
COMPSCI 210COMPSCI 210

C Programming LanguageC Programming Language

Control StructuresControl Structures

Control StructuresControl Structures
�Conditional

◦ making a decision about which code to execute,
based on evaluated expression

◦ if

◦ if-else

◦ switch

�Iteration
◦ executing code multiple times,

ending based on evaluated expression
◦ while

◦ for

◦ do-while

�LC3 Code Translation
◦ All control structures are done using Branch operation in LC3
◦ BR{nzp}

Physical
memory

If StatementIf Statement

�Condition is a C expression, which evaluates to
� TRUE (non-zero) or
� FALSE (zero).

�Action is a C statement,

◦which may be simple or compound (a block).

�Generate LC3 code from C code

�C Code

�LC3 Code:

if (x == 2) y = 5;

LDR R0, R5, #0 ; load x into R0
ADD R0, R0, #-2 ; subtract 2
BRnp NOT_TRUE ; if non-zero, x is not 2

AND R1, R1, #0 ; store 5 to y
ADD R1, R1, #5
STR R1, R5, #-1

NOT_TRUE ... ; next statement

…

y

xR5

0x0000

0xFFFF

condition

action

T

F

if (0 <= age && age <= 11)
kids += 1;

R0 != 0
R0 == 0

if_else.asm

IfIf--else Statementelse Statement

condition

action_if action_else

T F

if (condition)
action_if;

else
action_else;

�Condition is a C expression, which evaluates to
� TRUE (non-zero) or
� FALSE (zero).

�Action is a double C statements,

◦True then do action 1

◦False then do action 2

�Generate LC3 code from C code

�C Code to LC3 Code:
…

z

y

xR5

0x0000

0xFFFF

LDR R0, R5, #0
BRz ELSE

LDR R1, R5, #-1 ; load y
ADD R1, R1, #1 ; incr y
STR R1, R5, #-1
LDR R1, R5, #-2 ; load z
ADD R1, R1, #-1 ; decr z
STR R1, R5, #-2
BR DONE ; skip else code

ELSE LDR R1, R5, #-1 ; decr y
ADD R1, R1, #-1
STR R1, R5, #-1
LDR R1, R5, #-2 ; incr z
ADD R1, R1, #1
STR R1, R5, #-2

DONE ... ; next statement

if (x) {
y++;
z--;

}
else {

y--;
z++;

}

x != 0

x == 0

Compare x with 0

if_else.asm

IfIf--else statement (cont)else statement (cont)
◦ Else is always associated with closest unassociated if.

== !=

◦ Good practice to always use { and } with if-else statement.
� To reduce bugs
� Improve readability

◦ Chaining If’s and Else’s
� The conditions are evaluated in order until one that evaluates to true

is found. If none of them are true then the else block is executed.
� The final else is optional

if (x != 10)
if (y > 3)

z = z / 2;
else

z = z * 2;

if (x != 10) {
if (y > 3)

z = z / 2;
else

z = z * 2;
}

if (x != 10) {
if (y > 3)

z = z / 2;
}
else

z = z * 2;

if (month == 4 || month == 6 || month == 9 || month == 11)
printf(“Month has 30 days.\n”);

else if (month == 1 || month == 3 || month == 5 || month == 7 ||
month == 8 || month == 10 || month == 12)

printf(“Month has 31 days.\n”);
else if (month == 2)

printf(“Month has 28 or 29 days.\n”);
else

printf(“Don’t know that month.\n”);

Test 13.4.c

SwitchSwitch
◦ Alternative to long if-else chain.

◦ If break is not used, then case "falls through" to the
next.

◦ No two case statements can have the same value.

◦ Value must be an an integer value: type long, int, or
char

◦ The default statement is optional

evaluate
expression

= const1?

= const2?

action1

action2

action3

T

T

F

F

switch (expression) {
case const1:

action1; break;
case const2:

action2; break;
default:

action3;
}

switch (month) {
case 4:
case 6:
case 9:
case 11:

printf(“Month has 30 days.\n”);
break;

case 1:
case 3:
/* some cases omitted for brevity...*/

printf(“Month has 31 days.\n”);
break;

case 2:
printf(“Month has 28 or 29 days.\n”);
break;

default:
printf(“Don’t know that month.\n”);

}

Use break to get out
of the switch, if no

break next action
will take place after

Enter a month and
program print out
different sentence

for different month

Month_switch.c

Writing LoopsWriting Loops

�Loops
◦ Repeated execution of one or more statements

until a terminating condition occurs
◦ Pre-test and post-test loops

�Types of loops:
◦ Pre-test loops
� while

� for

◦ Post-test loop
� do while

While loopWhile loop
�Executes loop body as long as
test evaluates to TRUE (non-zero).

◦ Note: Test is evaluated before executing
loop body

◦ When false, the loop body is
not executed at all

◦ Do..while loop is an alternative

�Generate LC3 code from C code

test

loop_body

T

F

while (test)
loop_body;

x = 0;
while (x < 10) {

printf(“%d ”, x);
x = x + 1;

}

AND R0, R0, #0
STR R0, R5, #0 ; x = 0
; test

LOOP LDR R0, R5, #0 ; load x
ADD R0, R0, #-10
BRzp DONE
; loop body

LDR R0, R5, #0 ; load x
...
<printf>
...
ADD R0, R0, #1 ; incr x
STR R0, R5, #0
BR LOOP ; test again

DONE ; next statement

X is stored at
address pointed

by R5

Only finish when
x = 0

X is added by 1
and stored at

address pointed
by R5

Only finish when
y-10 >= 0

X is stored at
address pointed

by R5

For loopFor loop
�Executes loop body as long as test evaluates to TRUE (non-zero).

◦ Probably the most used loop statement

◦ Initialization and re-initialization code included in loop
statement.

◦ Note: Test is evaluated before executing loop body.

◦ C code to LC3 translation:

init

test

loop_body

re-init

F

T

for (init; end-test; re-init)
statement

for (i = 0; i < 10; i++)
printf(“%d ”, i);

; init
AND R0, R0, #0
STR R0, R5, #0 ; i = 0
; test

LOOP LDR R0, R5, #0 ; load i
ADD R0, R0, #-10
BRzp DONE

; loop body
LDR R0, R5, #0 ; load i
...
<printf>
...
; re-init
ADD R0, R0, #1 ; incr i
STR R0, R5, #0
BR LOOP ; test again

DONE ; next statement

for (i = 0; i <= 10; i ++)
printf("%d ", i);

OutputOutput

letter = 'a';
for (c = 0; c < 26; c++)

printf("%c ", letter+c);

OutputOutput

X is increased
and stored at

address pointed
by R5

Nested LoopsNested Loops
�Loop body can (of course) be another loop.

�The test for the inner loop depends on the counter variable of the
outer loop.

Braces aren’t necessary,

but they make the code easier to read.

/* print a multiplication table */
for (mp1 = 0; mp1 < 10; mp1++) {

for (mp2 = 0; mp2 < 10; mp2++) {
printf(“%d\t”, mp1*mp2);

}
printf(“\n”);

}

for (outer = 1; outer <= input; outer++) {
for (inner = 0; inner < outer; inner++) {

sum += inner;
}

}

for(i = 0; i < row; i ++) {
for (j = 0; j <= i; j++) {

printf("*");
}
printf("\n");

}

*
**

Input an integer: 4
The result is 10

Output for
row=8

Output for
Input = 4

Star.c

For vs. WhileFor vs. While
�In general:
�They are equivalent
�Either kind of loop can be expressed as the other,
so it’s really a matter of style and readability.
�These 2 loops are equivalent and are endless loop

�For loop is preferred for counter-based loops.
◦Explicit counter variable
◦Easy to see how counter is modified each loop

�While loop is preferred for sentinel-based
loops.
◦Test checks for sentinel value.

for (;;)
printf(“*”);

while (1)
printf(“*”);

for(;;){
if(conditionMet)

break; //code
}

while(!conditionMet){
//code

}

