructors (there is no
way to enforce this in Java):

e A constructor which takes no arguments;

212 COMPSCI.220FT

e A constructor which takes@ol | ect i on as its sole argument.

The second of these two constructors is an operation to change the type of collection, for
example from &et to aLi st , by copying the original into the new.

54.2 Ilterators

An | t er at or is similar to anEnuner at i on and replace them within the context of
the framework. Nonetheless there are important differences betwddrearat or and
anEnuner at i on:

e An iterator allows deletion of items from the collection with well defined semantics;

e The method names are different.

To give an idea of the differences, here is an example of enumerating the elements of a
Vect or and iterating through the elements ofal | ecti on

Vector v;
for (Enuneration e = v.elenents(); e.hasMreEl enents();) {

foo(e. nextEl enent());

compare the above with

Col I ection c;
for (Iterator i = c.iterator(); i.hasNext();) {

1.:.o.o(i.next());

Another important difference betweener at or sandEnuner at i ons is the ability of

| t er at or s tofail fast if the underlying structure of the collection changes, for instance
if a new item is added to an extensible list, while the user is iterating through the list. Un-
der such circumstances, the iterator is permitted to thr@arecur r ent Modi fi cat i on-
Excepti on.

COMPSCI.220FT 213

54.3 ImplementingaCol | ecti on

Normally implementors of collections would subclassdst r act Col | ecti on. The
abstract clasgbst r act Col | ect i on provides default methods for the collection in-
terfaces, in much the same way as the adapter classes in the Java AWT. To provide a read-
only collection, subclasses must provide implementations ofilee andi t er at or
methods. For modifiable collections, subclasses must also pradides well as ensur-

ing that thel t er at or returned by the t er at or method implementsenove. The

default behaviour of the methods provided by Aiest r act Col | ect i on is to throw

an exceptiorOper at i onNot Support edExcepti on.

The operationadd andr enove must return true if the collection changed as a result of
the operation. This is part of the contract for & | ecti on.

The two methods for providing arrays deserve mention here. The first, which takes no
arguments, provides an array of the exact size required to store the collection. The second
will allocate a new array if the one provided does not have sufficient space to store the
entire collection, or will pad the array withul | if the array is too large.

Keen observers will notice that the bulk operations in the class are optional to implement.
This is because they can be defined in terms of the operaidtisandr enove, which
is how they are implemented in the abstract class.

544 Set

Set s are collections that cannot contain duplicate items. This interface is for the mathe-
maticalset abstraction.

Implementing aSet can be carried out by subclassingApst r act Set in the same
way that a collection can be implemented by subclassing
Abst ract Col | ect i on, with the additional constraint that the operations must adhere
to the set data model, i.e., the set must contain no duplicate items.

545 List

A Li st is an indexable collection. You should already be familiar with this type of data
structure from your previous Java programming experiend&c or and an array are
structures with similar properties. A list can contain duplicate elements, and it is possible
to insert or remove anywhere from the list.

Additional operations which take advantage of this ordering are:

214 COMPSCI.220FT

public Object get(int index)

public List subList(int from ndex, int tolndex)
public int indexOF((Qbject 0)

public int |astlndexOr(Cbject 0)

/1 bul k operation
publ i c bool ean addAl'l (i nt index, Collection c)

/'l extra iterator nethods
public Listlterator listlterator()
public Listlterator listlterator(int index)

/1 for nodifiable lists
public Object set(int index, Object elenment)

[l for resizable lists
public void add(int index, Object elenent)
public Object renove(int index)

protected void renoveRange(int from ndex, int tolndex)

which should all be reasonably self explanatory. Details can be found in the API docu-
mentation.

54.6 Listlterators

Li st |t er at or s are extensions oft er at or s which allow the user to traverse lists in
either direction, and allow updating of the element at the current position of the iterator.
There are extra methods:

pr evi ous, hasPr evi ous, next | ndex (andpr evi ousl ndex) for returning the
index which would be returned by the appropriate calléxt orpr evi ous,

set for updating the current element, and

add for adding an item to the list.

54.7 Adapter classes

The framework provides two abstract classes for list implementors:

AbstractList This provides default methods for implementations which are based on
indexable data structures.

COMPSCI.220FT 215

AbstractSequentialList This provides default methods for implementations based on
sequential structures, such as linked lists.

Implementations of lists which use these adapters must provide methodstfoand

si ze, as well aset if the listis modifiable, anédd(i nt, Obj ect) andr enpove

if the list is extendible. These adapters are different from the other abstract classes in the
framework in that they do not require the user providé fiar at or , as it can be defined

in terms of get and renove. However, users of the
Abstract Sequenti al Li st must also provide an implementation of a
Listlterator.

The adapter classes also provide a way of quick failure fot ther at or if the under-
lying structure changes, rather than displaying indeterminate behaviour, as happens by
default.

54.8 Map

Maps arenot Col | ecti ons. They are somewhat analogousHas ht abl es, in that
items in theMap are accessed bykay object which is unique to thkhp. Each key can
map to at most one value.

5.5 Sorting

For there to be valid implementations br t edSet andSor t edMap, there needs to

be a standard method of comparing two objects for the purpose of providing a relative or-
dering between them. Sorting of primitive types is easy, there are predefined comparison
operators (such as etc.) which can be used to determine the relative ordering between
two data items. However, it is not possible to h&a | ect i ons of primitive types,

we are required to use the classed eger etc. For objects of non-primitive types there

are two methods which can be usedtural ordering andinnatural ordering.

5.5.1 Natural ordering

Classes which implement ti@npar abl e interface are said to have natural ordering.
These classes must provide a methodnt conpareTo(Object 0).

0ol. conpareTo(02) should return a value less than zerooif is “less than”02,

zero ifol is “equal”’ too2, and greater than zero @l is “greater than'02. It is nor-

mally expected that natural ordering of objects is consistent with equals. This means that
0l. equal s(02) ifand only ifol. conpar eTo(02) == 0. One exception to this

is theBi gDeci mal class in the standard classes.

216 COMPSCI.220FT

When usingConpar abl e objects withSor t edSet s, there may be unexpected be-
haviour if the natural ordering is inconsistent with equals. This is because the contracts for
Set s are defined interms efqual s, and aSor t edSet assumes that objects which are
equal according their natural ordering are also equal according teqhal s method.
There is still well defined behaviour f@or t edSet s if the natural ordering is inconsis-

tent with equals, although such behaviour will violate the set contract.

5.5.2 Unnatural ordering

There is a problem with natural ordering, in that the provider of the classes you are using
must have implemented tl@@npar abl e interface. If this has not been done, there are
two options:

e Create a subclass which implements this interface;

e Provide aConpar at or object which will determine an unnatural ordering be-
tween the objects.

The first solution can get a little tedious providing wrapper classes everytime you want
to create &ol | ect i on of a new class. It is usually simpler to implement the second
alternative.

TheConpar at or class is an abstract class which allows the comparison of two arbitrary
objects, although most often they are of the same type. Subclasses of
Conpar at or must provide ant conpar e(Gbj ect 0) which behaves in the same
way as theconpar eTo method above.

The same expectations of consistency with equals apply todhpar e method, for the
reasons outlined in the previous section.

5.5.3 SortedSet and SortedMap

These are the same as tet and Map except that the contracts guarantee that

| t er at or s return the items in sorted order. These classes will attempt to use natural
order by an appropriate typecast on their members, unl€sspar at or objectis pro-
vided when constructing the collection.

There are some additional methods which take advantage of the ordering of the set or
map. Those foBet are listed here.

publ i ¢ Conparator conparator()
public SortedSet subSet(bject fronkl enent,

COMPSCI.220FT 217

Qbj ect toEl enent)
public SortedSet headSet(Object toEl enent)
public SortedSet tail Set(Object fronEl enent)
public Object first()

public Object last()

There are similar methods fvap.

The methodsubSet returns a view of the portion of this sorted set whose elements
range fromf r onEl enent , inclusive, tot oEl enent , exclusive. Iff r onEl enent

andt oEl enent are equal, the returned sorted set is empty. Changes made to the re-
turned set are reflected in the original.

If there are natural successors to elements in the sets, the bounds can be changed from
exclusive to inclusive and vice-versa, by replacing the appropriate boundary with its suc-
cessor.

The other subset methods behave in an identical manner with respect to
f ronEl ement andt oEl enent respectively.

56 TheCol | ecti ons Class

As well as providing the interfaces and adapter classes, the collections framework also
includes a set of static methods for manipulating collections, including methods to search
lists, suffle lists, sort lists, as well as other general functions to manipulate collections.

There are also a set of factory methods for providing wrapper implementations to existing
collections:

Synchronized collections by default collections are unsynchronized. These methods
provide a synchronized version of the original collection. See COMPSCI 230
and/or COMPSCI 340 for explanation of synchronization.

Read-only collections These methods provide read-only views of existing collections

Finally, theCol | ect i ons class provides a set of convenience implementations through
static variables and factory methods. These are commonly used abstractions for which it
is possible to provide fast implementations. There are two static vari&@iNes,Y_LI ST

and EMPTY_SET, which are immutable empty lists and sets respectively. The factory
methods provide ai ngl et onSet , which is an immutable set with one element, and
nCopi es which is a lightweight immutable list containimgcopies of a single object.

218 COMPSCI.220FT

5.7 General Purpose | mplementations
The collection classes in Java provide some sample implementations of the interfaces.

Vector from JDK 1.0 has been retrofitted to comply with thiest interface. There are
still methods for accessingnuner at i ons, etc, although some of the methods
have changed slightly to conform to the interface.

ArrayLigt, LinkedList implementations ofi st using arrays and linked lists respec-
tively. TheLi nkedLi st class provides extra methods which allow it to be used
as a stack or queue data structure.

HashMap, HashSet implementations of Map and Set which are based on
Hasht abl es. These implementations are not sorted.

WeakHashMap like aHashMap, except that it allows the keys to be garbage collected
while part of the map. Items accessed by garbage collected keys are removed from
the mapping.

TreeMap, TreeSet a sortedvap or Set based on a balanced tree data structure which
guarantees accesslisg n time for the elementary operations.

5.8 Writing Your Own Collection Classes

This section will be explained by way of example with an implementationi aft , be-
cause it is the simplest. We will be adapting an array.

5.8.1 Thedatastructure

The storage for the collection is (naturally enough) is an array. We can use the
t OAr r ay operation to provide the “copy” constructor, and the default constructor is
trivial. Note that the implementation makes use of the default methods provided by
AbstractLi st.

public class MyArrayLi st extends AbstractList {
private bject [] a;

public MyArrayList() {
a = new Object[0];
}

public MyArrayList(Collection c) {

COMPSCI.220FT 219

a = c.toArray();

582 get() andsi ze()

These are also simple, implemented by adapting the array interface:

public Object get(int index) {
return afindex];

}

public int size() {
return a.l ength;

}

5.8.3 Maodifiable collections and efficiency

As an exercise, implemeset and make the methods fopbAr r ay more efficient.

220 COMPSCI.220FT

