THE UNIVERSITY OF AUCKLAND Contr0| StrUCtu reS
«Conditional
> making a decision about which code to execute,

COMPSC' 210 ’ based on evaluated expression

o if
if-else
switch

«|teration

executing code multiple times,
ending based on evaluated expression

C Programming Language

Control Structures

whil e
o for
do-whil e

+LC3 Code Translation

o All control structures are done using Branch operation in LC3
> BR{ nzp}

if_else.asm if (%%Egirt]i_oig)
If Statement If-else Statemenﬁ“imon-ewez

«Condition is a C expression, which evaluates to w sCondition is a C expression, which evaluates to T F
- TRUE (non-zero) or ’ if (0 <= age && age <= 11) ‘
kids += 1;

T + TRUE (non-zero) or

- FALSE (zero). - FALSE (zero).

Action is a C statement, «Action is a double C statements, | action_if | | action_else |

which may be simple or compound (a block). True then do action 1 I—l—l

Compare x with 0

+Generate LC3 code from C code -False then do action 2 DR RO, R5, #0
0x0000 BRz ELSE 0x0000
+C Code e«Generate LC3 code from C cog
— LDR R1, R5, #1 ;_I_oad y
[fx=2y=5 | +C Code to LC3 Code: EER B ERag, Y -
LDR R1, R5, #2 ;load z
+L.C3 Code: l T { ADD R1,RL #1 ;decrz
y++ STR R1, R5, #-2
LDR RO, R5, #0 ; load x into RO 7 ﬂ BR DONE ; skip else code z
ADD RO, RO, #-2 ; subtract 2 } —
BRnp NOT_TRUE ; if non-zero, x is not 2 y else { DR R1, R5, #1 ;decry y
! il - pemi
) AND R1, R1, #0 ; store y RE— X Z+4; " RE R i X
ADD R1,R1, #5) LDR RE RS, #.2 :intrz R5 —
STR R1, R5, #1 STR RL RS, #2
NOT_TRUE ... snextstatement OrFFFF < fneynilgra)’ > DONE ... ; next statement OxFFFF
fmemory |

If-else statement (cont)

> Else is always associated with closest unassociated if.

if (x 1= 10) =101 =101
if (y >3) if (y>3) |fy>3)
=712 == z=21/2; I= z=2z/
else else 3
=z2*2; z=2*2 else
} z2-2*"2

Good practice to always use { and } with if-else statement.
+ To reduce bugs
- Improve readability
> Chaining If's and Else’s
+ The conditions are evaluated in order until one that evaluates to true

Test13.4.c

is found. If none of them are true then the else block is executed.
+ The final else is optional

if (month == 4 || month == 6 || month == 9 || month ==11)
printf(“Month has 30 days.\n");

else if (month == 1 || month == 3 || month == 5 ||

month == SJ| month == 10 || month == 12)

printf(“Month has 31 days.\n");

else if (month == 2)
printf(“Month has 28 or 29 days.\n");

else
printf(“Don’t know that month.\n”);

month ==7 ||

switch (expression) {
case constl:

. actionl; break;
WI tC case const2:
action2; break;

- Alternative to long if-else chain. el

>{f break is not used, then case "falls through" to the }
ext.

- No two case statements can have the same value.
alue must be an an integer value: type long, int, or

C har Month_switch.c
o The default statement is optional
Enter a month and switch th;
s d
different sentence case 6:
for different case 9

.

onth case 11:

prinﬁ(“Mon(h has 30 days.\n");
break;

evaluate
expression

case 1

Use break to get out

of the switch, if no
break next action

will take place after

e 3:
l* some cases omitted for brevity...*/
Bnntf(‘Month has 31 days.\n"

ca
— prlnﬁ(Month has 28 or 29 days.\n");
\

def:
prlnﬁ(Don't know that month.\n");

}

Writing Loops

eLoops
o Repeated execution of one or more statements
until a terminating condition occurs
> Pre-test and post-test loops
*Types of loops:
> Pre-test loops
+ while
- for

> Post-test loop
- do while

While loop

»Executes loop body as long as
est evaluates to TRUE (non-zero).
> Note: Test is evaluated before executing
loop body
> When false, the loop body is
not executed at all

Xis stored at
address pointed
by RS

T
loop_body

while (test)
loop_body;

AND RO, RO, #0
STR RO, R5,#0 ; x=0
; test

> Do..while loop is an alternative
»Generate LC3 code from C code

LOOP LDR RO, R5, #0 ; load x
ADD RO, RO, #-10
BRzp DONE

; loop body

Only finish when

x=0; LDR RO, R5, #0 ; load x

while (x< 10) {

pnntf(“o6d ", X);
=X+ 1

<printf>

ADD RO, RO, #1 incr x
X is added by 1 STR RO, RS5, #0
and stored at BR LOOP ; test again

address pointed DONE ; next statement
by R5

for (init; end-test; re-init) ‘

F 0 r | 0 O p statement

sExecutes loop body as long as test evaluates to TRUE (non-zero).
> Probably the most used loop statement

* Initialization and re-initialization code included in loop
statement.

> Note: Test is evaluated before executing loop body.

_ _ _ Output
for (i = 0; i <= 10; i ++) ‘ 812345678916
printf("%d ", i); B
it loop_body
AND RO, RO, #0
letter = 'a’; ;S;Q; ROIRS, 0. ‘““7‘«0‘
for (c = 0; ¢ < 26; c++) ini
printf("%c ", letter+c); LOOP LDR RO, RS, #0 ; load i re-init
S ADD RO, RO, #-1I
> BRzp DON| Xis stored at
- address pointed
Output + loop body by RS
labhcdefahiiklmnooanr LDR RO, R5, #0 ; load i
Only finish when
C code to : <printf> yy-lo >=0
5'}e—init

for (i = 0; i < 10; i++) 21[-);2 Sg’ §§'§é sincri
printf(“%d ", i); , RS, and stored at
BR LOOP ; testagain address pointed
DONE ; next statement by RS

L™ Xis increased

Nested Loops

«Loop body can (of course) be another loop.

/* print a multiplication table */
for (mp1 = 0; mpl < 10; mpl++) {

printf(“%d\t”, mp1*mp2);

Braces aren’t necessary,

for (mp2 = 0; mp2 < 10; mp2++) { <
o ‘ but they make the code easier to read.

printf(“\n");

}

*The test for the inner loop depends on the counter variable of the

for(i=0; i <row; i ++) {
for (j=0;j<=i; j++) {
printf("*");

outer loop.
;
row=8 r

;
printf("\n");

Output for

Input = 4

for (outer = 1; outer <= input; outer++) {
for (inner = 0; inner < outer; inner++) {
sum += inner;

Input an integer: 4
The result is 10

} . =)

For vs. While

n general:
*They are equivalent

eEither kind of loop can be expressed as the oth
so it's really a matter of style and readability.

*These 2 loops are equivalent and are endless |

~or loop is preferred for counter-based loops.
°Explicit counter variable
°Easy to see how counter is modified each loop

While loop is preferred for sentinel-based
loops.

hile (1
ooty =
for ;)
| nte:

p

for(:{
if(conditionMet)
break; //code

°Test checks for sentinel value.

}

while(!conditionMet){

Illcode

